
Journal of Visual Languages and Computing (1992) 3, 69-101

Visual Languages and Computing Survey:
Data Flow Visual Programming Languages

DANIEL D. HILS

Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 W.
Springfield Avenue, Urbana, Illinois 61801, U.S.A.

Received 20 November 1990 and accepted 25 May 1991

The data flow model is a popular model on which to base a visual programming
language. This paper describes alternatives available to a designer of data flow
languages, describes many of the languages, discusses some strengths of the languages,
and discusses some unsolved problems in the design of data flow languages.

1. Introduction
DATA FLOW IS A POPULAR COMPUTATIONAL MODEL for visual programming languages.
Data flow provides a view of computation which shows the data flowing from one
filter function to another, being transformed as it goes. In addition, the data flow
model easily accomodates the insertion of viewing monitors at various points to show
the data to the user. Consequently, many recent visual programming languages are
based on the data flow model.

This paper describes many of the data flow visual programming languages. The
languages are grouped according to their application domain. For each language,
pertinent aspects of its appearance, and the particular design alternatives it uses, are
discussed. Next, some strengths of data flow visual programming languages are
mentioned. Finally, unsolved problems in the design of such languages are discussed.

2. Methods for Classification of Data Flow Languages
Data flow visual programming languages may be classified according to their use of
various design alternatives or according to their application domain. This paper
groups languages by their application domain, and mentions the design alternatives
which each language uses. Table 1 summarizes the design alternatives used by various
languages.

2.1. Design Alternatives

The idea of using a data flow graph to represent a program has existed for some time
[l]. However, the widespread use of the data flow computational model in visual
programming languages is more recent [2]. The central concept of the data flow model
is that a program can be represented by a directed graph where nodes represent
functions and where arcs represent the flow of data between functions [3]. Arcs going
into a node represent input data to a function; arcs going out represent output
data-that is, the function’s results. Units of data which flow on the arcs are called
tokens; arcs may also be called links. Throughout this paper, the terms arc, wire, link
and line are used interchangeably, as are procedure, function, icon and box.

1045-926X/92/010069+33 $03.00/O @J 1992 Academic Press Limited

Ta
ble

1.

 D
es

ig
n

al
te

rn
at

ive
s

us
ed

by

 d
at

a
flo

w
vis

ua
l

pr
og

ra
m

m
ing

lan

gu
ag

es

(le
ft

ha
lf)

.

La
ng

ua
ge

De
sig

n
Al

te
rn

at
ive

Ho

ok
up

Fa

br
ik

In
te

rC
ON

S
HI

-V
IS

UA
L

VI
VA

Ca

nt
at

a
VI

PE
X

La
bV

IE
W

M
ain

re

fe
re

nc
e

Pl
l

Pr
im

ar
y

ap
pli

ca
tio

n
PI

[2

31

[2
4]

[1

8]

M
us

ic
[Q

l
[2

8]

--

Co
ns

tru
ct

in
g

r3
11

-

do
m

ain

Sc
ien

ce

Sc
ien

ce

us
er

 i
nt

er
fa

ce
s

Co
ns

tru
ct

in
g

Im
ag

e
pr

oc
es

sin
g,

Im

ag
e

us
er

 i
nt

er
fa

ce
s

of
fic

e
wo

rk

Im
ag

e/
sig

na
l

Bo
x-

lin
e

re
pr

es
en

ta
tio

n
Y

Y
pr

oc
es

sin
g

Y
pr

oc
es

sin
g

N
Y

Y
Ite

ra
tio

n
Y

Y
Y

Y
Y

Y
Y

Pr
oc

ed
ur

al
ab

st
ra

ct
io

n
N

Y
Y

Y
Y

Y
Y

Se
le

ct
or

/d
ist

rib
ut

or

N
Y

Y
Y

Y
N

Y
Y

(o
r

de
riv

ed

fu
nc

tio
ns

)
N

N
N

N

Fl
ow

of

 d
at

a
Un

i.
Bi

.
Un

i.
Un

i.
Se

qu
en

tia
l

ex
ec

ut
io

n
N

Un
i.

Un
i.

Un
i.

Un
i.

N
N

N
N

N
N

Y
co

ns
tru

ct

Ty
pe

ch

ec
kin

g
N

Y
N

N
Hi

gh
er

-o
rd

er

fu
nc

tio
ns

N

N
Y

N
Y

N
N

N
Ex

ec
ut

io
n

m
od

e
N

N
N

N
Da

ta
-

Da
ta

-d
riv

en

Da
ta

-d
riv

en

Da
ta

-d
riv

en

Da
ta

-d
riv

en

Bo
th

ar

e
dr

ive
n

Da
ta

-d
riv

en

Da
ta

-d
riv

en

Li
ve

ne
ss

lev

el
av

ail
ab

le
2

3
2

3
4

2
or

 3
 (u

se
r-

2
2

ch
os

en
)

Ta
ble

1.

 D
es

ig
n

al
te

rn
at

ive
s

us
ed

by

 d
at

a
flo

w
vis

ua
l

pr
og

ra
m

m
ing

lan

gu
ag

es

(ri
gh

t
ha

lf)
.

La
ng

ua
ge

De
sig

n
Al

te
rn

at
ive

Co

nM
an

viz

Vi

su
al

To
ol

se
t

PR
OG

RA
PH

Sh

ow
&T

ell

ES
TL

Da

ta
Vi

s

M
ain

re

fe
re

nc
e

Pr
im

ar
y

ap
pli

ca
tio

n
do

m
ain

Bo
x-

lin
e

re
pr

es
en

ta
tio

n
Ite

ra
tio

n
Pr

oc
ed

ur
al

ab
st

ra
ct

io
n

Se
le

ct
or

/d
ist

rib
ut

or

(o
r

de
riv

ed

fu
nc

tio
ns

)
Fl

ow

of
 d

at
a

Se
qu

en
tia

l
ex

ec
ut

io
n

co
ns

tru
ct

Ty

pe

ch
ec

kin
g

Hi
gh

er
-o

rd
er

fu

nc
tio

ns

Ex
ec

ut
io

n
m

od
e

Li
ve

ne
ss

lev

el

[3
31

Gr

ap
hic

s
[3

41

Ge
ne

ra
l-

pu
rp

os
e

pr
og

ra
m

m
ing

Y Y Y Y

[3
51

Ge

ne
ra

l-
pu

rp
os

e
pr

og
ra

m
m

ing

Y Y Y N

[3
71

Ge

ne
ra

l-
pu

rp
os

e
pr

og
ra

m
m

ing

Y Y Y N

[6
1

Ge
ne

ra
l-

pu
rp

os
e

pr
og

ra
m

m
ing

Y Y Y N

W
I

Ad
ds

ty

pe
s

to
 S

ho
w&

Te

ll
Y Y Y N

[II
I

Sc
ie

nt
ific

vis

ua
l-

iza
tio

n
Y Y Y N

Y Y N N Un
i.

N
Un

i.
N

Un
i.

N
Un

i.
N

Un
i.

N
Un

i.
N

Un
i.

N

EI

Da
ta

-
dr

ive
n

2

N Y Da
ta

-d
riv

en

El

Da
ta

-d
riv

en

: Da
ta

-d
riv

en

ii Da
ta

-d
riv

en

Y Da
ta

-d
riv

en

: Da
ta

-d
riv

en

2
2

2
2

2
2

72 D. D. HILS

2.1.1. Pure Data Flow Model

The ‘pure’ data flow model is the data model with no added control flow constructs
such as WHILE loops, sequential execution constructs or CASE statements. In the pure
data flow model the sequence in which functions or nodes are to execute is not
specified. Rather, when all of a node’s inputs are available, the node fires. This
corresponds to executing the function. The resulting data is then put on the output
arcs, where it flows downstream to other functions. While all data flow visual
programming languages are based on the pure data flow model, the following design
alternatives can be used to augment the pure data flow model.

