
Comput. & Graphics Vol. 15, No. 3, pp. 331-340, 1991 0097-8493/91 $3.00 + .00
Printed in Great Britain. © 1991 Pergamon Press plc

Computer Graphics in Australia

INTERVAL METHODS IN COMPUTER GRAPHICS

K E V I N G , S U F F E R N
School of Computing Sciences, University of Technology, Sydney,

P.O. Box 123 Broadway, NSW 2007, Australia

and

E D W A R D D . F A C K E R E L L
Department of Applied Mathematics, The University of Sydney, NSW 2006, Australia

AbstractmThe methods of interval arithmetic are applied to graphics algorithms for contouring functions
of two variables and rendering implicit surfaces. Interval methods result in algorithms that are guaranteed
not to miss parts of the contours or surfaces down to a specified size in the viewing region. Thus, they
provide a degree of robustness to the algorithms which is difficult to achieve when point sampling alone is
used to detect the contours and surfaces.

1. INTRODUCTION

This article discusses techniques for improving the ro-
bustness of algorithms designed to plot contours of
functions of two variables of the form z = f (x, y), and
render implicit surfaces of the form f (x, y, z) = 0.
Graphics algorithms for performing the above tasks
(of which many have been developed) basically involve
two stages. The first is that of detecting the contour or
surface, and the second is the rendering process. Of
the two stages, the first is the most important, because
unless the detection is done correctly, the rendering
cannot be correct.

The process of point sampling, which involves eval-
uating the signs of the function at the corners of rec-
tangular boxes in the plotting region, is frequently used
for detection purposes. If any of the signs are different,
the contour or surface passes through the box and is
thus detected by the point sampling. The problem with
this technique is that point sampling alone cannot
guarantee the contour or surface will be detected. Fig.
1 shows several cases in two dimensions where a con-
tour segment will be missed if the function is evaluated
only at the corners of the squares. The contour segment
in (a) crosses the edge of the square twice, with the
result that the signs at all four corners are the same.
In (b) , there are two contour segments present with
the result again that all signs are the same. Small closed
contours, as in (c) , are particularly easy to miss and
the only way to detect them is to use a finer subdivision
of the plotting region for detection purposes, which
can be very inefficient. In addition, long thin contours,
as in (d) , can still be missed, even though they are
physically larger than the squares. In Fig. 1, only the
contour section in (e) would be detected. The same
problems exist in three dimensions when the point
sampling is used to detect sections of surfaces.

There is obviously a need for detection techniques
that axe guaranteed not to miss sections of the contours
or surfaces in the plotting region, but for this to be
achieved, the point sampling technique described above
needs to be supplemented by auxiliary information
about the functions.

The auxiliary information used by Kalra and
Ban'[3] for ray tracing implicit surfaces was the Lip-
schitz constant of the functions. The Lipschitz constant
is an upper bound on the magnitude of the gradient
of the function in a given region of space, and can thus
be very difficult to compute for completely arbitrary
implicit functions. Consequently, their algorithm is
only applicable to functions for which they can com-
pute the Lipschitz constant.

The methods of interval analysis also provide the
necessary auxiliary information to provide guaranteed
detection algorithms but, in general, are much easier
to work with for arbitrary functions than the calculation
of Lipschitz constants. Interval techniques have been
used in numerical analysis for at least 25 years but
have seen very little use in computer graphics. Mudur
and Koparkar[7] discussed interval methods for pro-
cessing geometric objects with some graphics appli-
cations for parametric surfaces. Their study also in-
cludes an elementary discussion of interval techniques.

Section 2 of this article is an elementary introduction
to interval arithmetic, sections 3 and 4 discuss interval
algorithms for drawing contours and rendering implicit
surfaces, and section 5 discusses directions for future
research.

2. INTERVAL ARITHMETIc

Several books have been written on interval analysis,
starting with the classic book by Moore[5], who de-
veloped most of the original theory of intervals. Two
recent books which contain extensive bibliographies
are by Ratschek and Rokne [8, 9].

An interval I = [a, b], a < b is a set of real numbers
defined by [a, b] = {x la < x ~ b}. I rA and B are
intervals and • denotes one of the arithmetic operators
+, - , • a n d / , then A * B is defined by

A*B = { x * Y l x E A , y E B } . (1)

The real number a is considered to be an interval a
= [a, a] , which means definition (1) gives well-de-
fined meanings to expressions such as aA, a + A, .4/a,

331

332 KEVIN G. SUFFERN and EDWARD D. FACKEI~LL

+ + + + + _'4"

+ - *+ + + +~ ,,,+

(a) (b) (c)

+ + + + + -

+ + + + - _

(d) (e)

Fig. 1. Contour segments in detection squares. Black circles
indicate where the sign of the function is evaluated together
with (arbitrary) signs (+ or -), or where the ends of contour
segments will be plotted. (a) Highly curved contour segment
crosses an edge twice. (b) Two contour segments exist in the
square. (c) Small dosed contour does not cross any edges.
(d) Long thin dosed contour exists in several adjacent squares
but crosses edges twice. (e) Single contour segment crosses

two edges once and is detected.

