
13 Transforms

The coming chapters will revisit the ground we just covered, finding significant problems
and remarkable capabilities lurking behind apparently innocuous assumptions made in
last chapter’s introduction to function fitting. Here we ask the easily overlooked question
of whether data is best analyzed in the form that it is given (hint: the answer is frequently
no). This is a question about representation – what’s the best way to view the data to
highlight the features of interest? The goal will be to boil a set of measurements down
to a smaller set that is more independent, freeing subsequent analysis from having to
rediscover the structure. A good representation can go a long way towards solving a
difficult problem, and conversely a bad one can doom an otherwise well-intentioned
effort.

13.1 ORTHOGONAL TRANSFORMS

We will frequently be concerned with orthogonal transformations. These are ones that
are particularly simple to undo, an important feature since we don’t want our transfor-
mation to throw away information in the data unless we tell it to.

A matrix is orthogonal if its inverse is equal to its transpose,

MT ·M = I , (13.1)

where as usual the transpose is denoted by

MT
ij ≡Mji (13.2)

and I is the identity matrix with 1s on the diagonal and 0s elsewhere. Multiplication of a
vector by an orthogonal matrix defines an orthogonal transformation on the vector. For
a complex matrix the adjoint is the complex conjugate of the transpose

M†ij ≡M∗ji . (13.3)

If the adjoint is the inverse,

M† ·M = I , (13.4)

then M is unitary. The column or row vectors ~vi of an orthogonal matrix are not only
orthogonal, ~vi · ~vj = 0 (i 6= j), they are orthonormal, ~vi · ~vj = δij , but by convention
the matrix itself is still usually just called orthogonal.

148 Transforms DRAFT

An important property of the adjoint is that it interchanges the order of a product of
matrices:

(A · B)† = B† · A† . (13.5)

Remember also that matrix multiplication is distributive (A · (B + C) = A · B + A · C)
and associative (A · (B ·C) = (A ·B) ·C), but need not be commutative (A ·B 6= B ·A).

Now consider a linear transformation on a column vector ~x to a new one ~y = M · ~x.
The Euclidean norm of ~x is its length as measured by the sum of the squares of the
elements,

|~x|2 = ~x† · ~x =
∑
i

x∗ixi =
∑
i

|xi|2 . (13.6)

If M is unitary, then the norm of ~y is

|~y|2 = |(M · ~x)† · (M · ~x)|
= |(~x† ·M†) · (M · ~x)|
= |~x† · (M† ·M) · ~x|
= |~x† · ~x|
= |~x|2 . (13.7)

A unitary (or orthogonal) transformation preserves the norm of a vector. It rotates a data
point to a new location, but doesn’t change its distance from the origin. This means that it
can rearrange the points but not do something as nasty as make some of them disappear.

13.2 FOURIER TRANSFORMS

The Discrete Fourier Transformation (DFT) is a familiar example of a unitary trans-
formation (Problem 12.1). Given a data vector {x0, x1, . . . , xN−1}, the DFT is defined
by

Xf =
1√
N

N−1∑
n=0

e2πifn/Nxn

≡
N−1∑
n=0

Mfnxn

= M · ~x , (13.8)

and the corresponding inverse transform by

xn =
1√
N

N−1∑
f=0

e−2πifn/NXf . (13.9)

The Xf are the coefficients for an expansion of the vector in a basis of periodic complex
functions. For real-valued signals and transforms the related Discrete Cosine Transfor-
mation (DCT) can be used (Problem 12.2).

Computing the DFT requires multiplying the data vector by the transform matrix.
Finding one element needs N multiplies and adds, and there are N elements, so this

DRAFT 13.2 Fourier Transforms 149

appears to be an O(N 2) algorithm. Remarkably, and significantly, this is not the case.
Notice the the DFT can be split into two sums as follows:

Xf =
1√
N

N−1∑
n=0

e2πifn/Nxn

=
1√
N

N/2−1∑
n=0

e2πif (2n)/Nx2n +
1√
N

N/2−1∑
n=0

e2πif (2n+1)/Nx2n+1

=
1√
N

N/2−1∑
n=0

e2πif (2n)/Nx2n +
e2πif/N

√
N

N/2−1∑
n=0

e2πif (2n)/Nx2n+1

=
1√
N

N/2−1∑
n=0

e2πifn/(N/2)x2n +
e2πif/N

√
N

N/2−1∑
n=0

e2πifn/(N/2)x2n+1

= Xeven
f + e2πif/NXodd

f . (13.10)

