2 Linear Algebra

notation: dot vs transpose

Linear algebra can be thought of as the streetlamp of mathematical modeling. In the areas that it illuminates it provides great clarity, but it is also tempting to look there for things that really lie elsewhere. Linear algebra will have a central but uneasy role throughout this book: the assumption of linearity will lead to results that are convenient and understandable, but not applicable to the most challenging problems. Conversely, familiarity with linear algebra can breed a kind of contempt that neglects its depth; this chapter is included rather than assumed as background because of the more advanced results that will be needed elsewhere in the book.

A function \(f(x_1, x_2, \ldots, x_N) \) is said to be linear if rescaling and offsetting an argument does the same to the result:

\[
f(x_1, x_2, \ldots, \alpha x_i + \beta, \ldots, x_N) = \alpha f(x_1, x_2, \ldots, x_i, \ldots, x_N) + f(x_1, x_2, \ldots, \beta, \ldots, x_N). \tag{2.1}
\]

Writing out all of those elements quickly becomes a nuisance, so the first thing that we’ll do is group numbers into vectors and matrices. These will be used to solve systems of algebraic equations (and recognize when and why they can’t be solved), and then as arguments of nonlinear functions. This chapter will consider static relationships among these variables, which will be extended in the next chapter to dynamic relationships in linear differential and difference equations.

2.1 NUMBERS, VECTORS, AND MATRICES

Modeling usually begins with a (frequently implicit) choice of a way to represent the quantities of interest. This small step can have large consequences, because a bad representation can make an easy problem appear difficult, (and vice versa). The question of representation will recur throughout this book; we start here with the simplest question of all, the kind of numbers to use.

Deceptively simple questions about numbers can have remarkably deep answers Wiles naturally counted by integers. While these are usually written

The very first decision to be made in modeling is what kind of numbers to use. If the quantities in a problem are naturally discrete, such as the coordinates of a point on a lattice, or the number of observations in a histogram,
use integers. These will generally be written in decimal notation using powers of ten (i.e., base 10), such as

\[249 = 2 \times 10^2 + 4 \times 10^1 + 9 \times 10^0 \], \hspace{1cm} (2.2)

although when computers are involved it can be more convenient to use

\[11111001 = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 \] \hspace{1cm} (2.3)

\[F^9 = F(15) \times 16^1 + 9 \times 16^0 \] \hspace{1cm} (2.4)

base 2 base 16: 0-9A-F

binary fractions
hexadecimal
rational irrational

[Hardy & Wright, 1998]

complex conjugate ref quaternion chapter magnitude

A vector \(\vec{v} \) is a set of \(N \) elements

\[
\vec{v} = \begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_N
\end{bmatrix}.
\]

(2.5)

These might be, for example, the coordinates of a point in an \(N \)-dimensional space, or the set of grades of a group of students taking a course in mathematical modeling.

dot product notation: dot vs transpose

norm measure distances in other spaces angle

\[
\vec{u} \cdot \vec{v} = (u_1, \ldots, u_N) \cdot (|\vec{v}|, 0, \ldots, 0) \\
= u_1 |\vec{v}| \\
= |\vec{u}| |\vec{v}| \cos \theta
\]

(2.6)

The norm or magnitude of a vector \(|\vec{v}| \) can be defined as

\[
|\vec{v}|^2 = \sum_{n=1}^{N} |v_n|^2 \\
= \sum_{n=1}^{N} v_n^* v_n \\
= \sum_{n=1}^{N} v_n^2 \hspace{1cm} \text{(for real variables)}
\]

(2.7)

(this is called the \(L^2 \) norm because it uses the second power of the components). The
The dot product of two vectors is defined by

$$\vec{u} \cdot \vec{v} = \sum_{n=1}^{N} u_n v_n$$ \hfill (2.8)

unit vector
A set of vectors \(\{\vec{v}_i\}\) is orthogonal if

$$\vec{v}_i \cdot \vec{v}_j = 0 \ (i \neq j)$$ \hfill (2.9)

and orthonormal if

$$\vec{v}_i \cdot \vec{v}_j = \delta_{ij}$$ \hfill (2.10)

(where \(\delta_{ij}\) is the Kroenecker delta which equals 1 if \(i = j\) and is 0 otherwise). If all of the columns of a matrix are orthonormal then

$$A^T A = I \equiv \begin{bmatrix} 1 & 0 & \cdots \ 0 & \ddots & \vdots \\ \vdots & & 1 \end{bmatrix},$$ \hfill (2.11)

where \(I\) is the identity matrix. A matrix with this property is said to be orthonormal (although its columns or rows are really orthonormal).

linear independence

complex norm?

