
Computer Graphics, 26,2, July 1992

Interval Arithmetic and Recursive Subdivision for
Implicit Functions and Constructive Solid Geometry

Tom Duff+

AT& T Bell Luboru!orie.s
600 Mountuin A l,enue

Murray Hill, Ne~ .lersey 07974

Abstract

Recursive subdivision using interval arithmetic allows us
to render CSG combinations of implicit function surfaces with or
without anti -aliasing, Related algorithms will solve the collision
detection problem for dynamic simulation, and allow us to
compute mass. center of gravity, angular moments and other
integral properties required for Newtonian dynamics.

Our hidden surface algorithms run in ‘constant time.’
Their running times are nearly independent of the number of
primitives in a scene, for scenes in which the visible details are
not much smaller than the pixels. The collision detection and
integration algorithms are utterly robust — collisions are never
missed due 10 numerical error and we can provide guaranteed
bounds on the values of integrals.

CR Categories and Subject Descriptors: G. 1.0 [Numerical
Analysis] Numerical Algorithms 1.3.3 [Picture and Image
Generation] Display algorithms, Viewing algorithms, 1.3.5
[Computational Geometry and Object Modeling] Curve, surface,
solid and object representations, 1.3,5 [Computational Geometry
and Object Modeling] Hierarchy and geometric transformations.
1.3.7 [Three-Dimensional Graphics and Realism] Visible
line/surface algorithms, Animation

General Terms: Algorithms

Additional Keywords and Phrases: anti-aliasing, compositing,
computer-aided animation, recursive subdivision, image
synthesis, dynamic simulation, collision detection

1. Introduction

The most commonly-used geometric representations in
computer graphics are local. Polygonal models, for example,
specify which points are on an object’s surface, and tell us
nothing substantial about the rest of tbe space in which the object
is embedded. except by omission. It requires substantial mental
effort to formulate answers tp questions like ‘‘Do these objects
intersect’?’”, or “What parts of this object are visible?”’ or even
something as simple as ‘+What is the volume of this object?”.
More elaborate surface representations. like Bezier patches or

NURBS don’t make these questions any easier—since they only

describe tbe objects locally, they make it difficult to answer

global questions about them.

Likewise, the computational methods we normally use are

mostly local. The ray-tracing algorithm, for example. tries to

*Phone (908) 582-6485, email td@research. att .com

Permission to copy wllhout fee fill or pwt of this materml n gmmeci
provded thw the coptes me not made nr distributed for direc(
commercial advantage. the ACM copyright notice and the title of the
publication and It. date appear. and notice is given that copying IS by
~rmiwion nf the Association for Computing Machinery. To copy
ntherwise. or to republisb, requmesa fee and/or specific Permission.

compute an image one pixel at a time by testing every primitive in
the scene for intersection with a ray from the eye-point through
the pixel’s center. Of course any decent ray-tracer goes to a lot of
trouble to avoid most of this work. But an algorithm that had
decent access to global information about the scene wouldn’t need
go to the trouble—it would know immediately what parts of the
scene were relevant to what parts of the screen,

A good example of a global representation is the BSP tree
[11]. Each node of a BSP tree gives useful information about the
object’s relationship to the whole of the space it’s embedded in.
The nodes effectively say about their subtrees, “in this half of
space, you need only think about this half of the model. ” BSP
trees naturally engender simple algorithms for all sorts of
geometric tasks, from hidden surface removal to object
intersection [231 to shadow generation [6], Ihat make natural,
effective use of the global information stored in the model.

This paper will examine in detail another global object
representation and its algorithms, based on implicit functions,
Constructive Solid Geometry and interval arithmetic.

Briefly, implicit functions are test functions for classifying
points in space as inside, on or outside an object. Interval
arithmetic allows us to extend those tests to whole chunks of
space at once. Constructive Solid Geometry allows us to combine
simpler objects, keep unwieldy primitives (like infinite cylinders)
under control and model many important industrial and natural
processes that go into creating geometric forms.

2. Implicit Functions

Implicit functions are an indirect representation of solid
objects. Given a function of three variables F(.x,y,:), we can use
the equation F(.t, y,T) =0 to specify the points on a surface. The
representable surfaces range from the mundane to the exotic: from
planes (at + by + t: + d = ()) and quadrics—the spheres, cones
cylinders and paraboloids of elementary geomett—-to more
exotic polynomial surfaces like those of Kummer and Dupin [1()]
to Barr’s downright weird twisted, bent and tapered super-
ellipsoids 141.