Instead of one N-point transform we’ve broken it into two N/2-point transforms, one
on the even points and one on the odd ones. This requires O[(N/2)2] + O[(N/2)2] =
O(N 2/2) steps to do the transforms and one final multiplication and addition to combine
each element, instead of the original O(N 2) steps. The even and odd transforms can
likewise be split, and so forth, until we’ve broken the calculation into N single-point
transforms. Reassembling each of them through the hierarchical factoring takes log2 N
adds and multiplies, for a total of O(N log2 N) steps. If N = 108, doing this requires
O(109) steps (about a second at 1 GFlop), versus O(1016) operations for the DFT (a few
months at a GFlop). Quite a savings! The modern incarnation of this clever idea is called
the Fast Fourier Transform (FFT) and is associated with Cooley and Tukey [Cooley
& Tukey, 1965], but it has a long history dating all the way back to Gauss in 1805. It
is an example of the powerful algorithm design principle of divide-and-conquer: if you
can’t solve a difficult problem, split it into successively smaller problems until they can
be solved and then recombine them to find the answer [Aho et al., 1974].

The clarity of the FFT implementation hides many subtleties in its application [Op-
penheim & Schafer, 2009]. The highest frequency possible in a DFT is f = 1/2; beyond
that the 2π periodicity of the exponential will wrap still higher components in xn onto
lower frequencies. This is the phenomenon of aliasing and requires that a signal be sam-
pled at more than twice the highest frequency of interest (called the Nyquist frequency).
And since the transform is done over a finite time it is equivalent to transforming an
infinite series multipied by a finite-length pulse. Since multiplication in the time domain
is equal to convolution in the frequency domain, and the Fourier transform of a pulse
is a sinc function sin(2πf∆T)/(πf), sharp features in the transform get spread out by
the finite window and spurious side-lobes appear. There are many other ways to win-
dow data with weighting functions other than a rectangular step, in order to optimize
desired attributes such as spectral resolution, sidelobe suppression, or phase uniformity.
Finally, remember that the discrete sampling of the spectrum done by the DFT can miss
important features that lie between the points of the transform.

The FFT is one of the most important algorithms in all of numerical mathematics.
Beyond the many applications we’ve already seen for Fourier transforms it crops up in

150 Transforms DRAFT

places where you might not expect it, such as speeding up the multiplication of two long
numbers (which is really just a convolution [Knuth, 1997]). When Cooley (then at IBM)
first presented the FFT, IBM concluded that it was so significant it should be put in
the public domain to prevent anyone from trying to patent it, and so it was published
openly. Ironically, its very success has made this kind of behavior less common now.

t i m e

fr
eq
u
en
cy

t i m e

fr
eq
u
en
cy

t i m e

fr
eq
u
en
cy

t i m e

fr
eq
u
en
cy

s h o r t - t i m e F o u r i e r t r a n s f o r m w a v e l e t t r a n s f o r m

t i m e s e r i e s F o u r i e r t r a n s f o r m

Figure 13.1. Division of time-frequency spaces by the coefficients of discrete transforms.

13.3 W A V E L E T S

Wavelets are families of orthogonal transformations that generalize Fourier transforms
in a very important way by introducing locality (Figure 13.1). Trigonometric functions
are defined everywhere. This makes them good at describing global properties, such as
the frequency of a signal, but very bad at describing locally varying properties. On the
other hand, a time series represents a signal as a series of local impulses, which have an
infinite spectrum of Fourier coefficients. A sine wave is most conveniently expressed in
the frequency domain, and a step function is much more naturally defined in the time
domain. In between these extremes lie most signals of interest, for which neither a global
nor a local representation is best. A short-time Fourier transform (STFT) tries to do
this by transforming short windows of data. This has the problem that low-frequency

DRAFT 13.3 Wavelets 151

estimates need big windows to be meaningful, while high-frequency estimates need small
windows to be relevant. This is exactly the happy compromise that wavelets provide,
retaining a useful notion of both location and frequency.