2.1.2. Box-line Representation

Most visual data flow programming languages use boxes to represent functions and
lines to represent the flow of data between functions. An advantage of choosing this
box-line representation for a visual programming language is that this representation
allows the user to insert viewing monitors easily at different spots to inspect the data.
However, languages are not required to use this visual representation. For example,
while an early version of HI-VISUAL [4] used the usual box-line representation, a
more recent version [5] uses juxtaposition of boxes, rather than a line connecting
boxes, to indicate that a function is being executed.

Another variation on the idea of ‘boxes are functions and lines carry data’ is the use
of boxes to represent such things as data items, files, iteration constructs and
sequential execution constructs.

2.1.3. Iteration

Many data flow visual languages provide iteration. Such languages use a variety of
iteration constructs. These constructs include: cycles in the data flow graph;
sequential ports (objects associated with a Show and Tell iteration box [6], which
recycle a single changing value through repeated executions of the iteration box;
parallel ports (objects associated with a Show and Tell iteration box, which split up a
collection of list into its elements, execute the iteration box once for each element and
gather up the results into a collection or list); control flow constructs such as FOR,
WHILE and REPEAT loops; and predefined functions which apply an operation to all
elements of a list.

2.1.4. Procedural Abstraction

Procedural abstraction is available in some data flow visual languages (for example,
in HI-VISUAL [4] and in Show and Tell [6]). Th’ IS means that an entire graph may be
considered a procedure and may be condensed into a single node. Arcs going to and
from the node may then be considered arguments to the procedure. Procedural
abstraction is important for two reasons. First, it saves screen space, making a visual
program more compact. Second, it allows the programmer to view the program at a
higher level, without numerous details.

DATA FLOW VPL 73

Figure 1. Selector and distributor functions [3] 0 1982 IEEE

2.1.5. Selector and Distributor

Two constructs which can be added to a data flow language are the selector and the
distributor (Figure 1). In its simplest form, the selector accepts a true or false data
token to decide which of two inputs should be propagated to its output. The
distributor uses a true or false token to pick an output arc to put its data on. Data
flow visual languages rarely have either a selector or distributor in the exact form of
Figure 1, but some languages have similar constructs that accomplish the same task.

2.1.6. Sequential Execution Construct

A difficulty with the pure data flow model is that it does not allow a user to specify
that actions should be performed in a sequence: ‘first function A, then B, then C’.
Rather, in the pure data flow model, any of A, B or C could be executed as soon as
its input data was available. Some languages introduce a sequential execution
construct to allow functions to be executed in a specific order. Of the languages
surveyed in this paper, only LabVIEW [7] possesses a sequential execution construct.

2.1. Z Type Checking

Some data flow visual languages (for example, Fabrik [8,9]) indicate the type of data
flowing over arcs, and perform type checking. Type checking is usually done at

74 D. D. HILS

program construction time, by not allowing the user to connect functions with types
that do not match. This prevents run-time errors which would otherwise be caused by
type mismatches.

2. I. 8. Higher-order Functions

Some languages, such as ESTL [lOI and DataVis [ll], provide higher-order functions:
functions which take other functions as arguments. One way to present higher-order
functions is for functions to flow over arcs as data objects. If this is done, an ‘Apply’
node can then be used to apply the function to its inputs, and to produce as output
the function’s result. Because it is awkward to have functions flowing on arcs, some
languages instead present higher-order functions via function slots. A function slot is
a box inside the icon for a higher-order function. The function slot is a parameter to
the higher-order function. A lower-order function is placed in the function slot. The
higher-order function (or one of the functions it calls) will eventually apply the
lower-order function to some data. Higher-order functions are a useful design
alternative because they add power and versatility to a language.

Figure 28 shows an example of an ESTL [lo] higher-order function with a function
slot. The higher-order function is ‘?‘; the low-order function is square root. The
higher-order function simply applies the square root to the input of nine. While this
higher-order function is simple, it is easy to imagine a more complicated higher-order
function: one, for example, which would apply the square root to each element of a
binary tree.

2.1.9. Execution Modes

There are two possible modes of execution for a data flow program: data-driven and
demand-driven. For data-driven execution, a function node executes when it receives
data from upstream nodes on its input arcs, and it then sends data to nodes
downstream on its output arcs. (Upstream nodes are found by following input arcs
from the node backwards; downstream nodes are found by following output arcs
forward out of the node.) With data-driven execution, a node fires as soon as its
inputs are available, and all data flows downstream. A weakness of data-driven
execution is that some nodes may fire needlessly, even though the final output of the
program does not make use of their computations [12]. A language designer may
decide to cure this difficulty by using demand-driven execution.

For demand-driven execution, execution of a node happens when downstream
nodes request data from a node’s output arcs. The node may request data from
upstream nodes over its input arcs; if it does so, it then waits for these nodes to send
it data. It then sends data over its output arcs to downstream nodes.

With demand-driven execution, a node fires only when downstream nodes request
data from it. All data still flows downstream, but requests flow upstream. In Cantata
[12,13], a user may choose demand-driven execution and may then select an icon
which displays the result of a program on the screen. Cantata then looks upstream
from the display icon and finds and fires only the nodes that must be executed to
produce the output. This ‘winnowing’ of icons to be run may save significant time at
execution. Demand-driven execution, due to its greater complexity, is used less often
than data-driven execution. In fact, all the visual languages which this paper surveys,
except Cantata, use data-driven execution.

DATA FLOW VPL 75

2.1.10. Level of Liveness
Tanimoto has described a four-level scale of liveness [18]. The first, ‘informative’
level uses the visual representation of the program for documentation or education
about the program, but not for instructions to the computer. A flowchart for a
FORTRAN program is at this level.

The second, ‘informative and significant’ level uses the visual representation as the
program. The representation resides on the computer and is executable. Once the user
has entered the program into the computer, he or she may tell the computer to
execute it. PICT [19] is a system at this level.

The third, ‘informative, significant and responsive’ level includes systems that
execute automatically whenever the user edits the program or its input data. The user
does not have to give an ‘Execute’ command. HI-VISUAL [ZO] is at the third level.

The fourth level is ‘informative, significant, responsive and live’. A system at this
level continually updates the display to show the results of processing data. VIVA [18]
is a system at the fourth level.

Unless otherwise specified, the languages in this paper are at the second level of
liveness.

2.2. Application Domains
The next section examines 15 visual programming languages that use the data flow
computational model. The languages are: Hookup, Fabrik, InterCONS, HI-
VISUAL, VIVA, Cantata, VIPEX, LabVIEW, ConMan, viz, Visual ToolSet,
PROGRAPH, Show and Tell, ESTL, and DataVis.

The languages are organized by their application domains, which include music,
operating system commands, construction of user interfaces, image processing,
science, graphics, general-purpose programming and languages related to Show and
Tell.

Hookup deals with music; Fabrik and InterCONS are for constructing user
interfaces; HI-VISUAL, VIVA and Cantata are intended for image processing; (more
recent work on HI-VISUAL is oriented toward office work; Cantata has also been
used for signal processing and other applications); VIPEX and LabVIEW deal with
science; ConMan is for graphics; viz, the Visual ToolSet, PROGRAPH and Show
and Tell are general-purpose programming languages; ESTL adds types and higher-
order functions to Show and Tell; and DataVis deals with scientific visualization and
is in the same family of languages as Show and Tell.