Given a linearly-independent set of vectors \(\{u_i\}\), it’s possible to construct an orthonormal set \(\{v_i\}\) by Gram-Schmidt orthogonalization. The first step is to normalize one of the vectors

$$\vec{v}_1 = \frac{\vec{u}_1}{|\vec{u}_1|}$$ \hfill (2.12)

so that

$$\vec{v}_1 \cdot \vec{v}_1 = \frac{\vec{v}_1 \cdot \vec{v}_1}{|\vec{u}_1|^2} = \frac{|\vec{u}_1|^2}{|\vec{u}_1|^2} = 1.$$ \hfill (2.13)

Then this component is subtracted off of a second vector,

$$\vec{v}_2 = \frac{\vec{u}_2 - (\vec{u}_2 \cdot \vec{v}_1) \vec{v}_1}{|\vec{u}_2 - (\vec{u}_2 \cdot \vec{v}_1) \vec{v}_1|},$$ \hfill (2.14)

choosing the magnitude so that

$$\vec{v}_2 \cdot \vec{v}_1 = \frac{\vec{u}_2 \cdot \vec{v}_1 - (\vec{u}_2 \cdot \vec{v}_1) \vec{v}_1 \cdot \vec{v}_1}{|\vec{u}_2 - (\vec{u}_2 \cdot \vec{v}_1) \vec{v}_1|} = 0,$$ \hfill (2.15)

and dividing by the magnitude to normalize \(\vec{v}_2 \cdot \vec{v}_2 = 1\). Next, both components are subtracted from a third vector,

$$\vec{v}_3 = \frac{\vec{u}_3 - (\vec{u}_3 \cdot \vec{v}_1) \vec{v}_1 - (\vec{u}_3 \cdot \vec{v}_2) \vec{v}_2}{|\vec{u}_3 - (\vec{u}_3 \cdot \vec{v}_1) \vec{v}_1 - (\vec{u}_3 \cdot \vec{v}_2) \vec{v}_2|},$$ \hfill (2.16)

with magnitudes chosed so that \(\vec{v}_3 \cdot \vec{v}_2 = \vec{v}_3 \cdot \vec{v}_1 = 0\) and \(\vec{v}_3 \cdot \vec{v}_3 = 1\).

$$\hat{e}_i \hat{e}_j = \delta_{ij}$$ \hfill (2.17)
\[
\cos \theta = \frac{||\vec{u}||}{||\vec{v}||} \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||} \\
= \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| ||\vec{v}||} \\
= \frac{||\vec{u}||}{||\vec{v}||} \cos \theta
\]

\[
||\vec{u}|| ||\vec{v}|| \cos \theta = \vec{u} \cdot \vec{v}
\] \hspace{1cm} (2.18)

\(M\) vectors can be assembled to form an \(N \times M\) matrix

\[
A = [\vec{a}_1 \ \vec{a}_2 \cdots \ \vec{a}_N] = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1M} \\
a_{21} & \ddots & & \vdots \\
\vdots & & \ddots & \\
a_{N1} & \cdots & a_{NM}
\end{bmatrix}.
\] \hspace{1cm} (2.19)

Matrices can likewise be assembled to form higher-dimensional tensors [], although we will not need them here.

The transpose of a matrix is

\[
A^T = \begin{bmatrix}
a_{11} & a_{21} & \cdots & a_{N1} \\
a_{12} & \ddots & & \vdots \\
\vdots & & \ddots & \\
a_{1M} & \cdots & a_{MN}
\end{bmatrix},
\] \hspace{1cm} (2.20)

and the complex conjugate of the transpose is the adjoint \(A^\dagger = A^*T\) where each complex element \(a_{nm} = x_{nm} + iy_{nm}\) \((i^2 = -1)\) is replaced by its conjugate \(a^*_{nm} = x_{nm} - iy_{nm}\).