Wavelets can be understood as a hierarchical filter bank, shown in Figure 13.2. A
signal is applied to two filters, one passing the high-frequency part of the signal and the
other passing the low-frequency part. Then, the low-frequency part goes through a pair
of filters, separating it into a new high-frequency component and an even lower-frequency
one. This procedure is continued until the signals at the bottom are left with a single
point. Since we don’t want the transform to throw away information unless we explicitly
decide to, each of these steps is done invertibly.

x
(1)

w
(1)

x

l o w - p a s s

f i l t e r

h i g h - p a s s

f i l t e r

x
(2)

w
(2)

l o w - p a s s

f i l t e r

h i g h - p a s s

f i l t e r

x
(3)

w
(3)

l o w - p a s s

f i l t e r

h i g h - p a s s

f i l t e r

Figure 13.2. Interpretation of the wavelet transform as a hierarchical filter bank.

The earliest wavelets were based on expanding a function in terms of rectangular
steps, the Haar wavelets [Haar, 1910]. This is usually a very poor approximation; we
will instead start with the Daubechies wavelets, which are among the simplest but still
most important families [Daubechies, 1988]. Given a record of N points xn, the first
step is to write down a linear filter

yn =
M−1∑
i=0

bixn−i (13.11)

that is zero for “smooth” signals. To design it we certainly want it to vanish for a constant,
so that (taking the order M = 4 for example)

b0 · 1 + b1 · 1 + b2 · 1 + b3 · 1 = 0 . (13.12)

The next thing that we could ask for is that it vanish for a linear ramp

b0 · 0 + b1 · 1 + b2 · 2 + b3 · 3 = 0 . (13.13)

Since this is a linear filter it will then vanish for any x = αn + β. It will turn out that
for a fourth-order wavelet this is all that we can do; given the other constraints to be

152 Transforms DRAFT

included six terms will be needed if we want it to vanish for a quadratic curve, and so
forth. Next, we want to define another filter

zn =
M−1∑
i=0

cixn−i (13.14)

that responds exactly oppositely, being large for smooth signals and small for nonsmooth
signals. A linear filter is just a convolution of the signal with the filter’s coefficients, so the
series of the coefficients is the signal that the filter responds maximally to (Chapter 19).
Therefore, if the output of our second filter vanishes when the coefficients of the first
one are input to it, it will be as unlike the first one as two linear filters can be. This means
that we want

M−1∑
i=0

cibi = 0 (13.15)

(remember that because a linear filter is a convolution, the associated time series flips the
order of the coefficients, and so both have the same index in this sum). A pair of filters
with this property are called quadrature mirror filters. For M = 4 the equation to be
solved is

c0b0 + c1b1 + c2b2 + c3b3 = 0 . (13.16)

By inspection, this can be enforced by flipping the order of the coefficients as well as the
sign of every other one:

b0 = c3 b1 = −c2 b2 = c1 b3 = −c0 . (13.17)

We now have two filters: one is large for the smooth parts of the signal, and the other
for the nonsmooth parts. To apply them to an input vector we can write it as a matrix
problem:

c0 c1 c2 c3

c3 −c2 c1 −c0

c0 c1 c2 c3

c3 −c2 c1 −c0

. . .
c0 c1 c2 c3

c3 −c2 c1 −c0

c2 c3 c0 c1

c1 −c0 c3 −c2

x0

x1
...
...
...
...
...

xN−1

=

x(1)
0

w(1)
0

x(1)
1

w(1)
1
...

x(1)
N/2−2

w(1)
N/2−2

x(1)
N/2−1

w(1)
N/2−1

(13.18)

(all empty matrix elements are 0). Such a representation of a moving filter is called a cir-
culant matrix. Periodic boundary conditions were used to wrap around the coefficients,
but it’s also possible to define special coefficients for the boundaries to avoid that if neces-
sary. I’ve called the output of the “smooth” filter x(1), and the output of the “nonsmooth”
filter w(1). Each component has half as many points as the original series. The former is
a lower resolution description of the signal, and the latter contains the fine structure that
was lost in the smoothing.