If F is continuous, we can classify points as inside, on or
outside the object depending on whether F’<O, F = O or F > ().
This is the global property we are after: F classifies every point
in space in its relationship to the surface. In regions of space not
crossed by the surface, the fact that F’s sign does not change is a
source of coherence useful in hidden-surface and other geometric
algorithms that can be exploited by using interval arithmetic m
quickly obtain bounds on F(i ,Y,U) for whole ranges of t, y and :.

3. Interval Arithmetic

Interval arithmetic [16) generalizes ordinary arithmetic to
closed, bounded ranges of real numbm. If X and ~ arc real
numbers with XS~, then X is an interval—

x=[~,x]= {.[rl~<.r<i}

ACM-O-89791-479- tW2KM)7K)l31 $0150 131

SIGGRAPH ’92 Chicago, July 26-31, 1992

The natural interval extensions of the elementary operations of
arithmetic are

x+ Y=[g+~,x+i]

x–Y=[~-i,I-~]

XxY = [min(XY,~7,i~,I~) ,max(XY,X7,1~,XF)]
-(1)

—— ——.

X/Y=[11~,11~], but undefined if ~SO<~

These definitions give tight bounds on the range of the
corresponding real functions with arguments chosen in the given
intervals. In particular, for degenerate intervals like [a,a],
interval arithmetic reproduces ordinary arithmetic. We can use
these rules to compute bounds on the value of a rational
expression F(.r,y,z) inside any box (X, Y,Z).

Unfortunately, the achievable bounds on general arithmetic
expressions are not as tight as on the arithmetic operators. For
example, .r~~ [0,1] when .r= [– 1,1], but, by (l), XXX=[- 1,1].
Generally, for intervals X, Y,Z,

[F(.,”,y,:)l.rG x, J’GY,zEztcF(x,Y,z)

but we cannot replace ~ by = except in special circumstances.

A second source of looseness is that when using finite
precision floating-point arithmetic, we must be sure to round the
upper and lower bounds in the appropriate directions. Doing this
is not the practical problem that it used to be — machines
claiming to do IEEE arithmetic [12] are required to provide
control of the rounding direction of floating-point calculations. If
instead you use improperly-rounded interval arithmetic, the errors
introduced will not often be noticeable. Of course, such an
implementation voids the warranty of robustness.

Any F(X, Y,Z) composed using the rules (1) above is an
inren’al e.rterrsiorr of the corresponding real function. That is,
~([.r,-~1 ,[.Y,.vI ,[u, T])= [F(.~,.v, =) ,F(.\-,y, z)]. Furthermore, F is
inclusion monotonic, That is, if X’ =X, Y’GY and Z’ ~Z, then
F(X’, Y’,Z’)GF(X, Y,Z). Moore [16] is a good general
introduction to interval methods, and discusses these properties
and their implications in detail. For purposes of this paper, it is
sufficient that if .r~ X, y= Y and c= Z that F(x,y, z) E F’(X, Y,Z).
This is true for every inclusion monotonic interval extension of
F(.r,y,:).

We can easily construct interval extensions of most
standard transcendental functions. For monotonic functions like
e’, In x, L, we have F(X)= [F(~), F’(~)], or if F(x) is
monotone decreasing, F(X) = [F(i) ,F(X)]. Continuous func-
tions that have maxima and minima in krr~wn places, like sin and
COS, can be handled by taking the union of their values over
monotonic pieces. For example

1

[~’’, i”] n odd or X>O—

x“ = [x’’, ~”] n even and ~SO

[O,max(-~,~)”] n even and ~<0<~

These interval extensions all give tight bounds on the underlying
transcendental functions, and expressions involving them yield
inclusion monotonic interval extensions of the underlying real
expressions.

If ~(X, Y,Z) <0, we know that all points (.v,Y,z) with
X= X, -vE Y and ze Z are located inside the implicit function
surface F’, and if F(X, Y,Z) >0 they are all outside. If
F(X, Y,Z) sOS~(X, Y,~), we can guess that the surface might
~ntersect the cell (we cannot be sure unless we know that the
bounds we’ve computed are tight) and that it deserves closer
examination.

132

4. Constructive Solid Geometry

A powerful and natural tool for taming implicit functions
and building useful geometric models from them is Constructive
Solid Geometry (CSG). Since implicit functions describe
volumes as point-sets, we can use them as primitives and build
more complicated models using set-theoretic union, intersection,
complement and difference operators. The union and set-
difference operators can model the most important ways that
people build real objects. Milling machines, saws, drills, routers
and chisels are all (restricted) set-difference engines. Glue, nails,
soldering irons and Velcro are set-union agents—in the world of
real solids, all unions are of disjoint sets. Set intersection allows
us to focus attention on interesting or useful local features of
implicit functions that may extend to infinity or otherwise behave
wildly at a distance.

