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AbstractmThe methods of interval arithmetic are applied to graphics algorithms for contouring functions 
of two variables and rendering implicit surfaces. Interval methods result in algorithms that are guaranteed 
not to miss parts of the contours or surfaces down to a specified size in the viewing region. Thus, they 
provide a degree of robustness to the algorithms which is difficult to achieve when point sampling alone is 
used to detect the contours and surfaces. 

1. INTRODUCTION 

This article discusses techniques for improving the ro- 
bustness of algorithms designed to plot contours of 
functions of two variables of  the form z = f (  x,  y),  and 
render implicit surfaces of the form f (  x, y, z) = 0. 
Graphics algorithms for performing the above tasks 
(of which many have been developed) basically involve 
two stages. The first is that of  detecting the contour or 
surface, and the second is the rendering process. Of 
the two stages, the first is the most important, because 
unless the detection is done correctly, the rendering 
cannot be correct. 

The process of point sampling, which involves eval- 
uating the signs of the function at the corners of rec- 
tangular boxes in the plotting region, is frequently used 
for detection purposes. If any of the signs are different, 
the contour or surface passes through the box and is 
thus detected by the point sampling. The problem with 
this technique is that point sampling alone cannot 
guarantee the contour or surface will be detected. Fig. 
1 shows several cases in two dimensions where a con- 
tour segment will be missed if the function is evaluated 
only at the corners of the squares. The contour segment 
in (a) crosses the edge of the square twice, with the 
result that the signs at all four corners are the same. 
In (b) ,  there are two contour segments present with 
the result again that all signs are the same. Small closed 
contours, as in (c) ,  are particularly easy to miss and 
the only way to detect them is to use a finer subdivision 
of  the plotting region for detection purposes, which 
can be very inefficient. In addition, long thin contours, 
as in (d) ,  can still be missed, even though they are 
physically larger than the squares. In Fig. 1, only the 
contour section in (e) would be detected. The same 
problems exist in three dimensions when the point 
sampling is used to detect sections of surfaces. 

There is obviously a need for detection techniques 
that axe guaranteed not to miss sections of the contours 
or surfaces in the plotting region, but for this to be 
achieved, the point sampling technique described above 
needs to be supplemented by auxiliary information 
about the functions. 

The auxiliary information used by Kalra and 
Ban'[ 3 ] for ray tracing implicit surfaces was the Lip- 
schitz constant of the functions. The Lipschitz constant 
is an upper bound on the magnitude of  the gradient 
of the function in a given region of space, and can thus 
be very difficult to compute for completely arbitrary 
implicit functions. Consequently, their algorithm is 
only applicable to functions for which they can com- 
pute the Lipschitz constant. 

The methods of  interval analysis also provide the 
necessary auxiliary information to provide guaranteed 
detection algorithms but, in general, are much easier 
to work with for arbitrary functions than the calculation 
of Lipschitz constants. Interval techniques have been 
used in numerical analysis for at least 25 years but 
have seen very little use in computer graphics. Mudur 
and Koparkar[7]  discussed interval methods for pro- 
cessing geometric objects with some graphics appli- 
cations for parametric surfaces. Their study also in- 
cludes an elementary discussion of interval techniques. 

Section 2 of this article is an elementary introduction 
to interval arithmetic, sections 3 and 4 discuss interval 
algorithms for drawing contours and rendering implicit 
surfaces, and section 5 discusses directions for future 
research. 

2. INTERVAL ARITHMETIc  

Several books have been written on interval analysis, 
starting with the classic book by Moore[5 ], who de- 
veloped most of the original theory of intervals. Two 
recent books which contain extensive bibliographies 
are by Ratschek and Rokne [ 8, 9 ]. 

An interval I = [a,  b],  a < b is a set of real numbers 
defined by [a,  b] = {x la  < x ~ b}.  I rA  and B are 
intervals and • denotes one of  the arithmetic operators 
+, - ,  • a n d / ,  then A * B  is defined by 

A*B  = { x * Y l x E A , y E B } .  (1)  

The real number a is considered to be an interval a 
= [a,  a] ,  which means definition (1) gives well-de- 
fined meanings to expressions such as aA, a + A, .4/a, 
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Fig. 1. Contour segments in detection squares. Black circles 
indicate where the sign of the function is evaluated together 
with (arbitrary) signs ( + or - ), or where the ends of contour 
segments will be plotted. (a) Highly curved contour segment 
crosses an edge twice. (b) Two contour segments exist in the 
square. (c) Small dosed contour does not cross any edges. 
(d) Long thin dosed contour exists in several adjacent squares 
but crosses edges twice. (e) Single contour segment crosses 

two edges once and is detected. 