AVS [15,16] and apE [17], while useful data flow systems for visualization of
scientific data, are not included in this paper because they are not visual programming
languages. That is, one cannot write a new library function while staying solely in the
visual portions of AVS or apE. Instead, one must switch to a different, textual,
language (C or FORTRAN) to define the new function.

3. Survey of Various Languages
3.1. Languages For Music
3.1.1. Hookup
Hookup [21] is a low level data flow visual language for controlling music
synthesizers. Hookup provides various predefined library functions which may be

76 D. D. HILS

Figure 2. Simple Hookup program [21]

called by a programmer. Library functions are represented by icons. Although
Hookup uses the typical box-line representation in which icons represent functions,
icons can also represent input/output devices. Arcs transmit simple data values such
as integers or the value of a musical note (an integer). Hookup’s library functions do
simple arithmetic and provide user interface features such as buttons and sliders. The
‘MIDI In’ and ‘MIDI Out’ icons handle input and output for the synthesizer.
Memory cells store a single integer.

Two other interesting capabilities of Hookup are its Vector data type and the
Graph icon. Icons (functions) are available to give the length of a vector, the nth
element of a vector, and whether or not a value is an element of the vector. The Graph
icon continually plots points at given X and Y coordinates, and has a trigger input
(that is, a triangle) to erase itself.

Figure 2 shows a simple Hookup program. The four memory cells hold four
notes, played in earlier from the MIDI keyboard via the now-disconnected MIDI In
icon at the top left. Each time the round button is pressed, the series of four notes is
sent to the synthesizer to be played, via the MIDI Out icon. The slider controls the
volume. Since the memory cells send their contents to the right when triggered by a
button press, adding -2 ensures that the melody will descend by two half steps each
time it is played.

Hookup provides iteration in the form of cycles in the data flow graph. The
program in Figure 2 can be changed by replacing the button with a clock which is
frequently reset to 0. Once this is done, continuous iteration will occur, rather than
one execution of the circuit each time the user presses the button.

3.2. Languages for Constructing User Interfaces

3.2.1. Fabrik

Fabrik is a language for constructing user interfaces [S, 91. In Fabrik, icons are square
boxes and represent functions. Functions are called components. Fabrik provides a set

DATA FLOW VPL 77

of predefined components and programmers may also construct their own com-
ponents. Their predefined components perform arithmetic, string handling and
graphic manipulation. In addition, the components generate graphemes, which
include rectangles, ovals, lines, polygons or bitmaps. Another group of predefined
components provides transformations of graphemes: scaling, rotation, translation,
hiding and inverting a grapheme and merging several graphemes. Another group of
components represents user interface items (for example, the mouse).

Arcs or wires are used to connect components; data flows over the wires. Wires are
not connected directly to components; rather, they are connected to pins on a
component. Pins serve three purposes: they indicate how many wires may connect to
a component; they indicate where on a component’s periphery a connection may be
made; and they indicate whether the connection is for input, output or both. As can
be seen in Figure 3, output pins point away from a box (the 9/5 box in Figure 3),
input pins point toward a box (that is, from the 9/5 box toward the x/+ box in
Figure 3) and input/output pins are diamonds (the left and right sides of the +/-
box in Figure 3).

Input/output pins are necessary because Fabrik allows bi-directional data flow. On
links connecting diamond-shaped pins, data may flow either way. The direction of
flow depends on where the input is coming from at any given time. In effect, Fabrik is
using one bi-directional link to represent two separate uni-directional links.
Bi-directionality allows a function and its inverse to be included in the same
component. For example, the +/ - box in Figure 3 can either add or subtract,
depending on which side it receives a new input value. Note that 9/5 and 32,
however, are constants. They would never be changed to satisfy constraints in the
program because their pins are not bi-directional.

Fabrik provides type checking. Each predefined component assigns a type to each
pin. Thus, input and output are restricted to certain types. When the programmer

l-l FtDC

-- 4

Figure 3. Fabrik internal diagram for a Fahrenheit/Centigrade component [S]

78 D. D. HILS

Figure 4. The Fabrik Draw component automatically lays out diagrams as the user creates a drawing [SJ

attempts to wire together two pins, Fabrik does type checking to verify that the two
types match. If they do match, the connection is made. If not, the connection is not
made and an error message is shown.

Fabrik’s types are: primitive (this includes number, Boolean, character and
grapheme), bundled (like a record type, this type may contain different types within
itself), array and enumerated.

Several other features of Fabrik are of interest. A Draw component (Figure 4)
functions somewhat like MacDraw [El. Th e user creates a structured drawing, and
Draw creates the Fabrik program which would generate the drawing.

Fabrik provides iterators for computations which are to be repeated. Iterators and
other components transfer data across their own boundaries to or from the outside by
using special pins called gateways. Some gateways allow an iterator to receive a
collection of elements. An inbound collection gateway splits up the collection and
fires the iterator once for each element in the collection. A corresponding outbound
gateway gathers up into a new collection the data values produced by each firing of
the gateway. Fabrik’s [8] approach to iteration was inspired by Show and Tell [6];
gateways which deal with collections of elements are similar to parallel ports in Show
and Tell [6].

3.2.2. InterCONS
InterCONS is a language for creating user interfaces [23]. InterCONS has boxes for
various purposes and links to carry data between boxes. Boxes may be constants,

DATA FLOW VPL 79

J

Tw....,C II
Displ

Loor

a’yzJ jg “a ~j’j-q @J “fif”‘f?q ‘s-q)clmlr-l
Nuneri c Keypad Function Keypad

Figure 5. InterCONS program for calculator internals [23] @ 1988 IEEE

variables, text or functions. Among the predefined library functions provided are
arithmetic operators, min, max and relational operators. Predefined boxes for user
interface elements like sliders, buttons and gauges are present. Fan In and Fan Out
boxes merge and split links. A ‘path splitter’ box functions like a distributor function.
If its condition is true, its input is shunted out one of its two outputs; if the condition
is false, the input goes to the other output. Figure 5 shows an InterCONS program
to generate a calculator.

InterCONS provides iteration in the form of cycles in the data flow graph. Every
cycle has at least one button connected to it to control its execution. When the user
presses and releases the button, the cycle executes once; if the user presses and holds
the button, the cycle executes repeatedly.

InterCONS allows procedural abstraction by permitting the programmer to specify
that certain boxes in an InterCONS program can be joined together to form a single
small box (an icon). This icon may then be used as a component in a larger program.

3.3. Languages for Image Processing

3.3.1. HI-VISUAL.

HI-VISUAL is a visual data flow language that emphasizes icons [4,5,20,24-261. Its
application area was originally image processing, but now also includes work done in
an office environment: simple accounting, word processing, report generation, data
storage and retrieval.

80 D. D. HILS

DGE DETECT

rl n

n n

Figure 6. A complete HI-VISUAL program [4]

In HI-VISUAL, icons represent functions. The flow of data is indicated by arrows.
As well as representing functions, icons also represent the input data to a procedure
and the output data from a procedure. Figure 6 shows a HI-VISUAL program. (This
is an early version of the language.) HI-VISUAL provides procedural abstraction,
since one icon can represent an entire function. Figure 7 shows the function behind
the QUANTIZE icon in Figure 6.

HI-VISUAL provides two iteration constructs. Both are control flow constructs.
The first is akin to a FOR loop; it allows the programmer to specify that, for example,
certain icons should be executed n times, but it does not allow access to the loop
control variable. The second iteration construct is a REPEAT-UNTIL loop.