In general, we will represent an object or scene as a tree
with implicit functions at its leaves and CSG operators at its
interior nodes. We will assume that the only oper?tors in the tree
are union (SUT) and intersection (.Sn T). Set difference (.$– T)
and complement (-S) operators can be eliminated by repeatedly
applying the rules

S–T~Sn~T

~(SUT)+-ISn-T

-fsn~)+=su=~

-F+ – F, where F is a leaf function

The first rule converts set differences into intersections. The
second two (deMorgan’s laws) push complement operators
toward the leaves. The third absorbs complement operators into
the leaf functions.

5. Rendering

Suppose we wish to make shaded images of a scene
described as a CSG combination of implicit-function primitives.
For simplicity, we will make an image by parallel projection in
the z direction into the A-Yplane. (Perspective is a simple
extension — we can either incorporate the viewing transfomnation
directly into the CSG tree’s leaf functions or decorate the CSG
tree with transformation matrices and transform coordinates as we
walk the tree.)

We are given a CSG tree and a rectangular viewing
volume described by three intervals (X, Y,Z). For each leaf of the
tree, we can do an interval computation to bound the value of the
leaf’s function in the viewing cell. If the upper bound is negative
or the lower bound is positive, we can replace the leaf by the
empty set @ or its complement U and simplify the tree by
repeatedly applying the rules

Ons+O, uns+s

Ous+s, iws+u

Now we can divide the viewing cell into 8 pieces by dividing X, Y
and Z at their midpoints and repeat this procedure recursively. At
each level of subdivision, replacement of primitives by constants
will further reduce the CSG tree—if we are lucky, the whole tree
will reduce to a constant, in which case we need consider the cell
no further, since it contains no surface. (We should always keep
in mind that the reduced CSG trees are valid only within the
corresponding cells.) Subdivision terminates when the bases of
the cells are pixel-sized, at which point the reduced CSG tree
should be very small—t ypically only the one or two primitives
contributing to the image at the pixel.

At each level of subdivision we should first examine the
sub-cells closest to the viewpoint and use a quad-tree or some
equivalent data structure to keep track of which pixels are

computer Gratshics, 26, 2, JUIV1992

completely covered, allowing us easily to avoid examining more
distant cells that will contribute nothing to the image. (This
algorithm follows directly from the ~vde algorithm, described by
Woodwark and Quinlan [25]. They use a similar subdivision
scheme, but for CSG models whose only primitives are planar
half-spaces. for which they need not resort to interval arithmetic
to classify cells.)

The total expenditure required to sample the surface is
nearly independent of the number of primitives in the model.
This obviously cannot be true in the limit. Let us call a model
‘‘realistic” if by-and-large no more than a few primitive surfaces
cross each pixel. (On a 1000x 1000 screen, a modeI can have
several million (small) primitives and still satisfy this
requirement.) For realistic models, small cells will by-and-large
contain reduced CSG trees with only a few nodes. Large cells,
containing more complex trees, are much fewer in number —
depending on how many cells are culled by the coverage quad-
tree, there are between three and seven times as many pixel-sized
cells as there are cells of all other sizes combined. The great
majority of the computation occurs in small cells, in which the
size of the reduced CSG trees does not strongly depend on the
complexity of the original model,

When we have subdivided to the pixel level, we can
sample the image using ordinary ray-casting methods, We
substitute the ray’s parametric equation (.r,y,:) = A + a(B – A),
where A and B are appropriate points on the near and far planes of
the subdivided cell. into each primitive of the reduced CSG tree
and find all values of a where the primitives go to zero. We
discard values of ct for which the corresponding point is outside
the object. as determined by substituting point coordinates into
the leaves and evaluating the CSG operators. The smallest
remaining a, if any, denotes the visible point on the surface,
Papers by Amanatides and Mitchell ([14], [15], [I]) answer in
much more detail questions that may arise in implementing this
sort of ray-casting procedure.

6. Anti-aliasing

If point-sampling dissatisfies you (as it ought to!) then
interval arithmetic can help do better. If we ignore for now the
problems of highlight and texture aliasing (see [7], among
numerous others, for apposite approaches to these aspects of the
problem), then the anti-aliasing question hinges on identifying
silhouette edges of primitives and intersection edges of CSG
combinations,

Ideally, we would compute in their entirety the visible
portions of all significant edges and use an exact convolution
method like that of [9] to compute an anti-aliased image. As this
appears to be too much to hope for, we must satisfy ourselves
with a careful treatment of the simple cases that affect most
pixels, approximating the rest as well as we can afford. (For
simplicity, we will assume that we are using a box filter to sample
the image although that is by no means a limitation of the
method-see [9] for more relevant discussion. That is, we
compute pixel values by integrating the scene’s intensity across
pixel-sized squares.)