( -  1 )A = - A .  Although definition ( 1 ) is of  no use for 
practical calculations, Moore [ 3 ] proved that eqn. ( 1 ) 
is equivalent to the following set of  constructive rules: 

[a,b] + [c,d] = [a + c , b +  d] 

[a, b] - [c, d] = [ a - d , b - c ]  

[a, b] .  [c, d] = [min(ac, ad, bc, bd), 

max( ac, ad, bc, bd)] 

[a, b]/[c, d] = [a, b] .[ I /d ,  1/c] 

provided 0 (~ [c, d]. (2) 

The common set theoretic operations, intersection and 
union, are applicable to intervals: 

A N B =  { x [ x E A a n d x ~ B }  

A t ) B =  { x l x E A o r x E B } .  

The above definition of  the division of  intervals needs 
to be extended to the case where 0 E [c, d], which 
leads to unbounded intervals. Let 0 E I t ,  d] and c < d, 
then 

d >  0, 

[a, b]/[c, d] 

= [ b / c , + o o )  if b < 0  and d = 0  

= ( - o o ,  b/d] U [b/c, +oo) 

if b < 0 ,  c < 0 ,  and 

= ( - o o ,  b/d] if b < 0  and cffiO 

ffi(-ov, a/c] if a > 0  and d - 0  

= (-oo, a/c] O [a/d, +oo) 

if a > 0 ,  c < 0 ,  and d > 0  

= ( - o o , + o o )  if a < 0  and b > 0 .  (3) 

In addition, [ a ,  b]/O = ( - o o ,  +oo). These formulae 
are from Hansen[2];  notice how the result can be the 
union of  two semi-infinite intervals. The computer 
implementation of  unbounded intervals is discussed 
by Ratschek and Rokne [ 9 ]. 

We now discuss rational functions and their interval 
extensions. A rational function is a function that 
can be evaluated using a finite number of  the arith- 
metic operations +, - , . ,  a n d / .  Ratios of  polynomi- 
als are rational functions. Given a rational function 
f(xm, x2, • • • x,):  R m .1, R the natural interval ex- 
tension off, denoted by F(Xh X2, • .  • X, ), is obtained 
by replacing each occurrence of  the xi's in f b y  intervals 
X,., and evaluating the resulting interval expression us- 
ing the definitions (2) and (3). The result is an interval, 
or a union of  intervals, not a single real number. 

The primary motivation for using interval analysis, 
not only in computer graphics, but in almost all other 
applications, is that the interval extension of  a function 
provides bounds for the variation of  the function. This 
comes from thefundamentalproperty of interval arith- 
metic: x E X ~ f ( x ) E F( X ) . To see what this means, 
consider the following example. Le t f (x ,  y) be a func- 
tion of  two variables, and let x and y be confined to 
the rectangular region a :~ x < b, c < y < d of  the 
(x, y) plane. If  we compute the natural interval exten- 
sion F(X, Y) o f f ( x ,  y), where X = [a, b], and Y 
= [c, d],  the actual variation of the funct ionf(x ,  y) 
over the region a < x < b, c < y < d is then contained 
within the interval F(X, Y). The bounds on the func- 
tion represented by the ends of  the interval F(X, Y)  
may not be very tight, but the values of  the function 
f ( x ,  y) are guaranteed not to lie outside this interval. 
For graphics applications this leads to guaranteed tests 
that a contour or surface does not lie in a region of  
space. These tests are discussed in the following two 
sections. 

