
Marching Triangles:Delaunay Implicit Surface TriangulationA.Hilton1 and J.IllingworthVision, Speech and Signal Processing Group,Department of Electronic and Electrical EngineeringUniversity of Surrey, Guildford. GU2 5XH. U.K.a.hilton@surrey.ac.ukAbstractA new surface-based approach to triangulation of an implicit surface called `Marching Triangles' (MT)is introduced in this paper. MT enables reconstruction of an e�cient triangular mesh representationof an open manifold implicit surface of arbitrary topology. The surface-based approach polygonises theimplicit surface by growing a triangulated mesh according to the local geometry and topology. A local3D Delaunay Surface Constraint is introduced to ensure that the triangulated mesh is locally Delaunayand is a correct surface approximation of the manifold surface. The resulting triangulation is globallyDelaunay with uniform triangle shape providing an e�cient representation of the implicit surface.MT overcomes several limitations of previous volume-based implicit surface polygonisation techniques.Volume-based approaches, such as Marching Cubes (MC), intersect the surface with a volumetric decom-position of the space. This results in highly ine�cient representation due to non-uniform triangle shape.MT also enables polygonisation of open manifolds, dynamic integration of new data into an existingtriangulation, reduced computational cost and correct approximation of complex geometry.Results are presented for the polygonisation of implicit surfaces de�ned parametrically and from surfacemeasurements of real objects. Implicit surface representation of real objects is based on the geometricfusion of multiple range images. The Marching Triangles algorithm leads to both representational andcomputational costs a factor of 3|5 lower than previous volume based approaches such as MC.1 Introduction1.1 Volume-Based Implicit Surface PolygonisationPolygonisation of implicitly de�ned surfaces has attracted considerable interest for visualisation in many�elds including computer graphics and medical imaging. Implicit surface polygonisation based on auniform subdivision of space are widely used [6]. These approaches are volume-based as they use avolumetric decomposition of the space to polygonise the implicit surface. A polygonal representation isconstructed by intersecting the implicit surface with cubic or tetrahedral cells. Vertices in the polygonalrepresentation are positioned at the intersection of the edges of the volume decomposition with the implicitsurface. Each polygon is then subdivided into a set of triangles. The surface to volume intersectionproduces a highly non-uniform distribution of triangle shape and size, resulting in a highly ine�cientrepresentation of the implicit surface geometry. Representation accuracy is dependent on the size of thespatial subdivision. The use of a uniform spatial subdivision limits the maximum polygon size to the sizeof the volume cell. This results in polygonal representations which are highly ine�cient for the geometricaccuracy obtained. Typical medical images result in meshes of order 106 triangles. Adaptive spatialsubdivision and mesh optimisation techniques have been proposed to obtain more e�cient representationsfrom volume-based techniques. A comparative evaluation of volume-based algorithms is given in [7].1Supported by EPSRC GR/K04569 `Finite Element Snakes for Depth Data Fusion'



1.2 Surface-Based Implicit Surface PolygonisationIn this paper we present an alternative to previous volume-based implicit surface polygonisation ap-proaches. A surface-based approach called `Marching Triangles' (MT) is introduced which enables im-plicit surface polygonisation based on the local surface geometry and topology. Surface-based approaches,as de�ned by Boissonnat [2], allow mesh vertices to be placed according to the local surface geometry.A 3D Delaunay constraint is introduced which ensures the connectivity between mesh vertices is locallyDelaunay and correctly approximates the implicit surface. The resulting triangulation is an accurate ande�cient representation of the implicit surface. The triangulation is an approximation of the Delaunaytriangulation for the set of mesh vertices on a manifold surface. The Delaunay triangulation is an opti-mal geometric structure which gives uniform triangle shape, resulting in an e�cient representation. Theresulting triangulation is therefore directly suitable for applications such as visualisation or �nite elementanalysis.In this paper we introduce the Marching Triangles (MT) algorithm for implicit surface triangulationwith approximately uniform triangle size and shape. Results are compared with the volume-based March-ing Cubes (MC) approach to implicit surface polygonisation with uniform spatial decomposition [1]. MTwith an adaptive distribution of triangle size