DRAFT 13.3 Wavelets 153

It is convenient if the transformation is orthogonal so that the inverse is just the
transpose. Requiring that the matrix times its transpose results in the identity matrix
gives two nontrivial equations

c2
0 + c2

1 + c2
2 + c2

3 = 1

c2c0 + c3c1 = 0 . (13.19)

We also had two equations for the filter

c3 − c2 + c1 − c0 = 0

−c2 + 2c1 − 3c0 = 0 (13.20)

(written in terms of the c’s instead of the b’s). This is four equations in four unknowns,
which can be solved to find

c0 =
1 +
√

3

4
√

2
c1 =

3 +
√

3

4
√

2

c2 =
3−
√

3

4
√

2
c3 =

1−
√

3

4
√

2
. (13.21)

Using these coefficients, the transformation can be inverted by using the transpose

c0 c3 c2 c1

c1 −c2 c3 −c0

c2 c1 c0 c3

c3 −c0 c1 −c2

c2 c1 c0 c3

c3 −c0 c1 −c2

. . .
c2 c1 c0 c3

c3 −c0 c1 −c2

c2 c1 c0 c3

c3 −c0 c1 −c2

x(1)
0

w(1)
0
...
...
...
...
...

x(1)
N/2−1

w(1)
N/2−1

=

x0

x1
...
...
...
...
...

xN−2

xN−1

Let’s now multiply the output from the filters by another orthonormal matrix that

splits the two types of results:

1 0
0 1

1 0
0 1 0

. . .
0 1 0

0 1
1 0

0 1

x(1)
0

w(1)
0

x(1)
1

w(1)
1
...

x(1)
N/2−2

w(1)
N/2−2

x(1)
N/2−1

w(1)
N/2−1

=

x(1)
0

x(1)
1
...

x(1)
N/2−2

x(1)
N/2−1

w(1)
0

w(1)
1
...

w(1)
N/2−1

154 Transforms DRAFT

The first half of the resulting vector is a smoothed version of the original signal at half
the time resolution, and the second half contains the details lost in the smoothing. The
original series can be recovered by multiplying by the transposes of the two matrices used.
We can now go ahead and do the same sequence of operations on the new x’s, to give
a version at even lower resolution as well as some more “detail” coefficients. Repeating
the filtering and shuffling operations until we’re left with just two x values and so can
go no further gives the following sequence of coefficient vectors:

x0 x(1)
0 x(1)

0 x(2)
0 x(2)

0 x
(log2 N−1)
0 x

(log2 N−1)
0

x1 w(1)
0 x(1)

1 w(2)
0 x(2)

1 w
(log2 N−1)
0 x

(log2 N−1)
1

... x(1)
1

... x(2)
1

... x
(log2 N−1)
1 w

(log2 N−1)
0

... w(1)
1

... w(2)
1 x(2)

N/4−1 w
(log2 N−1)
1 w

(log2 N−1)
1

...
...

...
... w(2)

0 w
(log2 N−2)
0 w

(log2 N−2)
0

...
...

...
... w(2)

1

...
...

...
...

... x(2)
N/4−1

... · · ·
...

...
...

... x(1)
N/2−1 w(2)

N/4−1 w(2)
N/4−1

...
...

...
... w(1)

0 w(1)
0 w(1)

0

...
...

...
... w(1)

1 w(1)
1 w(1)

1

...
...

... x(1)
N/2−1

...
...

...
...

...

xN−1 w(1)
N/2−1 w(1)

N/2−1 w(1)
N/2−1 w(1)

N/2−1 w(1)
N/2−1 w(1)

N/2−1

This defines the Discrete Wavelet Transformation (DWT), and the final w’s are the
wavelet coefficients. They represent structure at many scales as well as at many locations.
If any of the wavelet coefficients are small they can be set to zero to approximate the
original series with less information, but the beauty of this kind of compression is that it
can find important regions in the time-frequency space rather than projecting all of the
information onto the frequency axis (as done by an FFT) or the time axis (by impulses).