The fundamental property of  interval arithmetic also 
applies to functions that are not rational, but interval 
extensions must be written for any functions we wish 
to investigate. It is simple to write interval extensions 
for the elementary functions, and of  these, functions 
such as e x, In x and ~ are the simplest because of  
their monotonicity. Thus, i f X  ffi [a, b], interval e x -  

t e n s i o n s  of these functions are 

EXPI(X) ffi [e a, e b] 

LNI(X)  ffi [In a, In b] 

SQRTI(X)  = [~1~, Vb] 

and these give the exact ranges of  the functions over 
the interval X. Other functions such as sin(x), cos(x), 
etc., are not monotonic, and are thus slightly more 
complicated, but since their critical points are well 
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procedure create_tree ( depth • integer ; 
: real ; . 

function f (x, y : real ;) : real ) ; 

procedure subdivide ; 
begin 

create_tree (depth+ l ,x,y,d/2 f) ; 
create_tree (depth+ l ,x +d12,y,d/2 39 ; 
create_tree (depth+ 1,x+d/2,y+dl2,d/2 ~ ; 
create_tree (depth+ l ,x,y+d/2,d/2 f) 

end ; 

begin { create tree ) 
if depth <search_depth 

then subdivide 
else if contour..present (x,y,df) 

then if depth < plot_depth 
then subdivide 
else plot (x,y,df) 

end ; { create_tree } 

Fig. 2. Algorithm 1, for plotting contours (see text for explanation). 

known, their interval extensions are usually straight- 
forward to implement. 

3. CONTOURING ALGORITHMS 

Fig. 2 shows algorithm 1, a simple grid-based algo- 
rithm from Suffern [ 13 ], for contouring functions of 
two variables. The procedure create_tree is called with 
depth = 0, the parameters x and y are set to the lower 
left coordinates of the square plotting area, and d to 
the size of  the plotting area. The algorithm uses a 
quadtree subdivision to uniformly subdivide the plot- 
ting area down to depth = search_depth(depth = 0 
corresponds to whole plotting area), and then to further 
subdivide those quadrants that contain the contour 
down to depth = plot_depth > search_depth. Contour 
segments are detected in the procedure contour_present 
using point sampling, and plotted by the procedure 
plot(x, y, d , f ) .  Quadrants at depth = plot_depth are 
known as plotting cells. This algorithm has the advan- 
tage over older grid-based algorithms, i.e., [ 15 ], in that 
the plotting area only needs to be finely subdivided in 
the neighbourhood of the contour. However, the point 
sampling can miss contour segments as discussed in 
the introduction. Fig. 3 shows some contours of the 
simple function 

f ( x ,  y) = x 2 + y2 (4) 

plotted with this algorithm. Although most of these 
contours can be successfully detected with low search 
depths of  I or 2, the small innermost contour needs a 
search...depth = 7 for detection. This corresponds to 
dividing the plotting area into the fine search grid 
shown in Fig. 4, which is very inefficient. 

In contrast, interval methods allow this contour to 
be detected with a search_.depth of (effectively) zero 

(see discussion below of  algorithm 3). This is because 
they allow us to find with absolute certainty, parts of 
the plotting region where the contour cannot exist. This 
is best explained with a diagram. Fig. 5 shows the vari- 
ation o fa  funct ionf(x)  of one variable over an interval 
X = [a,  b] on the x axis. The diagram also shows the 
interval extension of  the function F ( X )  ffi [A, B], and 
some values c~, c2, and c3 that are to be tested for 
inclusion in the interval F ( X ) .  Since the variation of  
the function always lies within its interval extension, 
if a value c~ does not belong to the interval F ( X ) ,  it 

Fig. 3. Contours of the function f(  x, y) ffi x 2 + y2 over the 
region -2.6 < x < 3.6, -1.7 ~; y ~; 4.7. The lowest contour 
is c = 0.0005, and the highest is c = 30.0. These were plotted 
by algorithm 1, with search.depth = 7 and plot...depth = 8. 
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Fig. 4. Search grid corresponding to search_depth = 7 used 
for plotting Fig 3. 

cannot be a value of  the function in the interval X 
= [a,  b]. This is the case for cl ~ F(X).  If  the value 
does belong to the interval F(X),  it may or may not 
be a value of the function. The value c2 E F(X) is not 
a function value, but c3 E F(X) is. In two dimensions, 
if a contour level c does not belong to the interval 
extension F(X, Y) of a function f ( x ,  y) over a rec- 
tangular region x ~ X, y E Y of  the (x,  y) plane, the 
contour cannot exist in that region. This is a contour 
exclusion test which allows that region to be excluded 
from further consideration. 