according to the local surface curvature will be investigatedin future work.The motivation for this work is the reconstruction of 3D models of real objects from multi-view setsof range image surface measurements. Recent research [5, 3] has resulted in the geometric fusion ofmulti-view range images into a single implicit surface representation. Reliable geometric fusion in regionsof complex geometry is achieved by constraints on the local surface geometry and topology based onmeasurement uncertainty [5]. In previous work the MC approach was used to reconstruct a triangulatedmodel from the implicit surface representation. This approach has several limitations: the surface isa closed manifold; all data are required a priori; the resulting triangulation is highly non-uniform; themethod is computationally expensive and reconstruction of object geometry is limited by the cube size.MT was developed to overcome these limitations.2 Implicit Representation of an Open Manifold SurfaceAn implicit surface is de�ned as the zero-set, f(~x) = 0, of a �eld function, f(~x), where ~x is a point in 3Dspace R3. A closed manifold surface is a 2-manifold in R3 of arbitrary topology which is geometricallycontinuous in position. An open manifold surface has geometric discontinuities in position i.e. holes.Implicit representation of a manifold surface, S, can be achieved by de�ning a scalar �eld function, f(~x),to be the distance to the nearest point on the surface, ~xnearest, where f(~xnearest) = 0: f(~x) = j~xnearest�~xj.Signed �eld function representations are commonly required for implicit surface polygonisation algorithms,such as Marching Cubes, because they de�ne points as either `inside', f(~x) < 0, or `outside', f(~x) > 0,a closed manifold surface S. A change in the sign of the �eld function between two points indicatesthat the manifold surface must intersect a straight line between those points at least once. A signed�eld function can be evaluated for a closed manifold surface, S, from the surface normal orientation,~nnearest, at the nearest point, ~xnearest as: f(~x) = (~x � ~xnearest):~nnearest. Representation of an openmanifold surface requires explicit representation of the discontinuity boundary. A boundary function b(~x)is de�ned which is `false' if the nearest point is internal to the surface and `true' if the nearest point is onthe boundary. Thus an open manifold surface, S, is represented in an implicit form as the set of pointsfor which [f(~x) = 0; b(~x) =`false']. Representation of an open manifold surface, S, is illustrated for across-section in �gure 1. Field function evaluation is shown for two points x1 and x2 with nearest pointsinternal to the surface, b(x1) =`false', and on the surface boundary, b(x2) =`true'.In the implicit surface-based geometric fusion approach [5] information on surface boundary, b(~x), andorientation, ~nnearest, is available when evaluating the �eld function f(~x) at no additional computationalcost. For parametric implicit surface functions this information is de�ned implicitly in the continuous�eld function, f(~x), and may be found by a numerical scheme such as gradient decent. This is analogousto edge intersection techniques used in volume-based implicit surface polygonisation schemes.
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Implicit Surface:[ f(x)=0,b(x)=‘false’]Figure 1: Field function evaluation3 Delaunay Triangulation on a Manifold SurfaceThis section de�nes the theoretical basis of a local 3D procedure for constructing a triangulated polyhedralmodel, M = fT0:::TNg, of an unknown object surface, S. We introduce a 3D surface-based constraintfor the Delaunay triangulation of a set of points, X = f~x1:::~xi:::~xNg, on an arbitrary topology manifoldsurface, S, where each point ~xi is a vector, (x; y; z), displacement from the origin in R3.The 3D Delaunay triangulation of an arbitrary point set X is composed of tetrahedral volumes,Tijkl = T (~xi; ~xj ; ~xk; ~xl), such that there exists a sphere which passes through each vertex, (~xi; ~xj ; ~xk; ~xl), ofTijkl which does not contain any other interior points of X . Each tetrahedra is composed of four triangularfaces, (Tijk ; Tilj ; Tlik; Tjkl). In the case where the points, X , lie on a manifold surface, S, Boissonnat [2]derives the following important property which must be satis�ed for the Delaunay triangulation D(X)to contain a polyhedron, M(X), which is a correct approximation of the surface S. Polyhedron, M(X),is a simple manifold composed of a connected subset of the faces of the Delaunay triangulation, D(X).Correct approximation requires that the polyhedron, M(X), respect the relative locations of the points,X ,on the surface S. This requires that M(X) is di�eomorphic to a curved polyhedron MC(X) tightlystretched on the surface S through the points X . Thus each triangle T in