A switch statement is available. The switch functions like a CASE statement, but
controls the flow of data rather than the flow of control. Depending on the value of a
Boolean expression, data coming into the switch is routed to one of two sets of
outgoing links. There may also be multiple incoming links to the switch. This switch
is akin to the distributor function discussed in Section 2.1.

DATA FLOW VPL 81

: ‘.
sl 0 <

SYwfW c1ar

Figure 7. A lower-level HI-VISUAL function behind QUANTIZE in Figure 6 [4]

In a more recent version of HI-VISUAL [5], icons are used only for data objects,
not for functions. Also, the approach to the system has become object-oriented. Since
data objects are considered to ‘own’ operations (in accordance with the object-
oriented paradigm), icons for functions are no longer shown.

Links are now used only for indicating that output data is coming from a function
execution. Such a function execution happens when two data icons are superim-
posed. A data icon’s behavior is not fixed, but depends on what icon it overlaps. If a
second icon overlaps the first data icon, this also affects the first icon’s behavior. Each
icon is now considered an object, an instance of a class. Through class membership,
an icon inherits class variables, instance variables, a set of acceptable messages and a
set of transmittable messages. Acceptable messages are messages that an icon can
receive and execute (that is, functions the icon can do) and transmittable messages are
messages the icon can send.

A database of rules is kept. When the user overlaps two icons the rules determine
which icon is the passive object (to be checked for acceptable messages) and which

82 D. D. HILS

Figure 8. A more recent HI-VISUAL program [S] 0 1988 IEEE

icon is the active object (to be checked for transmittable messages). If there is not an
immediate match between a transmittable message and an acceptable message, a search
up the inheritance hierarchy (that is, into superclasses) is done.

Figure 8 shows a more recent HI-VISUAL program. When the user superimposes
the calculator over the sales book at the top left, a new sales book is produced. The
drawing kit can then be applied to it to produce a graph paper, and so on.

In a more recent version of HI-VISUAL [25], the user interface has hidden the idea
that HI-VISUAL is based on data flow. (See Figure 9.)

3.3.2. VIVA

VIVA is a language for image processing [18,27]. Boxes represent functions; links
transmit data between boxes. Three kinds of boxes are available to the programmer:
sources, operators and monitors. Sources provide image data, while monitors display
images and output from operators. Operators include mathematical and image-
processing functions. Operators may be subprograms. Control panels may be defined

DATA FLOW VPL 83

Figure 9. User interface of HI-VISUAL’89 [25] @ 1989 IEEE

for sources, operators and monitors, and provide graphical input and output
indicators like switches and meters. Liveness is a goal of VIVA. Not only does VIVA
try to execute the program whenever the user edits it, but VIVA frequently updates
its display to show the new streams of data being calculated. VIVA is at the fourth
level of liveness on Tanimoto’s scale. Iteration is present in the form of a cycle in the
data flow graph, rather than a control flow iteration construct.

VIVA does not have an explicit data flow model. Since VIVA is designed to achieve
a high degree of liveness, VIVA’s metaphor is a continuously updated electronic

lmage sequence
source Histogrammer Valley selector Bar graph display

Virtual monitor Numerical readout

Figure 10. A VIVA program for image stream thresholding and display 1181

84 D. D. HILS

circuit. Behind the scenes, however, VIVA’s underlying model is data flow, albeit a
more rapid and frequently updated flow of data than in other flow languages.

Figure 10 shows a VIVA program. A stream of images from the image source is fed
to the thresholder. Output from the thresholder is displayed in a virtual monitor, and
also is summed up to give a count of pixels over the threshold. The count is displayed
by using a bar graph and a numeric readout.

3.3.3. Cantata

Cantata is a language originally designed for image processing [12-141. It has also
been found useful in signal processing, as a database query language, for expressing
matrix algorithms and for control systems. Cantata uses the usual box-line
representation for functions and the transport of data between them. The boxes, called
glyphs, may be selected from a library of approximately 240 algorithms for signal and
image processing.

Two forms of iteration are available. The two forms are control flow constructs: a
COUNT-LOOP (similar to a FOR loop) and a WHILE-LOOP. Each of these loops is
represented by an icon which is placed on a cycle in the data flow graph. When a
condition in the loop icon is satisfied, data can flow through the exit path from the
cycle.

Figure 11 is a Cantata program containing a COUNT-LOOP. The program averages a
sequence of five noisy images. The five small images at the bottom are the result after
each iteration. The large image at the top is the final result.

An IF-THEN-ELSE construct controls the flow of data, rather than the flow of
control. A conditional expression is evaluated to give TRUE or FALSE. This result is
then used to direct data down one of two possible paths. This construct is a form of

Figure 11. Cantata program showing COUNT-LOOP iteration construct [13] @ 1990 IEEE

DATA FLOW Vl’L 85

Figure 12. Close-up view of a Cantata function [13] @ 1990 IEEE

the distributor function (discussed in Section 2.1), and is also similar to HI-
VISUAL’s switch statement.

Cantata provides procedural abstraction. It is possible to zoom in on a function
icon in order to see its internal structure. This has been done in Figure 12. One can
think of zooming in on a function as ‘moving down’ one level in the visual program.
Functions at the lowest level (that is, those not composed of other function icons) are
written in textual C or FORTRAN.

Cantata uses a hybrid of data-driven and demand-driven execution. Typical
execution in Cantata is data-driven: a function may execute as soon as its input data is
available, and data flows downstream. However, a Cantata user may choose the
option of demand-driven execution. The user can select an icon which displays data
generated by a program; only upstream icons which are necessary to produce the
displayed data are then executed.

Cantata’s liveness level is normally two-that is, a RUN command must be given for
a program to execute. However, a user may choose responsive mode, which makes
Cantata’s liveness level become three; whenever the user edits the program or
provides new input data, the program automatically executes.

3.4. Languages for Science

3.4.1. VIPEX

VIPEX [28,29] is a language for performing scientific visualization [JO]. The current
application domain is image processing, which is a part of scientific visualization.
VIPEX, like most data flow visual languages, has boxes and lines. There are three
kinds of boxes: processing objects, composition objects and group objects. They can
be distinguished by the shape of the icon at their top left corner. In Figure 13, a

86 D. D. HILS

Figure 13. VIPEX functions and data objects [28] 0 1988 IEEE

sample VIPEX program, Load Odd Images (inside Image Pair) is a processing object,
Object Detection is a composition object, and Median Diameter (inside Object
Detection) is a group object.

A processing object is a low level function; it calls no other (VIPEX) functions.
Processing objects consist of textual Lisp code. A composition object is a VIPEX
function that calls other VIPEX functions. Composition objects provide procedural
abstraction in VIPEX. A group object is used for such purposes as propagating a
global parameter value to several functions which do not necessarily call each other. A
group object does not provide procedural abstraction. It does not necessarily call the
functions inside it.

With regard to program execution, each box can have one of three states: (1)
stopped (the function is not firing at all); (2) step (when the function’s input plugs
have data and its output plugs are empty, the function fires once and stops); or (3)
cycle (under the same conditions as for ‘step’, the function fires repeatedly). The
‘cycle’ state is the way in which VIPEX provides iteration. At present, VIPEX does
not possess higher-order functions. The creators of VIPEX, however, have mentioned
such functions as a possible extension to VIPEX [29].