As above, we will subdivide the viewing volume, reducing
CSG trees as we go. When we reach pixel resolution, we will
concentrate our best attention on cells that are completely covered
by one primitive (figure 1a) or are crossed by a single visible
edge. This edge will be either the silhouette edge of a tree with a
single leaf (figure Ib) or an intersection edge in a two-leaf tree
(figure It). We will treat more complicated situations (figure ld)
by subdividing the pixel, hoping to find a simpler situation in the

subpixels and giving up when their contribution to the image is
tiny.

Suppose that each implicit function F at the leaves of our
CSG tree has continuous partial derivatives. The silhouette of the
surface F = O is precisely those points at which dF/dz = O. So, let
us use interval arithmetic 10 evaluate dF/dz in our pixel-sized
cell, calling the result S. If 0< S, the surface has no edge inside
the cell. It may, however, protrude through the cell’s front or
back surface (figure Ie), giving a spurious edge crossing the pixel
where the surface is clipped. An interval computation can alert us
to this possibility, If O= F(X, Y,[~,~]) then F may pass through
the far surface of the cell (X, Y,Z). Whenever we come to process
a cell that contains such a surface, we save the CSG tree and the
cell coordinates and defer processing the cell. When later we
return to the cell behind it, we can merge the two cells and their
trees before processing them, (Of course, if the CSG tree in [he
cell behind has been reduced to 0 or U, we will not return to it.
When later we return to the pixel for farther cells, we should first
dispose of the saved tree by treating it as one of the more
complicated cases mentioned above, You might, as 1 did initially,
naively believe that this circumstance cannot occur — after all, if
there is nothing in the cell behind, how could a surface cross the
cell boundary? However, if one surface of an intersection passes
through the back of a cell and the other does not. the cell behind
may easily reduce to 0.)

Now we are ready to handle the simple cases:

If the reduced CSG tree has only one leaf and 0< S, the
primitive has no edges inside the cell (figure 1a) and may trivially
be rendered by casting a ray through the pixel’s center.

If the CSG tree has two leaves and 04 S for each, then we
have two possibly intersecting primitives F and G, neither with an
edge in the cell (figure 1c). We will approximate their
intersection curve by a straight line that runs from edge to edge of
the pixel, We can cast four rays to find the Z coordinates at
which the surfaces pass through the pixel comers. Then,
following [8], we compare the : values at each comer. Along
each pixel edge where the z’s compare differently we linearly
interpolate the z’s to find a point at which they are equal. In any
cell there will be zero, two or four such points. We join them up
as in figure 2 (taken from [8]) and compute the quantity ~, the
total fraction of the pixel in which F is in front of G, according to
our approximation. Now we need only determine which surface,
if any, is visible in each part of the cell and compute their
contributions, weighted by ~, to the color of the cell. We can
determine visibility by considering the CSG operator connecting
the two surfaces, and whether the two surfaces face the viewer.
For example, if F faces the viewer and G faces away, and the
CSG operator is n, then we can see F inside the part of the pixel
where it is in front, and nothing in the other part, The following
table summarizes the contributions in all cases:

F toward F toward F away F away
G toward G away G toward G away

u 13F+(I-p)G (1-@)G pG+(I-~)F’
n ~G+(I-~)F f3F (l~~)G ~F+(l-~)G

If the reduced CSG tree has only one leaf and Oc S, then
there may be a silhouette edge in the cell, as in figure 1b. As

before, we wish to approximate the edge by a segment running
from edge to edge of the pixel. Again, we can cast rays through
the pixel comers, but now we are interested only in identifying
cell faces through which the edge must pass because the surface
intersects one edge of the face but not the other. Having
identified these faces (again there must be zero, two or four of
them), we can find the silhouette’s endpints by solving systems

133

SIGGRAPH ’92 Chica!ao, JUIY26-31, 1992

/./,0,0/

-,0, Z .

.,,XX, /--vb

‘/ ”,”,/ /0, /

,. /,/ /,. . .
<., ’/0 Z.

Figure i – Simple and non-simple cells
Figure la illustrates a cell completely covered by a single surface. lb has a cell containing a single surface with a
1c has a cell covered by a pair of intersecting surfaces. 1d is too complicated to be handled without subdivision.
cell with a surface passing through its back face. Its processing will be deferred for merging with the cell behind it.

of three simultaneous equations: F(,r,y, z) = O, i)~/& = O and t~e
plane equation of the cell face, one of x =3, x =X, y = Y or y = Y.
A useful optimization is to eliminate the cell face e@ation by
substituting into the other two. Moore ([16] pp 62-68) outlines
robust interval methods for producing these solutions.