If \(A = A^\dagger\), the matrix is said to be Hermitian. The adjoint (or transpose) of a product is equal to the products of the adjoints (or transposes), in the opposite order:

\[
(AB)^T = \sum \begin{bmatrix}
B^T \\
A^T
\end{bmatrix} = B^T A^T
\] \hspace{1cm} (2.21)

If \(A\) is an \(N \times M\) matrix and \(B\) is an \(M \times L\) matrix, their product \(AB\) is an \(N \times L\) matrix with elements

\[
(AB)_{nl} = \sum_{m=1}^{M} a_{nm} b_{ml}.
\] \hspace{1cm} (2.22)

From the definition, matrix multiplication is distributive

\[
A(B + C) = AB + AC
\] \hspace{1cm} (2.23)

and associative

\[
A(BC) = (AB)C
\] \hspace{1cm} (2.24)
but need not be *commutative*

\[\mathbf{AB} \neq \mathbf{BA} \]

(2.25)

The product of a vector and a matrix

\[
\mathbf{A}\vec{v} = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1M} \\
 a_{21} & \ddots & & \\
 \vdots & & \ddots & \\
 a_{N1} & & & a_{NM}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_M
\end{bmatrix}
\]

(2.26)

is a vector with elements

\[
(A\vec{v})_n = \sum_{m=1}^{M} a_{nm}v_m
\]

(2.27)

The *inner product* or *dot product* of two vectors is

\[
\vec{u}^T\vec{v} = \begin{bmatrix}
 u_1 \\
 u_2 \\
 \vdots \\
 u_M
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_M
\end{bmatrix} = \sum_{m=1}^{M} u_m v_m \equiv \vec{u} \cdot \vec{v}
\]

(2.28)

and the *outer product* is

\[
\vec{u}\vec{v}^T = \begin{bmatrix}
 u_1 & u_2 & \cdots & u_M
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_M
\end{bmatrix} = \begin{bmatrix}
 u_1v_1 & u_1v_2 & \cdots \\
 u_2v_1 & u_2v_2 & \\
 \vdots & \vdots & \ddots
\end{bmatrix}
\]

(2.29)

complex, norm, magnitude adjoint
positive definite matrix
basis

2.2 SYSTEMS OF EQUATIONS

If \(\mathbf{A} \) is a square matrix, and \(\vec{v} \) is a vector such that

\[
\mathbf{A}\vec{v} = \lambda\vec{v}
\]

(2.30)

then \(\vec{v} \) is an *eigenvector* of \(\mathbf{A} \) with *eigenvalue* \(\lambda \). This can be rewritten as

\[
(\mathbf{A} - \lambda\mathbf{I})\vec{x} = \vec{0}
\]

(2.31)

where \(\vec{0} \) is a vector of zeros. If \((\mathbf{A} - \lambda\mathbf{I}) \) is invertible this gives the trivial solution

\[
\vec{x} = (\mathbf{A} - \lambda\mathbf{I})^{-1}\vec{0} = \vec{0}
\]

(2.32)

Therefore, for non-trivial eigenvectors to exist \((\mathbf{A} - \lambda\mathbf{I}) \) must not be invertible and hence

\[
|\mathbf{A} - \lambda\mathbf{I}| \equiv \Delta(\lambda) = 0
\]

(2.33)

This defines the *characteristic polynomial* \(\Delta(\lambda) \) for \(\mathbf{A} \).
char poly imply N eigenvalues

determinant

\[V(\hat{e}_1, \hat{e}_2, \ldots, \hat{e}_N) = 1 \] \hspace{1cm} (2.34)

\[V(\ldots, \hat{x}_i, \ldots, \hat{x}_i, \ldots) = 0 \] \hspace{1cm} (2.35)

\[V(\ldots, \hat{x}_i + \hat{x}_j, \ldots, \hat{x}_i + \hat{x}_j, \ldots) = V(\ldots, \hat{x}_i, \ldots, \hat{x}_i, \ldots) + V(\ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots) + V(\ldots, \hat{x}_j, \ldots, \hat{x}_i, \ldots) + V(\ldots, \hat{x}_j, \ldots, \hat{x}_j, \ldots) \]
\[= V(\ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots) + V(\ldots, \hat{x}_j, \ldots, \hat{x}_i, \ldots) \] \hspace{1cm} (2.36)

\[V(\ldots, \alpha \hat{x}_i + \beta \hat{x}_j, \ldots) = \alpha V(\ldots, \hat{x}_i, \ldots) + \beta V(\ldots, \hat{x}_j, \ldots) \] \hspace{1cm} (2.37)

\[\det(AB) = \det(A) \det(B) \] \hspace{1cm} (2.38)

\[\det(A^{-1}) = \frac{1}{\det(A)} \] \hspace{1cm} (2.39)

as transformation volume

recursive definition

A elements \(a_{ij} \)

\[\det A \equiv |A| = \sum_j a_{ij} C_{ij} \] \hspace{1cm} (2.40)