A sine wave looks like, well, a sine wave. What does a wavelet look like? We can find
out by setting one of the wavelet coefficients to 1 and all the others to 0, and then running
the inverse wavelet transform back to find the x series that produces it (just as inverting
a Fourier transform of an impulse gives a sinusoidal function). Problem 12.3 shows that
this results in quite a curious looking function. To understand it, consider that after one
pass of the smoothing filter,

x(1)
n = c0x2n + c1x2n+1 + c2x2n+2 + c3x2n+3 . (13.22)

If a function exists that satisfies

Xn = c0X2n + c1X2n+1 + c2X2n+2 + c3X2n+3 (13.23)

then it will be unchanged by the smoothing (this is a dilation equation, instead of a
difference or differential equation). The associated wavelet function is

Wn = c3X2n − c2X2n+1 + c1X2n+2 − c0X2n+3 . (13.24)

DRAFT 13.4 Principal Components 155

In the limit of many iterations, so that n approaches a continuous variable, these are the
basis functions that are invariant under the transformation. Remarkably, in the continuum
limit these apparently innocent and certainly useful functions are very complicated, not
even differentiable.

We’ve been looking at fourth-order wavelets; higher orders are similarly defined. For
each two additional coefficients used it’s possible to go to one higher derivative of the
function that can be matched. Beyond order 6, the coefficients must be found numerically.
Our wavelets also have had compact support (they are zero everywhere except for where
they are defined); this is convenient numerically but can be relaxed in order to get
other benefits such as the analytical form and simple spectrum of the harmonic wavelets
[Newland, 1994].

Just as a high-dimensional Fourier transform can be done by transforming each axis in
turn, wavelets can be extended to higher dimensions by transforming each axis separately
[Press et al., 2007]. This restricts the wavelets to the axes of the space; it is also possible
to define more general multi-dimensional wavelets. The state of the art in wavelets has
advanced rapidly since their introduction; see for example [Chui et al., 1994]. Beyond
wavelets there are other time-frequency transforms, such as Wigner functions [Hlawatsch
& Boudreaux-Bartels, 1992], which first arose as a probabilistic representation of quantum
mechanics for studying semi-classical systems [Balazs & Jennings, 1984].

13.4 PRINCIPAL COMPONENTS

Wavelets were constructed based on the assumption that time and frequency are the
interesting axes against which a signal can be viewed. This certainly need not be true,
and doesn’t even apply to a set of measurements that have no particular temporal or
spatial ordering. Rather than designing one transform to apply to all data we might hope
to do better by customizing a transform to provide the best representation for a given
data set (where “best” of course will reflect some combination of what we hope to achieve
and what we know how to accomplish).

Let’s once again let ~x be a measurement vector, and ~y = M · ~x be a transformation
to a new set of variables with more desirable properties. The covariance matrix of ~y is
defined by

Cy ≡ 〈(~y − 〈~y〉) · (~y − 〈~y〉)T 〉 , (13.25)

where the outer product of two column vectors ~A and ~B is

(~A · ~BT)ij = AiBj , (13.26)

and the average is taken over an ensemble of measurements. A reasonable definition of
“best” is to ask that the covariance matrix of ~y be diagonal, so that each of its elements
is uncorrelated.

To find the required transformation, the covariance matrix of ~y can be related to that
of ~x:

Cy = 〈(~y − 〈~y〉) · (~y − 〈~y〉)T 〉
= 〈[M · (~x− 〈~x〉)] · [M · (~x− 〈~x〉)]T 〉

156 Transforms DRAFT

= 〈[M · (~x− 〈~x〉)] · [(~x− 〈~x〉)T ·MT]〉
= M · 〈(~x− 〈~x〉) · (~x− 〈~x〉)T 〉 ·MT

= M · Cx ·MT . (13.27)

Because Cx is a real symmetric matrix it’s possible to find an orthonormal set of eigen-
vectors [Golub & Loan, 1996]. Now consider what happens if the columns of MT are
taken to be these eigenvectors. After multiplication by Cx each eigenvector is returned
multiplied by its corresponding eigenvalue. Then because of the orthonormality, the
multiplication of this matrix by M gives zeros off-diagonal, and returns the values of the
eigenvalues on the diagonal. Therefore Cy is a diagonal matrix as desired. If there are
linear correlations among the elements of ~x then some of the eigenvalues will vanish;
these components of ~y can be dropped from subsequent analysis. For real data sets the
elements might not be exactly equal to zero, but the relative magnitudes of them let the
important components be found and the less important ones be ignored. Such variable
subset selection is frequently the key to successful modeling.