As in the previous case, we can join these points by line
segments (see figure 3) to find the fraction of the pixel covered by

;I:lzl:;l++a+—-
:!;lxl::i-’m’
;EI:EE;:5!3%!I’
;B;:ljzl’’zl’———

Figure 2- Joining endpoints of edges
Each square represents a pixel. The comers are marked
with the sign of F – G. The label in each pixel fragment
indicates which surface is in front in it. ~ is the total area
of the fragments labeled F.

silhouette edge.
le illustrates a

the surface. Note that this computation is not particularly robust
— it is entirely possible for an edge to protrude a pixel without
the surface passing through any vertex. Indeed, the whole surface
may be contained within a single cell. But, we stated up front that
we intended to approximate the silhouette by a sequence of line
segments passing from pixel edge to pixel edge, and neither of
these situations admits a reasonable approximation in those terms.
A more robust computation that could identify these situations

Figure 3 – silhouette edge approximation
The squares are pixels. The closed curve is the a silhou-
ette edge of a surface that intersects each pixel as in figure
1a. The dashed lines are our piecewise linear approxima-
tion to the silhouette.

134

Computer Graphics, 26,2, July 1992

and allow us to subdivide would be stmightforward, if tedious, to
implement.

Any situation not handled above we manage by further
subpixel subdivision. We subdivide only in .[and y, not z, further
reducing the CSG tree as we go, stopping when we find a
subpixel satisfying one of the above cases or in any case at some
fixed depth. The contributions of the subpixel cells, weighted by
subpixel area, are added to determine the color of their pixel-sized
ancestor.

Since cells that partly cover pixels must allow the color of
cells behind them to show through the uncovered parts, we store
colors in the rgba representation of Porter and Duff [19], using
et-blending to composite each cell’s color with the accumulated
color of the cells in front of it. This can make mistakes in pixels
that contain multiple visible edges, If this worries you, you can
use a more elaborate compositing scheme, saving a list of
previously-encountered edges against which to clip tbe newly-
computed regions or keeping at each pixel a sub-pixel bit-mask
(as in Carpenter’s A-buffer [S], but simpler because we know
depth order u priori) against which to clip the newly-computed
regions.

7. Collision detection

Let us now turn our attention to motion computations for
animation purposes. Suppose we have a scene composed of a
number of CSG objects, and that we wish to compute their
motion, At any point in time, we need to decide whether objects
in the scene have collided, in order to prevent interpenetration and
to compute the forces resulting from any collision,

Let the objects in the scene (considered as point-sets) be
0,, ()< i <11. Then to compute an image we would run one of the
above algorithms on the CSG tree for

,,–1
Uo, (2)
,=()

To decide whether there has been a collision, we must decide
whether there are points occupied by more than one object. To do
this, we first build a CSG tree in which each of the top-level
union operators (see equation 2) is specially marked. Now, we
recursively subdivide a cell surrounding the entire scene, reducing
the CSG tree at each subcell as before, except that for specially-
marked top-level union opemtors we rewrite the tree using only
the rule

au.$+s

We do not reduce top-level instances of U using the rule
UUS-) U because we wisfl to count tfrern.If at any level of
subdivision the reduced CSG tree contains two or more top-level
U’s, we have detected a collision, Likewise, if the tree has no
marked top-level union operator, there can be no collision in this
cell and we need subdivide no further,

If we subdivide down to cells smaller than some tolerance
without reaching a decision, we can declare the question
unanswerable to within the given tolerance. This may strike you
as unsatisfactory. and in fact we can make a much stronger
statement. For all functions computed by sequences of arithmetic
operations and transcendental functions, their natural interval
extensions satisfy an in(erl,al Lipschirc cmrdirion (under certain
mild assumptions.) That is, there is an easy-to-compute constant
c, depending only on F and the domain of interest (say a viewing
volume (X(), Y(,,Z,))), such that if (X, Y,Z) G(X,,, Y{,,Z()) then
~(X, y, Z)-~(X, Y,Z)<cmax(~-X, ~-~,~-~). (Again, we
refer you to [16] pp 33-35 for further details, including a proof.)
Informally, the size of the intervals F(X, Y,Z) decreases at worst

\

Figure 4 — collision
F and G are two colliding surfaces. VF is the normal to F
at the point of collision. VI and V(J are their velocities at
the point of collision. Since the angle between VF and
V(; – Vf is larger than 90 degrees, surfaces are separating
and the collision will be rejected.

linearly with the size of (X, Y,Z). Thus, when we abandon
subdivision at a tolerance E, we know that the surfaces touch to
within some easily-computable tolerance c~.