M(X) must be di�eomorphicto a curved triangle TC on MC(X). Di�eomorphism between two surface patches A and B can be de�nedas the existence of a projection that relates each point on A and B and respects their relative locations.A triangle Tijk which is locally di�eomorphic to the manifold surface S is a face in the 3D Delaunaytriangulation D(X) provided the following property is satis�ed:Delaunay Face Property: Triangle T (~xi; ~xj ; ~xk) is a face in the 3D Delaunay triangulationD(X) provided there exists a circumsphere passing through each triangle vertex, (~xi; ~xj ; ~xk),that does not contain any other interior point of X .The above property follows from the de�nition of the Delaunay triangulation. A proof for the Delaunaytriangulation in R2 is given by O'Rouke [8] and extends to R3. The Delaunay Face Property requires thatthe set X of points on a manifold surface must be su�ciently dense to satisfy the above constraint. Thisrequires that in regions of high curvature or for thin parts the maximum spacing between measurementsis determined by the amount of free space around the surface. The Delaunay face constraint is illustratedin Figure 2 for a polyhedral approximationM(X) of the manifold surface S. The sphere passing throughthe vertices of triangle, Tijk does not contain any other point in X .If the above face property is satis�ed for all T in a polyhedronM(X) which is di�eomorphic to surface,S, then the Delaunay triangulation D(X) must contain the polyhedron M(X). Consequently if M(X)is in D(X) then it inherits the optimal geometric properties of the Delaunay triangulation. Thus M(X)
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Figure 2: Delaunay face propertyis a Delaunay triangulation of the manifold surface, S, for the point set X . The Delaunay triangulationde�nes an optimal geometric structure which is symmetric, isotropic and closely related to the metric ofthe surface. Distances on the triangulation M(X) approximate the distance on the manifold surface S.In particular the triangulation maximises the minimum angle of any triangle. This is analogous to the2D Delaunay triangulation of a point set where the points, X , lie on a 2-manifold surface in R3 ratherthan the plane R2.4 Delaunay Surface ConstraintReconstruction of a triangulated polyhedron that correctly approximates the surface and is geometricallyoptimal requires two conditions to be satis�ed. Each triangle T in M(X) must:1. Respect the relative locations of points X on the surface S.2. Satisfy the Delaunay Face Property.In this section we use the above conditions to derive a surface-based approach to triangulation of amanifold implicit surface. We start with a partial model, M 0(X 0), which is a correct approximation ofpart of the surface S and is also a polyhedron in the Delaunay triangulation D(X 0), as de�ned in theprevious section. We de�ne a local procedure for adding triangular elements, Tnew, to the boundary of,M 0, such that the resulting triangulation M = fM 0; Tnewg is also a correct approximation of S and islocally Delaunay. Given an edge e(~xi; ~xj) on the boundary of the existing model we �nd a new point~xnew on the surface region adjacent to e outside the boundary of the existing model. Thus the triangleTnew = T (~xi; ~xj ; ~xnew) is a correct local approximation of the surface. For the triangle Tnew to be addedto the model M 0 the following constraint must be satis�ed:3D Delaunay Surface Constraint: A triangle, T (~xi; ~xj ; ~xnew), may only be added tothe mesh boundary, at edge e(~xi; ~xj), if no part of the existing model, M 0, with the samesurface orientation is inside the sphere passing through the triangle vertices, x, about thecentre, cT , where cT is the circum-centre of the triangle vertices, (~xi; ~xj ; ~xnew), in the planeof the triangle, T . Surface points of the same orientation are de�ned by a positive normaldot product, nT :nM 0 > 0.The Delaunay surface constraint is illustrated in Figure 3. This constraint guarantees that triangleTnew uniquely approximates the local surface in the meshM(X). Thus the meshM(X) does not over-foldor self-intersect. The resulting triangulation will correctly represent the surface topology and approximatethe surface geometry.The above constraint is an approximation of the Delaunay Face Property. An approximation is requiredas the Delaunay Face Property does not constrain the centre of the empty circum-sphere. Implementation