Use of the covariance matrix of a set of measurements to find a transformation to new
variables that are uncorrelated is called Principal Components Analysis (PCA). It is
such a useful idea that it led to many other related three-letter acronyms (TLAs). One is
the Karhunen–Loéve Transform (KLT) [Fukunaga, 1990]. Here, a measurement vector
~y (such as a time series, or the values of the pixels in an image) is expanded in a sum
over orthonormal basis vectors ~ϕi with expansion coefficients xi,

~y =
∑
i

xi~ϕi . (13.28)

Given an ensemble of measurements of ~y, the goal is to choose a set of ~ϕi that make the
xi’s as independent as possible. Defining M to be a matrix that has the ~ϕi as column
vectors, the expansion of ~y can be written as ~y = M · ~x, where ~x is a column vector of
the expansion coefficients. We’ve already seen that the covariance matrices of ~y and ~x
are related by

Cy = M · Cx ·MT (13.29)

or

MT · Cy ·M = Cx . (13.30)

Therefore if we choose the ~ϕi to be the eigenvectors of Cy then Cx will be diagonal.
Since the ~ϕi are orthonormal, given a new measurement ~y the expansion coefficients can
be found from

~y · ~ϕj =
∑
i

xi~ϕi · ~ϕj =
∑
i

xiδij = xj . (13.31)

This provides a convenient way to do lossy compression for storage or communications,
by using only the significant coefficients to partially reconstruct a data vector from the
bases.

DRAFT 13.5 Independent Components 157

13.5 INDEPENDENT COMPONENTS

PCA starts with the covariance matrix of all of the original variables and then throws out
the insignificant components. Factor Analysis directly seeks a smaller set of variables that
can explain the covariance structure of the observations [Hair et al., 1998]. Independent
Components Analysis (ICA) goes further to search for a transformation that makes the
new variables independent (p(yi, yj) = p(yi)p(yj)) rather than just uncorrelated [Comon,
1994; Bell & Sejnowski, 1995; Hyvärinen et al., 2004].

In the blind source separation problem, unknown sources ~s are mixed in observations
~x by an unknown matrix ~x = A · ~s. If weights W = A−1 could be found then the
sources could be separated by ~s = W · ~x, but how can this be done without information
about either A or ~s? The surprising answer is that this can be possible if the signals
are interesting. In Section 6.1.2 we saw that a sum of random variables approaces a
Gaussian distribution for almost any distribution of the variables. Conversely, as long as
the distributions do not start out as Gaussians, then the departure from Gaussianity can
be used as a signature for separating them. This is the basis for ICA.

Gaussianity can be tested with the kurtosis (4th cumulant), but because that raises
variables to the fourth power it’s sensitive to outliers. Entropy is another test (Problem
11.3 showed that the entropy of a Gaussian is maximal for continuous distributions with
a given variance), but that requires an estimate of the probability distribution function.
A simpler approximation is to use a contrast function [Hyvarinen, 1999]. For a vector
of weights ~w corresponding to one component of ~s (i.e., one row of W), this approach
seeks to maximize the expected value of a function relative to its value for a Gaussian,
max〈f (~w ·~x)〉, where the observations are used to evaluate the expectation. A convenient
example is f (~x) = log cosh(~x) [Hyvärinen & Oja, 2000].

Because ICA can’t determine absolute scale factors in W, it’s convential in ICA to start
with PCA, so that the data is zero mean and has a diagonal covariance matrix with unit
variances (called sphering the data). The weight vectors are then taken to have |~w|2 = 1
to preserve that undetermined norm. To find them we want to make extremal

F = 〈f (~w · ~x)〉 − λ~w · ~w (13.32)

with the Lagrange multiplier for the normalization. Taking the gradient,

∂F

∂ ~w
= 〈~xf ′(~w · ~x)〉 − λ~w (13.33)

The Jacobian can be approximated by:

∂2F

∂ ~w2
= 〈~x~xT f ′′(~w · x)〉 − λI

≈ 〈~x~xT 〉〈f ′′(~w · x)〉 − λI

≈
(
〈f ′′(~w · x)〉 − λ

)
I (13.34)

because of the initial diagonalization of the covariance matrix. A Newton root-finding
step is performed by subtracting the gradient over the Jacobian:

~w ← ~w −
(
〈~xf ′(~w · ~x)〉 − λ~w

)
/
(
〈f ′′(~w · ~x)〉 − λ

)
(13.35)

158 Transforms DRAFT

Multiplying both sides by
(
λ− 〈f ′′(~w · ~x)〉

)
,

~w
(
λ− 〈f ′′(~w · ~x)〉

)
← ~w

(
λ− 〈f ′′(~w · ~x)〉

)
+
(
〈~xf ′(~w · ~x)〉 − λ~w

)
(13.36)

Since we’ll be normalizing the weights the multiplicative factor can be dropped on the
left side, and the right side simplified:

~w ← 〈~xf ′(~w · ~x)〉 − ~w〈f ′′(~w · ~x)〉 (13.37)

After this step the normalization is preserved with

~w ← ~w

|~w|
(13.38)

(this corresponds to choosing the Lagrange multiplier). Starting with random normalized
weights, this iteration will seek the least-Gaussian mixture. Multiple weights can either
be found by orthogonalizing serially to span the remaining subspace, or be calculated
jointly [Hyvarinen, 1999]. This is a global linear ICA transformation; it can done both
nonlinearly and locally [Hyvärinen et al., 2004].

In the next chapter we’ll see another way to accomplish something similar, with a
neural network autoencoder.

13.5.1 Compressed Sensing

usually measure, then compress
can instead compress, then measure
sparsity a kind of universal prior
example: total variation (TV)
random sampling vs periodic sampling artifacts
fitting error only is underconstrained
L2 norm: sum of squares
match samples and minimize L2 constraint: pseudo-inverse
L0 norm: number of nonzero elements
match samples and minimize L0 constraint: combinatorial, NP-hard
L1 norm: sum of absolute values
match samples and minimize L1 constraint: compressed sensing
DTMF problem
Fornasier, Massimo, and Rauhut, Holger. (2011). Compressive sensing. Pages 187–228

of: Handbook of Mathematical Methods in Imaging. Springer.
Donoho, David L. (2006). Compressed sensing. Information Theory, IEEE Transac-

tions on, 52(4), 1289–1306.
Candes, Emmanuel J, and Tao, Terence. (2006). Near-optimal signal recovery from

random projections: Universal encoding strategies? Information Theory, IEEE Transac-
tions on, 52(12), 5406–5425.

Candes, Emmanuel J, Romberg, Justin, and Tao, Terence. (2006). Robust uncertainty
principles: Exact signal reconstruction from highly incomplete frequency information.
Information Theory, IEEE Transactions on, 52(2), 489–509.

Candes, Emmanuel J, Romberg, Justin K, and Tao, Terence. (2006). Stable signal

DRAFT 13.6 Selected References 159

recovery from incomplete and inaccurate measurements. Communications on pure and
applied mathematics, 59(8), 1207–1223.

Kim, Seung-Jean, Koh, Kwangmoo, Lustig, Michael, and Boyd, Stephen. (2007). An
efficient method for compressed sensing. Pages III–117 of: Image Processing, 2007. ICIP
2007. IEEE International Conference on, vol. 3. IEEE.

Yang, Allen Y, Sastry, Shankar S, Ganesh, Arvind, and Ma, Yi. (2010). Fast l1-
minimization algorithms and an application in robust face recognition: A review. Pages
1849–1852 of: Image Processing (ICIP), 2010 17th IEEE International Conference on.
IEEE.

Wakin, Michael, Stephen Becker, Eric Nakamura, Michael Grant, Emilio Sovero,
Daniel Ching, Juhwan Yoo, Justin Romberg, Azita Emami-Neyestanak, and Emmanuel
Candes. ”A nonuniform sampler for wideband spectrally-sparse environments.” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 2, no. 3 (2012): 516-
529.

Yoo, Juhwan, Stephen Becker, Matthew Loh, Manuel Monge, Emmanuel Candes, and
Azita Emami-Neyestanak. ”A 100MHz–2GHz 12.5 x sub-Nyquist rate receiver in 90nm
CMOS.” In 2012 IEEE Radio Frequency Integrated Circuits Symposium, pp. 31-34.
IEEE, 2012.