8. Dynamic Collision Detection

If we can describe tbe motion of O, as a function of time,
we can extend the abrrve algorithm to find the earliest time in an
animation at which a collision occurs. We need only subdivide in
s, y, : and I, looking at subcells earlier in time before later cells
and stopping when we first find a cell smaller than a collision
tolerance &that still contains parts of two intersecting objects.

At this point we will presumably do a momentum-transfer
calculation and restart the colllslon detector with ~ = (<,,11,,,,,,,. But

this will just re-detect the previous collision. We must reject

collisions at which the objects are not approaching one another.
Let the two objects be F and G, and let their velocities at tbe point
of collision by l’~ and P’{, — see figure 4. G is moving towards
F if the angle between its velocity (relative to F) and F’s normal
at the point of collision is larger than 90 degrees, that is if
VF. (\’cJ - t“~)<0, [n an edge-to-edge or other complicated
collision. F’s gradient may be undefined. In that case, we must
use the normal to the collision tangent plane as described by
Baraff [3].

The sorts of motion that this scheme can accommodate are
fairly general. Any time-varying coordinate mapping will do, as
long as its inverse can be expressed in a closed form that admits
an inclusion monotonic interval extension. For example, points
on a rigid body tumbling and moving under gravity are
transformed by

IIo
P=rot(co/,A)R(P’-C)+C+P(, +Vot+ -112gIz (3)

o

where
P = (x.y,z)r is the transformed point,
rot ((), uxis) is a rotation matrix,
w is the object’s rate of rotation,
A is the axis about which it rotates,

I35

SIGGRAPH ’92 Chicago, July 26-31, 1992

R is a rotation matrix describing its orientation at t = O,
P’ is a coordinate in model-definition space,
C is the object’s center of mass,
PO is its position at time r = O,
VO is its velocity at time f = O, and
g is the acceleration due to gravity.

The inverse of (3) is just

[1

o
P’=R~rot(– cOt,u)(P-C-PO-Vol - -1/2gt2)+C

o

So, the implicit function F(P’) is just F as transformed by its
motion.

More complex motions. like the modal deformations of
Pentland and Williams [18] can be handled similarly.
Constrained motions like those described by Barzel and Barr [2]
and Baraff [3] for which the associated ODES are generally
insoluble in closed form are beyond the scope of the work
reported here. Interval methods for ODES are an interesting
research problem and would be extremely helpful here. In their
absence, we must use conventional ODE methods and accept the
loss of robustness that they entail.

Pentland and Williams [18] claim to do collision detection
of implicit functions (but not their CSG combinations) by
converting one of a pair of objects to be tested into polygons. The
objects intersect if any of the vertices gives a negative value when
substituted into the other function. Sclaroff and Pentland [20]
repeat this claim. But, their scheme does not work—it is easy for
an object to pass through a polygonal face without meeting any of
its edges. Even testing the polygonal representation of each
object against the other will not work, as they can easily meet
edge-to-edge with no vertex of either polygonization penetrating
the other object. The methods presented here are utterly
robust—interval arithmetic always provides guaranteed bounds
on the functions we compute.

When we discover that two objects meet, we need to
calculate the collision forces and their effects on the bodies’
motions. To do this, we need to know in what direction the force
is applied and some physical properties of the colliding bodies—
particularly their masses and moments of inertia.

The information needed to calculate the direction of
applied force is readily available when the collision is detected.
Inside the cell in which the collision occurs the reduced CSG
trees will include one or more surfaces from each of the colliding
objects. If a single surface from one object or the other is
involved, we need only compute its normal direction. If each
object has two surfaces active, we have an edge-to-edge collision.
We can find the edge directions by looking at intersections of
tangent planes, and transmit the force as in [3]. More
complicated situations represent indeterminate cases that can also
be linearized by working with the tangent planes and handled as
in [3].

9. Integral Properties

Mass and moments of inertia are infegral properdes of
solid objects. Computing them involves evaluating simple
definite integrals inside the objects’ volumes. For example, to
compute the mass of a body B, we need to evaluate

jjjP(.w,z)dxdy dz
B

where p is the density of the material. If p is easy to integrate
over rectangular prisms (often it will be constant), we can
recursively subdivide a cell surrounding B, reducing B’s CSG tree

136

as we go, and accumulate the integral’s value over those cells in
which the reduced CSG tree is U. Cells whose reduced CSG trees
are 0 contribute nothing, and partially occupied cells will contain
a vanishingly small fraction of B’s volume as the subdivision
limit decreases. (The fraction may not decrease as quickly as
you’d like if the Hausdorff dimension of B’s surface is larger than
2, but then you have worse problems since, for example, B‘s
partial derivatives will be undefined.)