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Figure 3: 3D Delaunay Surface Constraintof the exact Delaunay Face Property would require a search for an empty sphere with centre on the lineequi-distant from the triangle vertices. Constraining the centre of the circum-sphere to be the centre ofthe circum-circle in the triangle plane, cT , enables the Delaunay Face Property to be satis�ed. However,this imposes a hard constraint that free-space around the surface must be greater than the radius of thecircum-sphere. Relaxation of this constraint is achieved by allowing parts of the existing model, M 0(X 0),with opposite orientation to intersect the sphere. This allows triangulation of complex geometries such asthin surface sections and region of high curvature. The resulting triangulation is locally approximately aDelaunay triangulation of the manifold surface S.This constraint ensures that the triangle Tnew is locally a Delaunay triangulation of the manifoldsurface, S. This ensures that the resulting triangulated model M , is approximately globally Delaunay,Fortune [4]. Thus the resulting model M(X) will approximate the optimal geometric properties of theDelaunay triangulation D(X) for the point set X . In particular the resulting triangulation will have thedesirable properties of neighbourhood symmetry and isotropy. This constraint does not impose any re-strictions on the mesh vertex position. In particular mesh vertices are not restricted to lie at measurementpoints unlike previous algorithms [2, 9]. This facilitates the design of a new algorithm which positionsmesh vertices according to local surface geometry.5 Marching Triangles AlgorithmAn implicit surface triangulation algorithm can now be developed based on the local 3D Delaunay surfaceconstraint. Given an implicit surface representation, [f(~x); b(~x)], of an arbitrary topology open manifoldsurface the triangulation algorithm proceeds as follows. Firstly an initial seed model, M(X) = M0(X0),is de�ned. This may be either a single triangular seed element or a previously constructed model to whichwe wish to incorporate new measurements. The current modelM(X) is represented as a list of edges andvertices. The algorithm is implemented as a single pass through the edge list. New edges introduced bythe addition of new elements to the model are appended to the end of the edge list. The algorithm doesnot terminate until all model edges have been tested once. The algorithm proceeds by testing each edge,ebound = e(~xi; ~xj), on the current model boundary, M :1. Estimate a new vertex position, ~xproj , by projecting a constant distance, lproj , perpendicular tothe mid-point of the boundary edge, ebound, in the plane of the model boundary element, Tbound =T (~xj ; ~xi; ~xk).2. Evaluate the new vertex position, ~xnew, on the implicit surface as the nearest point to ~xproj : ~xnew =~xnearest where f(~xnearest) = 0.3. Terminate the mesh growing (8) for the edge ebound if either:(a) Nearest point is on the boundary b(~xnew) =`true'.(b) Implicit surface normal orientation, nnew , of Tnew = T (~xi; ~xj ; ~xnew) is opposite to the modelorientation nbound of the boundary triangle Tbound: nbound:nnew < 0.4. Apply 3D Delaunay Surface Constraint to Tnew.5. If Tnew passes the 3D Delaunay Surface Constraint
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Figure 4: Illustration in 2D of key steps in the Marching Triangles algorithm(a) add vertex ~xnew to the vertex list.(b) add triangle Tnew to the mesh M .(c) add edges e(~xj ; ~xnew) and e(~xnew; ~xi) to the end of the edge list.6. If Tnew fails the Local Delaunay Surface Constraint then apply steps 4&5 to adjacent boundaryvertices, Tnew = Tprev = T (~xi; ~xj ; ~xprev) or Tnew = Tnext = T (~xi; ~xj ; ~xnext).7. If Tnew, Tnext and Tprev all fail the Local Delaunay Surface Constraint then if the Delaunay circum-sphere for Tnew(~xi; ~xj ; ~xnew) overlaps a boundary triangle, Toverlap, on an existing part of the model,M(X) with the same orientation as the boundary triangle, Tbound, such that nbound:noverlap > 0,then apply steps 4&5 with Tnew = T (~xi; ~xj ; ~xoverlap) where ~xoverlap is the nearest boundary vertexon Toverlap.8. Testing of edge ebound terminates when one or no new triangles have been added to the model, M .The mesh growing algorithm de�ned above enables triangulation of a manifold implicit surface ofarbitrary topology and geometry. The principal steps of the MT algorithm are illustrated in Figure4. Steps (1) and (2) estimate a possible new vertex position, xnew , on the implicit surface, f(~xnew).Projection by a constant distance ensures approximately uniform triangle size. Step (3) ensures that thenew triangle, Tnew, is a correct approximation of the local surface. New mesh vertices must correspond tonon-boundary points on the implicit surface, step (3a). This constraint ensures that the the boundariesof geometric discontinuities in an open manifold implicit surface are correctly reconstructed. Step (3b)ensures that the local model geometry corresponds to the implicit surface geometry. This is required wherethe estimated vertex position, ~xproj , may erroneously correspond to a di�erent part of the object surface.This may occur for thin object parts with the simple estimation