Tropp, Joel A., Jason N. Laska, Marco F. Duarte, Justin K. Romberg, and Richard
G. Baraniuk. ”Beyond Nyquist: Efficient sampling of sparse bandlimited signals.” arXiv
preprint arXiv:0902.0026 (2009).

13.6 SELECTED REFERENCES

[Golub & Loan, 1996] Golub, Gene H., & Loan, Charles F. Van. (1996). Matrix
Computations. 3rd edn. Baltimore, MD: Johns Hopkins University Press.

Everything you always wanted to know about transformations with matrices.

[Fukunaga, 1990] Fukunaga, Keinosuke (1990). Introduction to Statistical Pattern
Recognition. 2nd edn. Boston, MA: Academic Press.

Much of the effort in pattern recognition goes into finding good representations.

13.7 P R O B L E M S

(12.1) Prove that the DFT is unitary.
(12.2) Calculate the inverse wavelet transform, using Daubechies fourth-order coeffi-

cients, of a vector of length 212, with a 1 in the 5th and 30th places and zeros
elsewhere.

(12.3) Consider a measurement of a three-component vector ~x, with x1 and x2 being
drawn independently from a Gaussian distribution with zero mean and unit vari-
ance, and x3 = x1 + x2.

(a) Analytically calculate the covariance matrix of ~x.
(b) What are the eigenvalues?

160 Transforms DRAFT

(c) Numerically verify these results by drawing a data set from the distribution
and computing the covariance matrix and eigenvalues.

(d) Numerically find the eigenvectors of the covariance matrix, and use them to
construct a transformation to a new set of variables ~y that have a diagonal
covariance matrix with no zero eigenvalues. Verify this on the data set.

(12.4) Generate pairs of uniform random variables {s1, s2} with each component con-
tained in [0, 1].

(a) Plot these data.

(b) Mix them (~x = A · ~s) with a square matrix A =
[

1 2
3 1

]
and plot.

(c) Make ~x zero mean, diagonalize with unit variance, and plot.
(d) Find the independent components of ~x with the log cosh contrast function,

and plot.

(12.5) (a) Generate and plot a time series {tj} for the sum of two sine waves at 697
and 1209 Hz (the DTMF tone for the number 1 key), sampling it at 10,000
samples per second for 0.25 second (N = 2500 points).

(b) Calculate and plot the Discrete Cosine Transform (DCT) coefficients {fi}
for these data, defined by their multiplication by the matrix fi =

∑N−1
j=0 Dijtj ,

where

Dij =

√

1
N

(i = 0)√
2
N

cos
(
π(2j+1)i

2N

)
(1 ≤ i ≤ N − 1)

(13.39)

(c) Plot the inverse transform of the {fi} by multiplying them by the inverse of
the DCT matrix (which is equal to its transpose) and verify that it matches
the time series.

(d) Randomly sample and plot a subset {t′k} of 5% of the {tj} (M = 125 points).
(e) Starting with a random guess for the DCT coefficients {f ′i}, use gradient

descent to minimize the error at the sample points

min
{f ′
i
}

M−1∑
k=0

(
t′k −

N−1∑
i=0

Dikf
′
i

)2

(13.40)

and plot the resulting estimated coefficients.
(f) The preceding minimization is under-constrained; it becames well-posed if a

norm of the DCT coefficients is minized subject to a constraint of agreeing
with the sampled points. One of the simplest (but not best, see Chapter 17)
ways to do this is by adding a penalty term to the minimization. Repeat the
gradient descent minimization using the L2 norm:

min
{f ′
i
}

M−1∑
k=0

(
t′k −

N−1∑
i=0

Dikf
′
i

)2

+
N−1∑
i=0

f ′2i (13.41)

and plot the resulting estimated coefficients.

DRAFT 13.7 Problems 161

(g) Repeat the gradient descent minimization using the L1 norm:

min
{f ′
i
}

M−1∑
k=0

(
t′k −

N−1∑
i=0

Dikf
′
i

)2

+
N−1∑
i=0

|f ′i | (13.42)

and plot the resulting estimated coefficients, compare to the L2 norm estimate,
and compare M to the Nyquist sampling limit of twice the highest frequency.