Other integral properties can be computed similarly. For
example, B’s moment of inertia about a particular axis is just

~jjr2P(.’,Y,’)d dy d.
B

where r is the distance from (.r,y, z) to the axis in question.

10. Examples

Figures 5-9 show a variety of objects as rendered by our
algorithms. Figure 5 is Kummer’s surface with 16 real double-
points (4 are at infinity) with malachite texture. This beautiful
surface extends to infinity in 8 directions and would be useless for
real applications without some sort of trimming. Figure 6 is the
intersection of Kummer’s surface and a sphere. Figure 7 is the
intersection of a Parabolic Spindle Cyclide and a sphere with
hideous orange marble texture. (Fischer [10] gives good detailed
descriptions of these surfaces.) Figure 8 is an image of a face
made using a 48x48 raster of intersecting marbles of varying
sizes, just to show that we can handle scenes with a larger number
of primitives. Figures 5-8 were all computed at 1024x 1024
resolution using the point-sampling renderer described in section
5. Figure 9 is an anti-aliased rendering of a compound of 3
spheres, done at 256x256 resolution using the algorithm of
section 6.

The videotape accompanying this paper shows two simple
animations made using our dynamic collision detection and
rendering algorithms. The first scene shows 9 balls falling onto a
sphere with a dish carved out of its top. You can see the balls
collide with the dish and, in one case, with each other. The
second scene is similar, but with 25 balls. There are 80 collisions
in this shot, mostly between pairs of balls.

11. Conclusion

We have presented a wide range of algorithms that use
intewal arithmetic and recursive subdivision of object space to
process geometric objects described as CSG combinations of
implicit function primitives.

The algorithms are all suited to manipulating extremely
complex objects because they discard parts of the objects that are
irrelevant to the subdivided cells. Their running times are only
mildly influenced by the size of their inputs because small cells
typically contain at most one or two surfaces. Presumably when
the number of primitives in the original model is a large fraction
of the number of pixels on the screen we will start to see greater
dependence, as this assumption will begin to break down.

The algorithms of sections 7, 8 and 9 are quite robust—it is
impossible to lose track of parts of objects due to rounding error
when using interval arithmetic. The bounds it provides are
absolutely guaranteed to enclose the exact function values. We
can only run into trouble when we terminate subdivision at some
a priori level, and even then the existence of interval Lipschitz
conditions can help us set that level to bound the unavoidable
error in our computations however we wish.

In retrospect, the work most closely related to ours is work
by Al Barr and his colleagues on rendering and collision detection
of functions with Lipschitz conditions [13], [24]. A Lipschitz

Computer Graphics, 26, 2, July 1992

condition (not to be confused with an interval Lipschitz condition)
is a bound on a function’s variation. Given an appropriate
Lipschitz constant, one can easily bound a function’s value on an
interval, a sort of “interval arithmetic without the intervals. ” In
fact, Lipschitz constants can be computed by interval evaluation
of a function’s derivatives, and those bounds converted into
bounds on the original function using the mean value theorem. In
this Iigh[it is perplexing that Kalra and Barr [13] put the question
of ‘identifying ... useful implicit functions and computing
Lipshitz constants’ for them first on their list of important
problems to attack.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Norman Chin and Steven Feiner, “Near Real-Time
Shadow Generation Using BSP Trees, ” Cornpufer

Gruphics 23(3), July 1989,99-106

Franklin C. Crow, “Summed Area Tables for Texture
Mapping,” Computer Graphics 18(3), July 1984,207-212

Tom Duff, ‘‘Compositing 3-D Rendered Images, ”
Computer Graphics 19(3), July 1985,270-275

Tom Duff, “Polygon Scan Conversion by Exact
Convolution,” Raster Imaging and Digital Typography
’89, Cambridge University Press, London, 1989

Gerd Fischer, Mathematische Modelle/Mathematical
Models, Friedr. Vieweg & Sohn,
Braunschweig/Wiesbaden, 1986

H. Fuchs, Z, M. Kedem and B. F. Naylor, “On Visible
Surface Generation by A Priori Tree Structures. ”
Compurer Graphics 14(3), July 1980, 124-133

IEEE Standard for Binary Floaring-Point Arithmetic.
ANSI/lEEE Std 754-1985, Institute of Electrical and
Electronics Engineers, New York, 1985