scheme of step (1). An adaptive schemefor estimation of new vertex positions based on local surface properties such as curvature would reduceincorrect correspondences. Step (4) ensures that the new triangle, Tnew, locally satis�es the Delaunaycircumsphere constraint. Hence, the resulting triangulation is locally Delaunay. Step (5) adds a trianglesatisfying the Delaunay constraint to the mesh. New boundary edges are appended to the end of theedge list to ensure that the mesh growing algorithm will test them prior to termination. Step (6) allowsthe local connection of existing model vertices to form a continuous surface representation. Step (7) isrequired to eliminate cracks in the implicit surface where the estimated triangles on adjacent boundaryregions overlap. This occurs for mesh growing where di�erent parts of the triangulation meet due to theopen manifold surface topology. Step (8) terminates testing for edge ebound after one or no triangles havebeen added. The mesh growing algorithm then applies steps (1 to 8) to the next boundary edge in theedge list. The `Marching Triangles' mesh growing algorithm reconstructs a triangulation which is a correctapproximation of the implicit surface and is locally Delaunay. The resulting triangulated mesh, M(X),approximates the optimal geometric properties of the Delaunay triangulation for the set of vertices X onthe surface S.



(a) 5 triangles (b) 10 triangles (c) 50 triangles (d) 100 triangles (e) 1498 trianglesFigure 5: Marching Triangles for a sphere: (a|d) intermediate meshes, (e) �nal modelApplication of the MT algorithm to a parametrically de�ned implicit surface representation of a sphereis illustrated in Figure 5. The algorithm is initialised as a single triangular seed on the implicit surface.The mesh growing then proceeds to add elements to the mesh boundary. Figures 5(a|d) show snapshotsof the mesh growing procedure for 5,10,50 and 100 triangles. The algorithm terminates when no moretriangles can be added to the mesh boundary 5(e) 1498 triangles. In this case the implicit surface is closedand terminates when no boundary edges exist.MT does not impose any constraint on the position of new vertices. In particular mesh vertices are notconstrained to lie at measurement points unlike previous mesh growing procedures [2, 9]. This facilitatesadaptive mesh growing by evaluating the projected distance, lproj , according to the local surface geometry.Results presented in this paper are for a constant projection distance which enables a uniform distributionof triangle size and shape. In principle an adaptive Marching Triangles algorithm could be implementedwhere the projection distance is derived from local surface properties such as curvature.If the implicit surface is composed of several disconnected surface regions then a `seed' mesh is re-quired for each region. An analogous scheme is required with previous volume-based implicit surfacepolygonisation algorithms such as MC [1] and mesh growing algorithms [9].The MT algorithm allows either `static' or `dynamic' integration. This is advantageous in situationswhere the implicit surface is constructed for the geometric fusion of multiple sets of measurements [3, 5].Dynamic integration allows the addition of new measurements into an existing model. MT enables theextension of an existing model boundary if new measurements modify the implicit surface in an adjacentregion. Dynamic integration is possible as the mesh growing algorithm acts directly on the existingtriangulated model. Previous volumetric approaches polygonise the implicit surface by the intersectionwith a volume cell. Dynamic integration is therefore not possible unless the intermediate volumetric datastructure is maintained.6 Algorithm Performance6.1 Computational ComplexityThe computational complexity of implicit surface polygonisation algorithms can be de�ned in terms ofthe number of �eld function evaluations. The time complexity of the MT algorithm depends on thenumber of edges, NE in the polyhedral model, M . The addition of new elements to each edge in themodel is considered when it is on the boundary of an intermediate partial model. Testing of a candidatetriangle to be added to the model boundary requires two implicit surface function evaluations. One tode�ne the nearest point on the surface and the second to determine model overlap. The Euler formula[8] for a trianglated mesh de�nes the relationship between the number of edges, NE, nodes, NN , faces,NF , and handles, NH : NN � NE + NF = 2 � 2NH . It follows that if the number of handles is smallthe number of nodes and faces is the same order as the number of edges O(NN ) = O(NE) = O(NF ).For MT with a constant projection distance, lproj , the element edge length and area are approximatelyconstant. Therefore, the computational complexity is proportional to the area of the manifold surface S.In addition the number of elements in the �nal representation is proportional to the surface area.The computational complexity of the volume-based MC approach depends on the number of cubesvisited. This depends on the number of cells intersected by the implicit surface. The lower bound onthe number of cells occurs for a at implicit surface aligned with the volumetric subdivision. In this