DATA FLOW VPL 87

f File Edlt Format Controls Fuac nuns

I Scrltn.gFactw E

I Scale Number UI Diagram

(Numbcrsin prrcnthcscs indicrtrthe

vrlidrmgc ofrnumbcr at a grvtn

Figure 14. The LabVIEW Scale Number virtual instrument. The left half of this figure contains the front
panel for this instrument: it contains two input variables, or controls, and one output control. The right

half is the block diagram [32] @ by McGraw-Hall, Inc. New York, NY. All rights reserved

3.4.2. LabVIEW

LabVIEW is a high level language for use in data collection from lab instruments and
for use in data analysis [7,31,32]. It is a commercial product. Program modules
(procedures) are called virtual instruments. Each instrument has two parts: a front
panel on the left and a block diagram on the right (Figure 14). The front panel is the
user interface to the procedure. It contains input and output data (numbers) for the
procedure, as well as sliders, knobs, strip charts, meters and x-y graphs. Its purpose
is to display graphically input to and output from the procedure. The block diagram is
the data flow visual program for the procedure.

LabVIEW provides a broad selection of predefined function boxes. These functions
include arithmetic operations, trigonometric functions, string manipulation routines,
statistical analyses, signal processing, matrix operations and curve fitting. Progra-
mmers can also define their own functions.

Various boxes representing control flow structures are introduced into the pure
data flow computational model (Figure 15). These boxes include a FOR loop, a WHILE
loop, a CASE statement and a sequence structure. Despite the WHILE loop’s name, it is
really a REPEAT. . . UNTIL loop. Its contents are always executed at least once. The
sequence structure forces sequential execution of a series of data flow diagrams; such
explicit indication of ‘do diagram A, then B, then C’ is normally lacking in data flow
programs.

LabVIEW’s data types include Boolean values and arrays of Booleans, real numbers
and arrays of reals, strings and arrays of strings, and structures (similar to structures
in C).

88 D. D. HILS

Programming Structures

I Sequence Case
Structure Structure For Loop

i (M~~i~l~~~~~py (Multiple Cases occupy (N-Loop Count (O=ReclrclJ!atlon Flag

i
the same screen area) l=Loop Counter) t=Loop Counter)

Figure 15. Control flow structures in LabVIEW [32]. 0 by McGraw-Hill, Inc. New York, NY. All rights
reserved

3.5. Languages for Graphics

3.51. ConMan

ConMan is a language for connecting components that deal with 2-D and 3-D
graphics [33]. ConMan is not a complete general-purpose programming language.
Rather, it allows a programmer to connect prebuilt components together. These
components include 2-D and 3-D interactive line editors, a color 3-D hidden-surface-
removal renderer, a paint program and a tape recorder. The user connects
components by joining them with lines. Over the lines flow data values, which are
restricted to be integers and real numbers.

Figure 16 shows a simple ConMan program. A 2-D curve editor is connected to a
3-D sweep editor. Two view editors (specifying rotation, transformation, and/or

Figure 16. A simple ConMan program [U]

DATA FLOW VPL 89

Input Input Input

Mapping Mapping

output output output

Figure 17. Visual representation of functions in viz [34] @ 1990 IEEE

scaling) are connected to the sweep editor. One controls the view of the swept
surface; the other provides a transformation that is repeated to create the swept
surface. If the tape recorder were inserted into the program, it could record a series of
viewing transformations or geometric objects. Such a series could then be played
back.

ConMan provides a kind of implicit iteration which can be used to rotate
repeatedly a 2iD curve around an axis in three-space to sweep out a 3-D surface.
Rather than specifying the iteration via a data flow cycle or a control flow construct,
the user simply indicates that the 2-D curve is to repeatedly undergo a geometric
transformation (scaling, rotation or translation) in three-space. After each such
transformation, the curve is redrawn at its new location. Eventually a complete 3-D
surface is created. This kind of iteration is used in Figure 16. Available types of data
include bitmap images, RGB colors, transformations and geometric shapes.

3.6. General-purpose Programming Languages

3.6.1. Viz

Viz is a general-purpose programming language [34]. It is intended to allow a
representation of a functional semantics, and to be expandable to more general
semantic models.

Boxes represent function applications. As Figure 17 shows, input to a function
goes into the top of a box, output comes from the bottom and the interior of either
side of the box is associated with the function (called a mapping). ‘Dog-ears’ on the
top of a box indicate a normal function, while dog-ears on the bottom indicate the
inverse of a function.

Composition of functions is done by using a line to connect an output to an input
or a mapping. The boxes of the two functions involved may either be juxtaposed or
may be connected by a line. The default direction of data flow is down. Thus Figure
18 shows hy . AZ . x(yz).

A semi-circular indentation in a function’s box indicates that the function has a
sequence of arguments or results. The comma operator constructs sequences. Since
sequences are not commutative, a single dog-ear indicates the first argument. ‘Later’
arguments are progressively farther from the dog-ear. All of the programs in Figure
I9 have the same meaning.

m ;y: yI ,: x :.’
= Ay.Az.x(yz).

Fire 18. ny . AZ. x(yz) in viz [34] @ 1990 IEEE

90 D. D. HILS

: : : :
Figure 19. Different ways of expressing a function application in viz [34] 0 1990 IEEE

Viz provides three conditional constructs. The else function, shown in Figure 20,
returns its first argument if it is non-empty. Otherwise, else returns its second
argument. Else is similar to the selector function (described in Section 2.1.).

A horizontal line with two upper ends tests for equality. Such a line is part of the
else construct in Figure 20. If the two upper values are the same, the line takes that
value. Otherwise, the line’s value is I, the empty value.

The if function returns its first argument if its second argument is non-empty.
Otherwise, the if function returns 1.

Viz permits cycles in the data flow graph. These cycles may be used for iteration,
although viz does not provide a construct to terminate a data flow cycle which is used
for iteration.

In addition to providing data flow cycles, viz has another form of iteration: a
functor, which applies a function to all elements of a structure (for example, a
sequence) and then combines the results to make a new structure. This iteration
construct is similar to Show and Tell’s parallel ports. Such a function can also be
viewed as a limited form of a higher-order function.

3.6.2. Visual ToolSet

The Visual ToolSet [35,36] is a general-purpose programming language. It includes
tools for defining data objects and data types, defining functions, managing a
database, using control flow and programming by example. The Function Definition
Tool (FDT) is of interest in this paper, because this tool is a data flow visual
programming language.

Boxes in FDT represent data objects, functions and control structures. Links may
be used to carry data between boxes. Alternatively, function boxes may be
juxtaposed vertically or horizontally. Vertical adjacency represents function composi-
tion (that is, the output of the upper function is the input of the lower function),
while horizontal adjacency represents construction (that is, both functions use the
same inputs).

Figure 20. The viz else function [34] 0 1990 IEEE

DATA FLOW VPL 91

rFdt: connectionr(

Figure 21. Data flow connections in the Visual Toolset [35]

Figure 21 shows two versions of an FDT program to produce the ratio of the
product to the sum of 100 and 200. Figure 21(a) illustrates the use of links, whereas
Figure 21(b) emphasizes juxtaposition.

In FDT, data is typed. Available types include primitive types and more complex
types such as arrays and records. FDT provides a variety of predefined arithmetic,
relational, logic and mathematical functions. Some of these functions may be modified
by specifying that their inverse or reduction is desired. The reduction function
modifier uses the function to reduce an array to a single value. For example, using the
reduction function modifier with + on an array would mean that + should be applied
to all elements of the array to yield a single sum.

Iteration boxes provide several iteration constructs. An iteration box evaluates a
function for each member of an array. Options available include collect, select and
reject. All of the options apply the function to each element of the array. Collect
returns an array with the results of each application; select returns an array of the
elements for which the function evaluates to true; reject returns the elements for
which the function returns false. Collect, select and reject are akin to Show and Tell’s
parallel ports (described in Section 3.6.4.), which iterate over all the elements of a
collection or array. In addition to the previous iteration constructs, FDT also
provides a control flow construct for iteration: a WHILE loop.