Devandra Kahd and Alan H. Barr, “Guaranteed Ray
Intersections with Implicit Surfaces, ” Computer Graphics
23(3), July 1989,297-306

Don P. Mitchell, “Robust Ray Intersection with Interval

Recursive subdivision using interval arithmetic is a natural
and versatile scheme to use for implicit function CSG models.
We have only begun to scratch the surface of its potential
applications. Our anti-aliased rendering method should l-weasily
convertible into a polygonization algorithm. (Indeed, Snyder [22]
gives an interval polygonization algorithm, along with many other
applications of interval arithmetic.) Interval function
minimization methods can provide global optima for many
problems and should be applicable to some of the control
problems in animation. and. as Don Mitchell has pointed out in
conversation, to a range of global illumination problems as well.

13]

141

Another problem that must be better addressed before we
can consider wider use of implicit function surfaces is the
problem of using them to model sculpted surfaces. a realm in
which Bezier surfaces and NURBS reign. There is some hope
that this situation will improve. [17] and [21] are two recent
papers describing ideas that show a great deal of promise.

Arithmetic,” Proc. Gruphics Interface ’90, 1990

[15] Don P. Mitchell, “Spectrally Optimal Sampling for
Distribution Ray Tracing,” Compu/er Graphics 25(3), July
1991, 157-164

[i6] Ramon E. Moore, Methods and Application.r af lruervul
Ana/ysis, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, 1979

12. Acknowledgements

Don Mitchell is always a good friend and source of ideas
and criticism. His paper on interval root-finding [14] put this bee
in my bonnet. and his interval arithmetic routines made it possible
to get the first version of this stuff going in a couple of days.

[17] Shugeru Muraki, “Volumetric Shape Description of Range
Data using ‘‘Blobby Model” ,“ Computer Graphics 25(4),
July 1991,227-235

Alex Pentland and John Williams, “Good Vibrations:
Model Dynamics for Graphics and Animation,” Computer
Graphics 23(3). July 1989, 215-222

Andy Witkin suggested looking at collision detection. [18]

A detailed and insightful referee’s
greatly to the paper’s clarity and correctness,

13. References

report cmrtri buted

Mitchell. “Some

Thomas Porter and Tom Duff, “Compositing Digital
Images,” Compurer Graphics 18(3), July 1984, 253-259

[191

[201 Sclaroff and Alex Pentland, “Generalized Implicit
Functions for Computer Graph ics,” Cornpuler Graphics
25(4), Juiy 1991,247-250

John Amanatides and Don P.
Thomas W. Sederberg and Alan K. Zundel, ‘“Scan Line
Display of Algebraic Surfaces, ” Computer Graphics
23(3), July [989. 147-156

Regularization Problems in Ray Tracing, ” Proc, Graphics
interfit(’1’ ‘ 90, I990

Romm Barzcl and Alan H. Barr, “A Modeling System
Basmi on Dynamic Constraints,’” Computer Graphics
~~(~) July l%++. 179-188

David Baraff, ‘‘Analytical Methods for Dynamic
Sirnultition of Non-penetrating Rigid Bodies, ” Computer
Gr[lp/li[.! 23(3). July 1989.223-23 I

Alan H. Barr, “‘Global and Local Deformations of Solid
Prim itives,” (’{m~pu/cr Graphi~s 18(3). July 1984, 21-30

Lortm Cwpcntcr, “The A-Buffer, An Anti-Aliased Hidden
sUIf:lL’CMethod. ” ~onywrcj” G)”a/Jhics 18(3), July] 984,
103- Iox

[21]

[22]

[23]

John Snyder. Generurise Modeling: An Approach to Hi~h
Level Shape Design for Computer Graphi~.s and CAD.
Ph.D. Thesis. California Institute of Technology, 1991

W, Thibault and B. F. Naylor, “Set Operations on
Polyhedra Using Binary Space Partitioning Trees,”
Computer Graphits 2 1(4), July 1987, 153-162

[241 Brian von Herzen, Alan H. Barr and Harold R. Zatz,
“Geometric Collisions for Time-Dependent Parametric
Surfaces,” Compu/er Graphics 24(4). August 1990, 39-48

J. R. Woodwark and K. M. Quinlan, “Reducing tbe effect
of complexity on volume model evaluation. ” Compuler-
Aided Design 14(2), March 1982, 89-9S

[25

137

SIGGRAPH ‘92 Chicago, July 26-31, 1992

F~,qure 5 - Kummer wrface

L-
F&WY 9 - Combination of 3 spheres, anti-aliased