Object Model Size Time(s) (SUN Sparc 10)MT MC MT MCSphere 1498 11272 4 12Torus 1198 8744 4 13Jack 4533 13032 226 574Telephone 6178 41759 43 824Rabbit 9817 26792 106 1180Teapot 33728 78507 795 2785Soldier 49922 82877 1087 4191Table 1: Comparison of Marching Triangles and Cubescase the lower bound on the number of cells visited is proportional to the area of the surface. For acurved surface the number of cells visited is proportional to a factor times the area of the surface. Onaverage approximately two implicit surface function evaluations are required per cube visited. Thus thecomputational complexity of the MT algorithm is equal to the lower bound of the complexity for the MCalgorithm.6.2 Representation CostThe same representation accuracy for surface S is achieved if the constant cube size for MC is equalto the constant projection distance for the MT algorithm. The MC algorithm generates at least twotriangles per cube. This de�nes the lower limit for the number of triangles which is proportional to theimplicit surface area. In general for a curved surface the number of triangles for the MC algorithm will beconsiderably larger than the lower limit [7]. For MT the number of triangles will always be proportionalto the area of the surface as the positioning of vertices is based on the local surface geometry. The numberof triangles is approximately geometrically optimal for a given manifold surface as it approximates themetric of the surface,S, due to the local Delaunay constraint. Hence the number of triangles for MTis equal to the lower bound of the MC algorithm for the same representation accuracy. In practice thenumber of triangles is signi�cantly lower for MT due to the uniform distribution of triangle shape.6.3 Geometric LimitationsThe MT algorithm reconstructs the correct topology of implicit surface features larger than the constantprojection distance, lproj . Assuming the implicit surface correctly represents the local topology thenthe lower limit for correct topology reconstruction is the projection distance. The 3D Delaunay SurfaceConstraint does not impose any limitations on the distance between adjacent surfaces. The use of thisconstraint enables correct reconstruction of arbitrarily thin object parts and crease edges. The MTalgorithm eliminates limitations on surface geometry inherent in previous mesh growing algorithms [2, 9].The cell size for volume-based algorithms imposes similar limitations on reconstruction of correct topology[7]. Features or thin objects smaller than the cell size may result in incorrect reconstruction and spuriousartifacts.7 ResultsDirect comparison of the representational and computational e�ciency of the MT and MC has beenperformed for polygonisation of implicit surfaces derived from synthetic models and real object measure-ments. Throughout this comparison the MT projection distance, lproj , is equal to the MC voxel size toobtain the same geometric representation accuracy.7.1 Parametric Implicit SurfacesResults for three parametric implicit surfaces derived from algebraic expressions for a sphere, torus andjack are given in Table 1. Figure 6 gives a comparison of the reconstructed triangulated mesh using the



MT and MC approaches. Representation costs for MT are a factor of 3|7 lower for all shapes. The sphereand torus gives the greatest di�erence in representation cost between MT and MC due to the smoothlycurved surfaces. The computational cost for MT is reduced by a factor of 3 compared to MC. This isdue to the use of a surface-based approach where the cost is directly proportional to the surface area.Comparison of the reconstructed meshes illustrates the improvement in representation e�ciency due touniform triangle shape achieved with the MT approach. Results demonstrate that both the representationand computational cost are signi�cantly lower for the MT approach for the same representation accuracyand visulisation quality.7.2 Implicit Surfaces from Geometric FusionResults for the MT implicit surfaces polygonisation of surface measurements of real objects are illustratedin Figure 7. Implicit surface representations were obtained by geometric fusion of multiple range images[5]. The telephone and bunny data sets were measured using a Cyberware range sensor [3] and the teapotand soldier data sets are from an NRCC range sensor [10]. Each data sets contains approximately 10range images. The teapot and soldier data