The above discussion suggests the following ex- 
tremely simple interval-based contouring algorithm, 
which appears in Fig. 6. In algorithm 2, depth, 
plot__depth, x, y, and d have the same use as in al- 
gorithm 1, and FI is a function which returns the nat- 
ural interval extension of  the function f ,  which is being 
contoured. The function contour_not_~oresent returns 
true if the contour level c ~ FI (XI,  YI).  Any quad- 
rants at plot__depth are coloured black by the procedure 
colour-~luadrant_black. Algorithm 2 uses only the in- 
terval extension of  the function, and not the function 
itself. 

Fig. 7 displays some of  the contours from Fig. 3 
plotted on a 256 × 256 raster window with plot.depth 
= 8. Algorithm 2 is not a practical algorithm because 
its resolution is limited to the resolution of  the raster 
display, and this limits its usefulness for hard copy. In 
addition, it is inefficient because high values of plot_ 
depth are required to produce thin contours. Even with 
these high values, the fact that it draws sections of  the 
plotting area where contour__not_~oresent returns false, 
means the contours can still be very thick. This is dem- 
onstrated in Fig. 8 which displays some contours of 
the function 

f ( x , y ) =  f i  [ ( x - x j )2  + ( y - y j )  2] (5) 
j - !  

plotted with plot_depth = 8. 

KEVIN G. SUFFERN and EDWARD D. FACKERELL 

TO make algorithm 2 practical, only two changes 
are required. First, the function being contoured is 
added as a parameter to intervals.Jree, and second, 
the procedure colour._quadranl_.black is replaced by 
the procedure plot (x, y, d , f ) ,  which uses point sam- 
piing to detect a contour segment in the plotting cell 
and then plots it. The method of false position is used 
to calculate the intersections of  the contour segment 
with the edges of the plotting cell. The resulting algo- 
rithm 3 appears in Fig. 9. Of course, not all quadrants 
at plot_depth will contain contour segments, but the 
interval function contour__not_present guarantees that 
no quadrants larger than the plotting cells arc incor- 
rectly discarded. Algorithm 3 is a hybrid algorithm 
which uses the function for the actual plotting and the 
interval extension to eliminate areas of  the plotting 
region. 

Comparing algorithms 1 and 2 reveals that contours 
are plotted by algorithm 3 with a search depth of  ef- 
fectively zero, because the code in the body of the pro- 
cedure intervals__quadtree in Fig. 9 is equivalent in its 
results to 

i f  depth < 0 { ie, search__depth = 0 } 
then subdivide 
else if contour_.not_present ( x,y,d, FI) 

t h e n  { discard current quadrant } 
else if depth < plot__depth 

t h e n  subdivide 
else plot ( x,y, d f  ). 

Algorithm 3 was used to reproduce the contours in 
Fig. 3 with plot__depth = 8, and the quadrants that 
were discarded in detecting the innermost contour ap- 
pear in Fig. 10. This figure should be compared with 
Fig. 4. Algorithm 3 is much more efficient than algo- 
rithm 1 for the function (4),  and Table 1 gives the 
relative timings. The "3.1" entry in the table indicates 
algorithm 3 ran 3.1 times faster than algorithm 1. 

Figure 11 shows contours of  the function (5)  pro- 
duced by algorithm 1 with search_depth = 8 and 
plot__depth = 9, and algorithm 3 with plot_depth = 9 
(both algorithms produced identical contours). With- 
out using intervals, algorithm I required search__depth 
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Fig. 5. Range of a one-dimensional functionf(x) over a finite 
interval, and the range of its interval extension F(X). 
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intervals_quadtree ( depth: integer; 
x,,y, d:~(l~!:, ,~ ~ • , 

funcnoff'~ (X! YI : interval) • interval) ; 

procedure subdivide ; 
begin { subdivide } 

intervals_quadtree (depth + 1, x, y, d / 2, FI) ; 
intervals_quadtree (depth + 1, x, y + d / 2, d / 2, FI) ; 
intervals_quadtree (depth + 1,x + d / 2, y + d / 2, d / 2, FI) ; 
intervals_quadtree (depth + 1, x + d / 2, y, d / 2, FI) 

end ; { subdivide } 

begin { intervals_quadtree } 
if  contour not present (x,y,d,Fl) 