cofactor

\[C_{ij} = (-1)^{i+j} M_{ij} \] \hspace{1cm} (2.41)

minor

\[\det(A) = V \left(\sum_i a_{i1} \hat{e}_{i1}, \sum_j a_{j2} \hat{e}_{j2}, \ldots \right) \]
\[= \sum_i a_{i1} V \left(\hat{e}_{i1}, \sum_j a_{j2} \hat{e}_{j2}, \ldots \right) \]
\[= \sum_i a_{i1} V_{i1} \equiv \sum_i a_{i1} V_{i1} \]
\[1 = \frac{1}{\det(A)} \sum_i a_{i1} V_{i1} \] \hspace{1cm} (2.42)
\[
\sum_j a_{j1} V_{j2} = \sum_j a_{j1} V \left(\sum_i a_{i1} \hat{e}_i, \sum_j a_{j1} \hat{e}_j, \sum_k a_{k1} \hat{e}_k, \ldots \right)
= V \left(\sum_i a_{i1} \hat{e}_i, \sum_j a_{j1} \hat{e}_j, \sum_k a_{k1} \hat{e}_k, \ldots \right)
= 0 \quad (2.43)
\]

\[
\frac{1}{\det(A)} \sum_i a_{ij} V_{ik} = \delta_{jk} \quad (2.44)
\]

\[
\frac{1}{\det(A)} V^T A = I \quad (2.45)
\]

\[
A^{-1} = \frac{1}{\det(A)} V^T \quad (2.46)
\]

use in change of coordinates noise problem

\[
\det \prod = \prod \det
\]

\[
\det = \prod \text{ eigenvalues}
\]

determinant as volume

\[
\det(M^{-1}) \det(A) \det(M) = \det(A) \quad (2.47)
\]

\[
\det(A) = \det(A) = \prod_{n=1}^N \lambda_n \quad (2.48)
\]

adjoint matrix

inverse

\[
A^{-1} = \frac{C^T}{|A|} \quad (2.49)
\]

Gauss-Jordan elimination

\[
AA^{-1} = I
\]

\[
T A A^{-1} = T I
\]

\[
(T A) A^{-1} = T \quad (2.50)
\]

inverse products equals product inverses
domain and range of set of equations
If \(AA^\dagger = I \), the matrix is unitary.

Gauss elimination

characteristic polynomial

diagonalization
similarity transform

\[
\vec{x} = \sum_{n=1}^{N} a_n \vec{v}_n = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_N] \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} \equiv \mathbf{M}\vec{a} \tag{2.51}
\]

modal matrix \(\mathbf{M}\)

\[
\mathbf{A}\vec{x} = \vec{y} \tag{2.52}
\]

range null space rank dimension range
repeated eigenvalues
Jordan blocks
cf generation of solutions to differential equations!
rank
generalized eigenvalues, eigenvectors
generalized inverse

2.3 SINGULAR VALUES

norm \(L^2\)

Hermitian adjoint

transpose

transpose product = product transpose adjoint product = product adjoint

Hermitian

symmetric

\[
\vec{v}^\dagger \mathbf{H} \vec{v} = \vec{v}^\dagger \lambda \vec{v} = \lambda |\vec{v}|^2
\]

\[
(\vec{v}^\dagger \mathbf{H} \vec{v})^\dagger = \lambda^\dagger |\vec{v}|^2
\]

\[
(\vec{v}^\dagger \mathbf{H} \vec{v})^\dagger = \vec{v}^\dagger \mathbf{H}^\dagger \vec{v} = \vec{v}^\dagger \mathbf{H} \vec{v} = \lambda |\vec{v}|^2
\]

\(\lambda^\dagger = \lambda\) \(\lambda\) real

\[
\mathbf{M}^{-1} \mathbf{H} \mathbf{M} = \mathbf{A}
\]
\[(M^{-1}H)\dagger = \Lambda\]
\[M\dagger H M^{-1\dagger} = \Lambda\]
\[M\dagger H M^{-1\dagger} = M^{-1}H\]
(2.57)

\[M^\dagger = M^{-1}\]
orthonormal basis
positive semidefinite
positive definite
eigenvalues
\[H = A\dagger A\]

\[H^\dagger = (A\dagger A^\dagger) = A\dagger A^\dagger A^\dagger A = H\]
(2.58)

\[H\vec{v}_n = \lambda_n \vec{v}_n\]
(2.59)

rank of a product
\[\sigma_i = \sqrt{\lambda_i}\]