Figure 22 shows an FDT function with an iteration box that uses select. The
function accepts an array and returns an array of the input values that are integers.
Each element whose ceiling equals its floor is selected. FDT also provides constructs
for IF.. . THEN . . . ELSE and CASE statements.

3.6.3. PROGRAPH

PROGRAPH is a general-purpose programming language [37,38]. PROGRAPH
combines the data flow model with object-oriented programming. Functions are

92 D. D. HILS

1 Fdt: select integers1

Figure 22. Example of select iteration in the Visual Toolset [35]

called methods and belong to classes. Instance variables, class variables and
inheritance of variables and methods are all present.

A method is a data flow diagram. The diagram may be condensed into a single icon.
Figure 23 shows class Index and two of its methods. Iteration is available. Two
kinds of iteration constructs are provided: functions that apply an operation to all
elements of a list, and return a list; and a control flow construct-a WHILE loop. The
functions which are the first kind of iteration construct are similar to FDT’s collect
(in the Visual Toolset).

3.64. Show and Tell

Show and Tell is a general-purpose programming language [6,39-411. Its intended
users are school children.

As in most visual data flow languages, boxes represent functions/procedures.
However, in Show and Tell, boxes may also be constants, variables, containers of
inconsistency, iterators, files and records. Links between boxes carry integers, real
numbers and files. A Show and Tell variable is simply an empty box capable of
holding a number. A constant is a variable that has a value at the start of execution,
and that may not be changed.

Inconsistency is a key concept in Show and Tell. Inconsistency is a combination of

Figure 23. PROGRAPH: class Index and two of its methods [38] @ 1989 IEEE

DATA FLOW VPL

(a) Before (a) After

(b) Before (b) After

(c) Before (c) After

Figure 24. Show and Tell: Switching with consistency [6]

IF-THEN statements and a Boolean type. Data flow may not continue through an
inconsistent box. Cross-hatching (parallel diagonal lines on top of a box) indicates
inconsistency. Boxes may become inconsistent in two ways: two different values flow
into a variable box, or an open box containing a predicate (like ‘<‘) is evaluated to be
false. Closed (solid) boxes contain inconsistency, while open (dotted) boxes allow
inconsistency to propagate out to the next larger containing box. Figure 24 shows
how consistency affects data flow on links.

,
'"'..............:

+@);
: i

6
a- -+-/-N-o-

I
7 t *

0 3--t #

I’

0

a

21

+c

Figure 25. Show and Tell: bounded sequential iteration [6]

94 D. D. HILS

Show and Tell provides iteration through iteration boxes. Figure 25 shows an
iteration box. An iteration box stops iterating when it becomes inconsistent. In Figure
25 this will happen when the variable in the iteration is no longer greater than zero.

Two kinds of ports can be attached to iteration boxes: sequential ports and parallel
ports. These ports in Show and Tell are different from Fabrik’s pins. Show and Tell’s
ports are not for input/output with all boxes, but only for iteration and file boxes.

Sequential ports are used for recycling a single data value from one iteration to the
next. The value may be changed during any of the iterations. A sequential port is
analogous to the variable X in the Pascal code

FORl:=l TOIODO

x:=x+1;

Sequential ports are always used in pairs with one port on each side of the iteration
box. Thus, in Figure 25 two pairs of sequential ports are used. The top pair helps give
a value to the counter variable, and the bottom pair helps with the sum variable.

Parallel ports are used for transferring a whole series or collection of data values
between boxes. A parallel port is analogous to the array INFO in the Pascal code

FORl:=l TOIODO

X:=X + INFO[I];

where INFO is a 1-D array. Figure 26 shows two iteration boxes connected by parallel
ports. When the top box becomes inconsistent, iteration in both boxes ceases.

3.7. Languages Related to Show and Tell

3.7. I. Extended Show and Tell

Najork and Golin [lo] have described Extended Show and Tell (ESTL), which adds a
type system and higher-order functions to the Show and Tell Language. The type
system is polymorphic and includes several primitive types, constructs for defining
tuples and unions of types, type variables and a method for naming types. Figure 27
shows the definition of the type ‘stack of T: void U (T x stack of T).’

Functions are provided to construct records, to select elements of records and to
tag and filter union types. A multipipe represents rz arcs between functions, where n is

Figure 26. Parallel iteration in Show and Tell [6]

DATA FLOW VPL

Figure 27. ESTL type declaration of ‘stack of T’ [lo] @ 1990 IEEE

variable. Multipipes are useful for carrying data between functions with varying
numbers of arguments and results.

A function slot is a parameter to a higher-order function. A lower-order function is
placed into the slot and is applied to data by the higher-order function. (This is similar
to the function slot concept in Hils [ll], but was developed independently.) A
function slot’s visual appearance is a parameter box in the icon for a function’s name.
The box contains a slot variable, which can contain a lower-order function. Figure 28
shows a higher-order function with a function slot containing the slot variable F.

3.7.2. Data Vis

DataVis [ll] is a language for the visualization of scientfic data [30]. A central task of
scientific visualization is converting scientists’ numeric data into graphics so that
scientists can better understand and analyse the data. DataVis is geared toward this
aspect of scientific visualization and is intended to be used by scientists. Most
scientists are not computer science or visualization experts who enjoy building basic
software tools for visualization. These scientists usually prefer to concentrate on their
field of science rather than on programming to develop software tools.

(a) Name

[TJ-?:-FJIY.-~IJ
(b) Definition

F--H%H3
(Cl Use

Figure 28. ESTL higher-order function with a function slot [lo]

96 D. D. HILS

Figure 29. An example call to the DataVis library program vectsToArrows [l l]

DataVis is in the same family of languages as Show and Tell. DataVis will provide a
library of finished programs for visualization. Scientists may run any of these
programs by connecting the program’s icon to a data icon. Besides finished programs,
DataVis will provide scientists with a set of ‘building-block’ functions which they
may use to construct new programs and to modify and extend the finished programs.

Existing visual languages for scientific visualization are visual only at the top level.
That is, the top-level presentation of functions is visual, but when one examines the
internal workings of one of the functions (which internals can be thought of as a
‘lower level’), the function is presented in a textual language. In contrast to such
languages, DataVis will provide multiple visual levels of functions. Thus, when one
looks at various levels of functions, DataVis will provide a consistently visual
interface.

DataVis provides for higher-order functions with a function slot concept which is
similar to, but was developed independently from, the function slot ideas in Najork
and Golin [lo].

VectsToArrows is a predefined DataVis program to transform a 2-D vector field
into an arrow field display. An arrow field display has an arrow placed at each point
in the vector field, where the direction of each arrow is the direction of the field at
that point and where the length of each arrow is scaled by the magnitude of the field
at that point.

Figure 29 shows one possible call to vectsToArrows. vectsToArrows takes one
input parameter (a 2-D field, or collection, of vectors), creates an arrow field and
displays it. When the scientist using DataVis decides that he or she wants an arrow
field display for the data in the wind velocity vector field, he or she simply links the
two icons (data and program) together. Since VectsToArrows is a predefined library
program, the scientist does not have to create vectsToArrows, but may simply use
it. Once the scientist executes the program, the arrow field will be displayed on the
screen.

Figure 30 is the vectsToArrows program. The PDVectorField box is an input

.