then { discard quadrant } 
else if  depth < plotdepth 

then subdivide 
else colour_quadrant_black (x,y,d) 

end ; { intervals_quadtree } 

Fig. 6. Algorithm 2 for plotting contours using interval methods. 
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= 8 to detect the very small closed loops. For the other 
contours, search_depth in the range 5 to 7 was used 
with plot_depth in the range 6 to 8. For this function, 
algorithm 3 is still faster than algorithm l, as can be 
seen by the timings in Table l, but the speed difference 
is not great. This is because, in general, it takes longer 
to evaluate the interval extension of a function than it 
does to calculate the function itself. The interval op- 
erations in eqn. (2) require a number of arithmetic 
operations for their evaluation, and multiplication and 
division also require the evaluation of Boolean expres- 
sions. For example, the multiplication of two finite 
intervals requires four multiplications and the extrac- 
tion of the minimum and maximum values from a list 

of four values. The complexity of the interval calcu- 
lations increases again when the infinite interval types 
ofeqn. (3) are included. In addition, the interval arith- 
metic operations are implemented in our system as 
function subprograms. 

The many long contour segments in Fig. ! 1 result 
in many quadrants being checked by contour_not_ 
present at high values of depth before being discarded. 
These are clustered along the contours and are shown 
in Fig. 12 for the c = 0.1 contour in Fig. 11. This was 
plotted with plot_depth = 7 in both figures. The relative 
speed of algorithms l and 3 thus depends on the func- 
tions being contoured. 

The natural interval extensions used in this article 

O 

O 

(3 

O \ 

O 

Fig. 7. Some of the contours from Fig. 3 plotted by algorithm Fig 8. Some contours of the function (5) plotted by algorithm 
2 with plot_depth = 8. 2 with plot_..depth = 8. 
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procedure intervals_quadtree ( depth: integer; 
x, y, d: real; 
function f (x,y : real) : real ; 
function FI (XI, YI : interval) : interval) ; 

procedure subdivide ; 
begin { subdivide } 

intervals_quadtree (depth + 1, x, y, d / 2f, FI) ; 
intervals_quadtree (depth + 1, x, y + d / 2, d / 2f, FI) ; 
intervals quadtree (depth + 1, x + d / 2, y + d / 2, d / 2~, F1) ; 
intervals_quadtree (depth + 1, x + d / 2, y, d / 2~ FI) 

end ; { subdivide } 

begin { intervals_quadtree } 
i f  contour not present (x,y,d,Fl) 

then { discard current quadrant } 
else i f  depth < plotdepth 

then subdivide 
else plot (x,y,df) 

end ; { intervals_quadtree } 

Fig. 9. Algorithm 3 for plotting contours using interval methods. 

Fig. 10. The squares inside the plotting area (outer square) are quadrants for which contour_not_present 
in algorithm 3 returns true when plotting the innermost contour of Fig. 3. 
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Table 1. Ratio of timings: noninterval methods/ 
interval methods. 

Fig. Ratio of timings 

3 3.1 
11 1.1 
13 0.8 
15 0.5 
16 48.2 
17 0.9 

references also discuss the version of algorithm 4 which 
d¢~'s not use intervals. In the noninterval algorithm, 
tl/e v i e ~ n g  cube i~ s u ~ v i d e d  to search_depth, and 
those octants that contain the surface (as detected by 
point sampling) are further subdivided to plot_depth. 
Bloomenthal [ 1 ] discusses similar algorithms for po- 
lygonising implicit surfaces. 

Some results are given in Figs. 15-17. Fig. 15 shows 
the function 

are the simplest interval representations to calculate, 
but usually give the widest intervals. Narrower intervals 
can be constructed, but these usually involve deriva- 
tives of  the functions. Narrower intervals could make 
the algorithms more efficient in one way, because 
quadrants could be discarded at higher depths, but these 
would require more calculation, thus reducing the ef- 
ficiency. 