\[\vec{u}_i = \frac{1}{\sigma_i} A\vec{v}_i\]
(2.60)

\[\vec{u}_i^\dagger \vec{u}_j = \frac{1}{\sigma_i \sigma_j} \vec{v}_i^\dagger A \vec{v}_j\]

\[= \frac{1}{\sigma_i \sigma_j} \vec{v}_i^\dagger H \vec{v}_j\]

\[= \frac{\lambda_j}{\sigma_i \sigma_j} \vec{v}_i^\dagger \vec{v}_j\]

\[= \delta_{ij}\]
(2.61)

\[\vec{u}_i^\dagger A \vec{v}_j = \vec{u}_i^\dagger \sigma_j \vec{u}_j = \sigma_j \delta_{ij}\]
(2.62)

eextend by Gram-Schmidt orthogonalization

\[v \text{ beyond rank in null space}\]

\[U^\dagger A V = \Sigma\]
(2.63)
\[\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ \vdots & \sigma_r \\ 0 & \vdots \\ 0 & 0 \end{bmatrix} \]

(2.64)

\[A = U \Sigma V^\dagger \]

(2.65)

SVD Singular Value Decomposition

rank

SVD for full row rank simplification relate to Zen Kalman filter

2.4 Functions of Matrices

matrix function power series converges for eigenvalues

\[e^{At} = I + At + \frac{1}{2} A^2 t^2 + \cdots \]

(2.66)

\[\frac{d}{dt} e^{At} = A + A^2 t + \cdots \]

= \(A e^{At} \)

(2.67)

\[e^{At} e^{Bt} = \left(I + At + \frac{1}{2} A^2 t^2 + \cdots \right) \left(I + At + \frac{1}{2} A^2 t^2 + \cdots \right) \]

= \(I + (A + B)t + \frac{1}{2}(A + B)^2 t^2 + \cdots \)

(2.68)

\[e^{(A+B)t} = I + (A + B)t + \frac{1}{2}(A + B)^2 t^2 + \cdots \]

= \(I + (A + B)t + \frac{1}{2} A^2 t^2 + \frac{1}{2} B^2 t^2 + \frac{1}{2}(AB + BA)t + \cdots \)

(2.69)

Cayley-Hamilton

relates \(M^n \) to lower order powers

mult char poly \(M^{-1} \) to get inverse from eigenvalues

\[0 = |M - A| \]

= \(\lambda^N + a_{N-1} \lambda^{N-1} + \cdots + a_0 \)

\[\equiv C(\lambda) \]

(2.70)
\begin{align*}
a_0 &= |A| \\
0 &= C(A) \\
&= A^N + a_{N-1}A^{N-1} + \cdots + a_0 I \\
\end{align*}
(2.71)

\begin{align*}
A &= M\Lambda M \\
A^2 &= M\Lambda^{-1} M \Lambda M^{-1} \\
&= MAAM^{-1} \\
&= MA^2M^{-1} \\
\end{align*}
(2.72)

\begin{align*}
C(A) &= A^N + a_{N-1}A^{N-1} + \cdots + a_0 I \\
&= M (A^N + a_{N-1}A^{N-1} + \cdots + a_0 I) M^{-1} \\
&= M0M^{-1} \\
&= 0 \\
\end{align*}
(2.73)

\begin{align*}
\text{generalize to Jordan blocks} \\
\text{inverse} \\
0 &= A^N + a_{N-1}A^{N-1} + \cdots + a_0 I \\
&= A^{N-1} + a_{N-1}A^{N-2} + \cdots + a_0 A^{-1} \\
A^{-1} &= -\frac{1}{a_0} (A^{N-1} + a_{N-1}A^{N-2} + \cdots + a_1 I) \\
\end{align*}
(2.74)

\begin{align*}
\text{exponential} \\
\exp(tA) &= I + At + \frac{1}{2}A^2t^2 + \cdots \\
&= \alpha_0(t)I + \alpha_1(t)A + \alpha_2(t)A^2 + \cdots + \alpha_{N-1}(t)A^{N-1} \\
\end{align*}
(2.75)

functions of a matrix \\
using generalized inverses \\
go through book to move linear algebra definitions to here \\
drop use of dots for matrix multiplication? \\
ODE chapter problem on exponential matrix solution
2.5 SELECTED REFERENCES

2.6 PROBLEMS

(2.1) pseudo-inverse from SVD
(2.2) rotation unitary, dot product angle
(2.3) exponential angular momentum = rotation (lead into SU(2) problem)