2DVec-
torField Transform

1’ ‘,

Figure 30. The DataVis vectsToArrows program [I 1]

DATA FLOW VPL 97

parameter to vectsToArrows, and receives whatever data is flowing on the link
connected to the vectsToArrows icon (Figure 29).

VectsToArrows contains two DataVis functions: oneVectorTransform and
graphicTransform. OneVectorTransform is inside an iteration box which has a pair of
parallel ports. The vector field is fed into the iteration box through the parallel port
on the left of the iteration box. This parallel port disaggregates the vector field into its
individual vectors. Each vector is fed to oneVectorTransform, which transforms the
vector into a small bitmap containing an arrow of the proper orientation and length.
The parallel port on the right side of the iteration box collects up all of the small
bitmaps and forms them into a 2-D field of bitmaps when the iteration is finished.
The graphicfransform function then takes the field of bitmaps, transforms the field
into a graphic display (a single large bitmap), and displays the graphic display on the
screen. Both onevector Transform and graphicTransform have additional visual lower
levels which are not shown here.

GraphicTransform is a higher-order function. The lower-order function,
display:x:y:onto:, is in the function slot at the top of graphicTransform.
GraphicTransform or one of its callees will eventually apply display :x :y : onto : to
certain data.

3.8. Design Alternatives Table

Table 1 presents a summary of data flow visual programming languages and of their
use of various design alternatives. A few notes may clarify the table’s information.

With regard to the ‘box-line representation’ design alternative, recent versions of
HI-VISUAL use juxtaposition of boxes to indicate that a function is being executed.
Viz and Visual Toolset can use both lines and juxtaposition of function icons to show
data transport between functions.

The ‘selector/distributor’ design alternative includes languages which provide
functions derived from the selector or distributor. The ‘flow of data’ alternative has
values of uni-directional or bi-directional. The execution mode is demand-driven or
data-driven.

Viz and the Visual Toolset can use both lines and juxtaposition of function icons to
indicate data transport between functions. Cantata users can choose either execution
mode and either liveness level two or three.

4. Characteristics and Strengths of Data Flow Visual Programming
Languages

When one examines the existing and proposed data flow visual programming
languages, some characteristics and strengths of these languages become apparent.
(Wherever ‘language’ is used in this section or the next section, assume it means ‘data
flow visual programming language’.)

Data flow visual programming languages have been most successful when they
have a narrow, fairly specialized application domain (e.g. LabVIEW, whose applica-
tion domain is collection and analysis of data from laboratory instruments), or when
they are intended for use by non-programmers or novice programmers. Two
languages in the second category are Show and Tell, which is a general-purpose

98 D. D. HILS

programming language, but is intended for school children, and LabVIEW, many of
whose users had not programmed before using LabVIEW [7].

Due to their underlying data flow computational model, data flow visual
programming languages work best when their application domain centers on data
manipulation. Thus, languages with such application domains as image processing
(HI-VISUAL, VIVA, Cantata), computer graphics (ConMan) and visualization of
scientific data (DataVis, VIPEX) work well. However, data flow visual programming
languages also work acceptably for application domains not centered on data. For
example, Hookup, whose domain is music, works acceptably well.

The languages just mentioned (HI-VISUAL, ConMan, etc.) all use visual data. A
strength of such languages is that their users are already accustomed to working with
visual data, and may therefore be more willing than other users to accept a visual
representation for their programs, too.

Data flow visual programming languages are a good choice to deal with the
transformation of data (for example, in scientific visualization). Users of the language
can watch as data flows from filter function to filter function, being transformed as it
goes. The box-line visual representation which is typical of data flow visual languages
easily allows the insertion of viewing monitors at various points to show the data to
the user.

A data flow visual programming language may be considered powe&l if it provides
the necessary programming constructs and predefined functions so that a user of the
language can tackle large, complex problems in the language’s application domain.
The following features are necessary for a data flow visual programming language to
be powerful: iteration, procedural abstraction and a large and diverse library of
predefined functions for use as building blocks in constructing new programs.
Iteration makes programs more compact and expands the range of problems which a
user of the language can address. Procedural abstraction is important to hide
unnecessary details and to save screen space. An extensive library of predefined
functions which are defined properly can reduce the time needed to create a program,
and can help avoid recreating an existing function. Whether these features are
sujficient to make a data flow visual language powerful is an open question.

Parameters for functions and higher-order functions are also desirable for making
languages more powerful. They also, however, add to the complexity of the language.

5. Unsolved Problems in the Design of Data Flow Visual Programming
Languages

As well as strengths, data flow visual programming languages have some weaknesses,
and there are a number of possible areas for future research.

Like all visual programming languages, data flow visual programming languages
take up a great deal of screen space. This difficulty can be alleviated by procedural
abstraction, calculator boxes (for entering mathematical formulas textually), and the
use, not just of graphical icons, but also of text, for names of variables, data objects,
functions, classes and instances. Research aimed at finding new ways to address the
screen space problem would be useful.

Often a language designer finds it necessary to add control flow constructs to data
flow visual languages: iteration constructs based on control flow, sequential execution

DATA FLOW VPL 99

constructs and CASE statements. The associated research topic is deciding which
control flow constructs, if any, should be in a visual data flow language. The
application domain and intended users of the language are important considerations in
this decision.

The preceding section mentioned that a language must have a large library of
predefined functions in order to be powerful. Research is needed to determine what
the appropriate high-level library functions are for application domains in which data
flow visual languages have not been used extensively over a number of years (for
example, scientific visualization).

An area which can be investigated more is the implementation of data flow visual
languages on parallel-processor architectures and on distributed systems. Such an
implementation would be particularly useful for a language with a computation-
intensive application domain: for example, image processing or some areas of scientific
visualization. apE [17], while not a programming language, now allows a user to
designate various function icons to be executed on remote machines. Presumably the
icons so chosen require heavy computation for which the remote machines are better
suited than the host.

Creation of languages which are applicable to many application domains has not
been widely explored. Also, making data flow visual programming languages which
are intended for use by professional programmers, not just novice programmers or
non-programmers, is an interesting challenge.

While Cantata [l2] allows the user to choose between two liveness levels (two and
three) within a single language, no data flow visual programming language offers a
choice of all three possible levels (two, three or four). (A visual programming
language will never be at level one.) ’

A virtual reality approach to the user interface of a data flow language may be
useful. For example, one could edit a visual data flow program by using a data glove
[42] to grab and move an icon shown to a user via a head-mounted display. The icon
would appear to be in three-space in front of the user. As another example, CUBE
[43] is a visual language which will use a virtual reality programming environment.

Finally, finding new appropriate application domains for data flow visual languages
is an area worthy of investigation. Some possible application domains include
multimedia systems, hypertext and hypermedia and medical imaging. With regard to
multimedia systems, data flow visual languages could be used to edit audio and video
data.

6. Conclusion
A number of successful data flow visual programming languages exist or have been
proposed. Data flow visual programming languages have the potential to expand the
appeal of visual programming by applying visual programming to new application
domains (thus introducing visual programming to new users associated with those
domains), and by providing a receptive environment for increased display of data at
various points within visual programs.

Acknowledgements
I thank Ralph J o h nson for his support of this work, and Eric Golin, Donald Hearn,
Marc Najork, Greg Rogers and Robert Sum for helpful comments.

100 D. D. HILS

5.

6.

7.
8.

9.

10.

Il.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.