4. RENDERING IMPLICIT SURFACES 

The techniques discussed for contouring functions 
of two variables are readily extended for rendering im- 
plicit surfaces. Mathematical surfaces can be rendered 
in many different ways, and here we discuss two dif- 
ferent techniques. The first technique, based directly 
on algorithm 3, allows the user to plot contours of a 
function f (  x ,  y, z) = 0 in a series of planes parallel to 
the coordinate planes. Since one of x ,  y,  or z is constant 
in these planes, this technique reduces the problem of 
rendering a surface to the repeated application of  con- 
touring a function of two variables. The user first spec- 
ifies a cube in which the function is to be rendered 
(the viewing cube), which planes to use, the number 
of planes, plot...depth (as in algorithm 2 ), and the view 
point. The contours are then drawn in perspective, with 
depth cueing used as an option. 

Fig. 13 shows contours of a function which is the 
three-dimensional analogue of the function (5). This 
figure shows contours on 41 planes parallel to the (x, 
y) plane. Without using intervals, search_depth = 6 
and plot_..depth = 6 were required to detect the small 
disconnected part of the surface on the bottom right. 
The interval algorithm was used with plot_depth = 6, 
and Table I gives the relative timings. For this function, 
the interval methods are slower than the noninterval 
methods. 

The second technique uses an octree subdivision of 
the viewing cube to plot the surface. Algorithm 4, which 
is a generalisation to three dimensions of algorithm 3, 
appears in Fig. 14. The output is a polygonisation of  
the implicit surface in the viewing cube which can be 
rendered in a variety of ways. The function sur- 
face_not__present returns true if the surface is not pres- 
ent in an octant, and the procedure plot_3D calculates 
the intersections of the surface with the three-dimen- 
sional plotting cell edges. Wire frame views can be pro- 
duced, hidden lines can be removed, or shaded images 
can be produced. When shaded images are chosen, a 
single light source is used with constant shading of  the 
polygons. Details are given in Sutfern[10-13]. These 

f ( x ,  y, z) 

,L" q,. 
(6) L ( x _  xj) ~ + ( y -  yj)2 + ( z -  zj) 2 c 

j ' l  

which can consist of  an arbitrary number of  small sep- 
arate closed surfaces surrounding the points (xj, Yi, 
zj). Thus, it is a good candidate for testing interval 
techniques, as the separate sections can easily be missed 
if intervals are not used. Without using intervals, 
search_depth = 5 was required to detect all 12 separate 
parts of  the surface in the viewing cube. Fig. 16 shows 
the function 

f ( x ,  y, Z) ---- X2(y 2 + Z 2 + a) 2n + y 2 + z 2 -- r 2 (7) 

where a,  r, and n are constants. The surface is plotted 
by algorithm 4. When intervals are not used, 
search_depth = 6 is required to detect all parts of the 
surface because with search._depth = 5 the point sam- 
pling misses the two pointed ends. 

Finally, Fig. 17 displays the function 

f (  x ,  y,  z)  = ( x  2 - y x  + z2y)e ~yz. (8) 

The timing results appear in Table 1, where it can be 
seen that the relative speeds of  the interval and non- 

Fig. 11. Contours of the function (5) in the region -1 < x ,  
y < 1 plotted by algorithm 3. The lowest contour is c = 0.0006, 
and the highest is c ffi 8000. The values ofplot...depth ranged 

from 9 for c = 0.0006 to 6 for c = 8000. 
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Fig. 12. Quadrants which returned contour_not...present = true in algorithm 3 for the contour c = 0.1 in 
Fig. 11 with plot...depth = 7. 

interval algorithms are strongly dependent on the sur- 
face. Where the surface is distributed throughout the 
viewing volume, as in Figs. 13, 15, and 17, the interval 
methods slow down the algorithms, because high sub- 
division depths are required before parts of the viewing 
volume can be discarded. In Fig. 16, the surface oc- 
cupies only a small percentage of  the viewing volume 
(not drawn in this figure), with the result that large 
regions of the viewing volume can be discarded at low 
subdivision depths. The subdivision process here is 
similar to that in Fig. 10, and the interval algorithm is 
approximately 48 times faster for this surface. 