sets are taken from multiple viewpoints in the horizontal plane,resulting in regions of no data for horizontal surfaces and occluded regions.The MT projection distanceand MC cube size are equal to the sampling resolution of the range images. Results demonstrate accuratereconstruction of both surface geometry and topology. Small holes, thin surface regions, crease edgesand regions of high curvature are correctly reconstructed. The relative representation and computationcosts for MC and MT at the same resolution are given in Table 1. The representational costs are afactor of 2|7 lower for MT compared to MC. Objects with smooth surfaces result in a greater reductionin representation cost for the same geometric accuracy. The computational cost for MT is a factor of3|10 lower than MC as it is directly proportional to the surface area. A comparison of the MT and MCreconstructed mesh for a region of the bunny head is presented in Figure 8. This illustrates that the MTrepresentation e�ciency is signi�cantly better due to the uniform triangle shape.8 ConclusionsA new `surface-based' approach to implicit surface polgonisation has been presented called `MarchingTriangles' MT. A local `3D Delaunay Surface Constraint' is used to control mesh growing across a manifoldsurface in R3. The manifold surface is open or closed and of arbitrary topology. The MT algorithm ensuresthat the reconstructed triangulated mesh:1. Is a correct approximation of the surface geometry and topology.2. Is locally a Delaunay triangulation of the manifold surface.The use of a constraint based on the Delaunay triangulation results in a representation with optimalgeometric properties. In particular e�cient representation is achieved due to uniform triangle shape.Comparison with `volume-based' implicit surface polygonisation algorithms such as Marching Cubesdemonstrates signi�cant improvement in both representation and computation costs for the same accuracy.Theoretical analysis shows that both costs are equal to the lower bound of the Marching Cubes algorithms.Geometric limitations on reconstruction of the correct surface topology are similar to those with previousvolume-based approaches. Results for polygonisation of implicit surfaces de�ned parametrically andfrom surface measurements of real objects give a factor of 3|5 improvement in both representation andcomputation costs.The MT approach also has several potential advantages over previous volume-based approaches.Firstly it allows accurate polygonisation of open manifold surfaces through the use of an implicit bound-ary function. Secondly dynamic integration of new implicit surface regions into an existing model isachieved. This is important for applications such as fusion of multiple range images of real objects as itallows continuous updating of the model based on new measurements. The MT approach does not imposeany restrictions on the mesh vertex position unlike previous mesh growing algorithms [2, 9]. This allowse�cient representation with approximately uniform element shape. Future work will investigate adaptiveimplicit surface polygonisation based on local geometric properties such as surface curvature.



(a) Marching Triangles (b) Marching CubesFigure 6: Parametric Implicit Surface Polygonisation



Figure 7: Marching Triangle Reconstruction of 3D Models for Real Objects

(a) Marching Triangles (b) Marching CubesFigure 8: Real Object Implicit Surface Polygonisation



References[1] J. Bloomenthal. An implicit surface polygonizer. Graphics Gems ed. Heckbert,P.S., 4:324|350, 1994.[2] J.D. Boissonnat. Geometric structures for three-dimensional shape representation. ACM Transac-tions on Graphics, 3(4):266|286, 1984.[3] B. Curless and M. Levoy. A volumetric method for building complex models from range images. InComputer Graphics Proceedings, SIGGRAPH, 1996.[4] S. Fortune. Voronoi diagrams and deluanay triangulations. In Computing in Euclidean Geometry,eds. Du, D.-Z. and Hwang, F., pages 193|230, 1992.[5] A. Hilton, A.J. Stoddart, J. Illingworth, and T. Windeatt. Reliable surface reconstruction frommultiple range images. In 4th European Conference on Computer Vision, pages 117|126. Springer,1996.[6] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface construction algorithm.Computer Graphics, 21(4):163|169, 1987.[7] P. Ning and J. Bloomenthal. An evaluation of implicit surface tilers. IEEE Computer Graphics andApplications, 13(November):33|41, 1993.[8] J. O'Rouke. Computational Geometry in C. Cambridge University Press, 1994.[9] M. Rutishauser, M. Stricker, and M. Trobina. Merging range images of arbitrarily shaped objects.In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 573|580,1994.[10] M. Soucy and D. Laurendeau. A dynamic integration algorithm to model surfaces from multiplerange images. Machine Vision and Applications, 8:53{62, 1995.