References

J. B. Dennis (1975) First version of a data flow procedure language. Technical report
MIT/LCS/TM-61. Laboratory for Computer science, MIT.
T. Agerwalak & Arvind (1982) Data flow systems: guest editors’ introduction. IEEE
Computer 15, 10-13.
A. L. Davis & R. M. Keller (1982) Data flow program graphs. IEEE Computer 15,
175-182.
M. Hirakawa, N. Monden, I. Yoshimoto, M. Tanaka & T. Ichikawa (1986) HI-VISUAL:
A language supporting visual interaction in programming. In: Visual Languages (S.-K.
Chang, T. Ichikawa, & I’. A. Ligomenides, eds) Plenum Press, New York.
M. Hirakawa, S. Iwata, Y. Tahara, M. Tanaka & T. Ichikawa (1988) A Framework for
construction of icon systems. IEEE Workshop on Visual Languages. Pittsburgh, Pennsyl-
vania, 10-12 October, pp. 45-51.
T. D. Kimura, J. W. Choi, & J. M. Mack (1986) A visual language for keyboardless
programming. Technical report WUCS-86-6. Department of Computer Science, Washi-
ngton University, St Louis, Missouri 63130.
M. Santori (1990) An instrument that isn’t really. IEEE Spectrum 27, 1990 36-39.
D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph & K. Doyle (1988) Fabrik: a visual
programming environment. In: Proceedings ACM OOPSLA ‘88. September, pp. 176-190.
F. Ludolph, Y.-Y. Chow, D. Ingalls, S. Wallace & K. Doyle (1989) The Fabrik
programming environment. IEEE Workshop on Visual Languages. Pittsburgh, Pennsyl-
vania, October 10-12, pp. 222-230.
M. A. Najork & E. Golin. (1990) E h n ancing show-and-tell with a polymorphic type
system and higher-order functions. In: IEEE Workshop on Visual Languages. Skokie,
Illinois, 4-6 October, pp. 215-220.
D. D. Hils (1991) DataVis: a visual programming language for scientific visualization. In:
Proceedings 1991 ACM Computer Science Conference. San Antonio, Texas, 5-7 March,
pp. 439-448.
J. Rasure, D. Argiro, T. Sauer & C. Williams (1990) A visual language and software
development environment for image processing. International Journal of Imaging Systems
and Technology 2, 183-199.
C. S. Williams & J. R. Rasure (1990) A visual language for image processing. In: ZEEE
Workshop on Visual Languuges. Skokie, Illinois 4-6 October, pp. 86-91.
J. Rasure & C. S. Williams (1991) A n integrated data flow language and software
development environment. Journal of Visual Languages and Computing 2,217-246.
C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J, Vroom, R. Gurwitz &
A. van Dam (1989) The Application Visualization System: a computational environment
for scientific visualization. IEEE Computer Graphics and Applications 9, 30-42.
M. VandeWettering (1990) The Application Visualization System-AVS 2.0. Pixel 1, 30-33.
D. S. Dyer (1990) A dataflow toolkit for visualization. IEEE Computer Graphics and
Applications. 10, 60-69.
S. L. Tanimoto (1990) VIVA: a visual language for image processing. Journal of Visual
Languages and Computing 1, 127-139.
E. P. Glinert & S. L. Tanimoto (1984) Pitt: an interactive graphical programming
environment. IEEE Computer 11, 7-25.
M. Hirakawa, S. Iwata, I. Yoshimoto, M. Tanaka & T. Ichikawa (1987) HI-VISUAL
iconic programming. In: IEEE Workshop on Visual Languages. Linkoping, Sweden, 19-21
August, pp. 305-314.
D. Levitt (1986) Hookup: An iconic, real-time data-flow language for entertainment.
Unpublished technical note. MIT Media Lab. Available from Hip Software Corporation,
117 Harvard St No. 3, Cambridge, Massachussetts 01239.
Claris Corporation (1988) MacDraw ZZ Claris Corp., Mountain View, California.
D. N. Smith (1988) Visual programming in the interface construction set. In: IEEE
Workshop on Vistial Languages. Pittsburgh, Pennsylvania, IO-12 October, pp. 109-120.
I. Yoshimoto, N. Monden, M. Hirakawa, M. Tanaka & T. Ichikawa (1986) Interactive

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

iconic programming facility in HI-VISUAL. I n: IEEE Computer Society Workshop on
Visual Languages. June, pp. 34-41.
M. Hirakawa, M. Yoshimi, M. Tanaka & T. Ichikawa (1989) A generic model for
constructing visual programming systems. In: IEEE Workshop on Visual Languages. Rome,
Italy, 4-6 October, pp. 124-129.
Hirakawa, Masahito, Yoshimi, Makoto & Ichikawa, Tadao (1990) A universal language
system for visual programming. In: IEEE Workshop on Visual Languages. Skokie, Illinois,
4-6 October, pp. 156-161.
S. L. Tanimoto (1990) Towards a theory of progressive operators for live visual
programming environments. In: IEEE Workshop on Visual Languages. Skokie, Illinois, 4-6
October, pp. 80-85.
V. Haarslev & R. Moller (1988) Visualization of experimental systems. In: IEEE Workshop
on Visual Languages. Pittsburgh. Pennsylvania, lo-12 October, pp. 175-182.
V. Haarslev & R. Moller (1990) VIPEX: visual programming of experimental systems. In:
Visual Languages and Visual Programming (S.-K. Chang, ed.) Plenum Publishing
Corporation, New York.
B. H. McCormick, T. A. DeFanti & M. D. Brown (eds) (1987) Visualization in Scientific
Computing. ACM Computer Graphics 21, l-14.
National Instruments Corporation (1987) LabVIEW: a demonstration. National Instrume-
nts Corp., 12109 Technology Blvd., Austin, Texas 78727-6204.
G. M. Vose & G. Williams (1986) LabVIEW: laboratory virtual instrument engineering
workbench. Byte 11, 84-92.
P. E. Haeberli (1988) ConMan: a visual programming language for interactive graphics. In:
Proceedings ACM SZGGRAPH ‘88. Printed as ACM Computer Graphics 22 August,
103-111.
C. M. Holt (1990) Viz: a visual language based on functions. In: IEEE Workshop on Visual
Languages. Skokie, Illinois, 4-6 October, pp. 221-226.
J. A. Borges (1990) Multiparadigm visual programming languages. Ph.D. dissertation,
Department of Computer Science, University of Illinois at Urbana-Champaign.
J. A. Borges & R. E. Johnson (1990) Multiparadigm visual programming languages. In:
IEEE Workshop on Visual Programming Languages. Skokie, Illinois, 4-6 October, pp.
233-240.
S. Matwin & T. Pietrzykowski (1985) PROGRAPH: A preliminary report. Computer
Languages 10,91-126.
P. T. Cox, F. R. Giles & T. Pietrzykowski (1989) PROGRAPH: A step towards liberating
programming from textual conditioning. In: IEEE Workshop on Visual Languages. Rome,
Italy, 4-6 October, pp. 150-156.
T. D. Kimura (1986) Determinacy of hierarchical dataflow model: a computation model
for visual programming. Technical report WUCS-86-5. Department of Computer Science,
Washington University, St Louis, Missouri 63130.
T. D. Kimura & P. McLain (1986) Sh ow and Tell user’s manual. Technical report
WUCS-86-4. Department of Computer Science, Washington University, St Louis,
Missouri 63 130.
T. D. Kimura (1986) Show and Tell sample programs. Technical report. Department of
Computer Science Washington University, St Louis, Missouri 63130.
J. D. Foley (1987) Interfaces for advanced computing. Scientijc American 257, 127-135.
M. A. Najork & S. M. Kaplan (1991) The CUBE language. In: IEEE Workshop on Visual
Languages. Kobe, Japan, 8-11 October, pp. 218-224.