5. DIRECTIONS FOR FUTURE RESEARCH 
There are number of  aspects of  the algorithms pre- 

sented here which will benefit from future research. 
First, the robustness of  the algorithms can be further 
improved by applying interval methods to the plotting 
cells. This can help guarantee that algorithm 3 will 
correctly handle the (rare) plotting cells shown in Fig. 
1 (h)  where two contour segments are present. The 
current procedure plo t  in algorithm 3 would not plot 
these contours at all. Plotting cells of this type require 
a c o n t o u r  inc lus ion  test  so that they can be further sub- 
divided until, ultimately, the only type of  cell plotted 
is similar to Fig. I (a) .  Interval methods can be used 
to test if there are multiple contour segments in a plot- 

ting cell, but the intervals used would have to be much 
tighter than those provided by the natural interval ex- 
tensions. Virtually every plotting cell we tested with 

Fig. 13. Perspective view of a function which is the three- 
dimensional analogue of eq. (5) plotted with ploL..depth 

~6.  
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procedure intervals_octree (depth : integer ; 
x, y, z, di: reatj  
funct ion f (x,y,z : real) : real ; 
funct ion FI (XI,YI,ZI : interval) • interval ) ; 

procedure subdivide ; 
var  

j, k, 1 : integer ; 
begin { subdivide } 

f o r j  :=Oto  l do 
f o r k : = O t o  l do 

for  l := O to l do 
intervals_octree (depth + 1, 

x+j*d/2, y+k*d/2, z+l*d/2, d/2f, Fl) ; 
end ; { subdivide } 

begin  { intervals octree } 
i f  surface_not_present (x, y, z, size, FI) 

then { discard current octant } 
else i f  depth < p lo tdepth  

then subdivide 
else plot_3D (x, y, z, dr); 

end ; { intervals octree } 

Fig. 14. Algorithm 4 for rendering implicit surfaces using interval methods. 

contour_not.._present and surface_.not_..present re- 
turned false because of the broadness of the intervals 
and the proximity of the plotting cells to the contours 
or surfaces. Saddle points (where contours cross) can 
be handled in a similar manner, as can the ana!ogous 
cases for implicit surfaces. 

Second, the algorithms described here use a fixed, 
user-specified plot__depth, regardless of the local cur- 
vature of the contours or surfaces. Algorithms which 
employ plot depths which depend on the local cur- 
vature can be much more efficient, and these tech- 
niques need to be incorporated into the current algo- 
rithms. Curvature-driven plot depths were used for 

Fig. 15. Shaded perspective image of the surface defined by 
eq. (6) plotted by algorithm 4 with p l o t . d e p t h  = 6. 

contouring by Suffern[10] and polygonising implicit 
surfaces by Bloomenthal[l]. Automatic algorithms 
which require a minimum of user-specified input pa- 
rameters are desirable, and curvature-based interval 
algorithms similar to algorithms 3 and 4 would, in 
principle, need no parameters other than those to 
specify the viewing geometry. 

6. CONCLUSIONS 
Interval methods, which are widely used in numer- 

ical analysis, have important applications in computer 

m 

Fig. 16. Perspective view of the surface defined by eq. ( 7 ) with 
a = 0.985, r = 0.5, and n = 50, plotted by algorithm 4 with 

plot_.depth = 6. 
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viewing region into a very fine grid to detect the contour 
or surface. Interval methods achieve the same robust- 
hess without the fine subdivision. 

The algorithms discussed here produce polygoni- 
sations of implicit surfaces, but interval methods can 
also be used to produce robust algorithms for ray trac- 
ing implicit surfaces in a manner similar to the Lip- 
schitz constants used by Kalra and Barr[3];  see also 
Mitchell [ 4 ]. 

Fig. 17. Shaded image of the surface defined by eq. (8) plotted 
by algorithm 4 with plot_depth = 6. 

graphics. They can be used to improve the robustness 
of algorithms for contouring functions of  two variables, 
and rendering implicit surfaces. In algorithms using 
space subdivision techniques they can guarantee that 
no part of  the viewing region above a user-specified 
size is discarded that could possibly contain part of the 
contour or surface. This is something that point-sam- 
pling techniques alone are unable to do. Because in- 
terval arithmetic is slower than real arithmetic, interval 
algorithms often run slower than their noninterval 
counterparts, but can also run considerably faster. 
Relative speeds depend on the type of contours or sur- 
faces being rendered. Depending on the type of graphics 
application, robustness can be far more important than 
speed. In principle, algorithms which do not use in- 
terval methods can achieve the same degree of ro- 
bustness as the interval algorithms presented here, but 
only at the cost of  always uniformly subdividing the 
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