(- 1)A = - A . Although definition (1) is of no use for
practical calculations, Moore [3] proved that eqn. (1)
is equivalent to the following set of constructive rules:

[a,b] + [c,d] = [a + c , b + d]

[a, b] - [c, d] = [a - d , b - c]

[a, b] . [c, d] = [min(ac, ad, bc, bd),

max(ac, ad, bc, bd)]

[a, b]/[c, d] = [a, b] .[I /d , 1/c]

provided 0 (~ [c, d]. (2)

The common set theoretic operations, intersection and
union, are applicable to intervals:

A N B = { x [x E A a n d x ~ B }

A t) B = { x l x E A o r x E B } .

The above definition of the division of intervals needs
to be extended to the case where 0 E [c, d], which
leads to unbounded intervals. Let 0 E I t , d] and c < d,
then

d > 0,

[a, b]/[c, d]

= [b / c , + o o) if b < 0 and d = 0

= (- o o , b/d] U [b/c, +oo)

if b < 0 , c < 0 , and

= (- o o , b/d] if b < 0 and cffiO

ffi(-ov, a/c] if a > 0 and d - 0

= (-oo, a/c] O [a/d, +oo)

if a > 0 , c < 0 , and d > 0

= (- o o , + o o) if a < 0 and b > 0 . (3)

In addition, [a , b]/O = (- o o , +oo). These formulae
are from Hansen[2]; notice how the result can be the
union of two semi-infinite intervals. The computer
implementation of unbounded intervals is discussed
by Ratschek and Rokne [9].

We now discuss rational functions and their interval
extensions. A rational function is a function that
can be evaluated using a finite number of the arith-
metic operations +, - , . , a n d / . Ratios of polynomi-
als are rational functions. Given a rational function
f(xm, x2, • • • x,): R m .1, R the natural interval ex-
tension off, denoted by F(Xh X2, • . • X,), is obtained
by replacing each occurrence of the xi's in f b y intervals
X,., and evaluating the resulting interval expression us-
ing the definitions (2) and (3). The result is an interval,
or a union of intervals, not a single real number.

The primary motivation for using interval analysis,
not only in computer graphics, but in almost all other
applications, is that the interval extension of a function
provides bounds for the variation of the function. This
comes from thefundamentalproperty of interval arith-
metic: x E X ~ f (x) E F(X) . To see what this means,
consider the following example. Le t f (x , y) be a func-
tion of two variables, and let x and y be confined to
the rectangular region a :~ x < b, c < y < d of the
(x, y) plane. If we compute the natural interval exten-
sion F(X, Y) o f f (x , y), where X = [a, b], and Y
= [c, d], the actual variation of the funct ionf(x , y)
over the region a < x < b, c < y < d is then contained
within the interval F(X, Y). The bounds on the func-
tion represented by the ends of the interval F(X, Y)
may not be very tight, but the values of the function
f (x , y) are guaranteed not to lie outside this interval.
For graphics applications this leads to guaranteed tests
that a contour or surface does not lie in a region of
space. These tests are discussed in the following two
sections.

The fundamental property of interval arithmetic also
applies to functions that are not rational, but interval
extensions must be written for any functions we wish
to investigate. It is simple to write interval extensions
for the elementary functions, and of these, functions
such as e x, In x and ~ are the simplest because of
their monotonicity. Thus, i f X ffi [a, b], interval e x -

t e n s i o n s of these functions are

EXPI(X) ffi [e a, e b]

LNI(X) ffi [In a, In b]

SQRTI(X) = [~1~, Vb]

and these give the exact ranges of the functions over
the interval X. Other functions such as sin(x), cos(x),
etc., are not monotonic, and are thus slightly more
complicated, but since their critical points are well

Interval methods in computer graphics 333

procedure create_tree (depth • integer ;
: real ; .

function f (x, y : real ;) : real) ;

procedure subdivide ;
begin

create_tree (depth+ l ,x,y,d/2 f) ;
create_tree (depth+ l ,x +d12,y,d/2 39 ;
create_tree (depth+ 1,x+d/2,y+dl2,d/2 ~ ;
create_tree (depth+ l ,x,y+d/2,d/2 f)

end ;

begin { create tree)
if depth <search_depth

then subdivide
else if contour..present (x,y,df)

then if depth < plot_depth
then subdivide
else plot (x,y,df)

end ; { create_tree }

Fig. 2. Algorithm 1, for plotting contours (see text for explanation).

known, their interval extensions are usually straight-
forward to implement.

3. CONTOURING ALGORITHMS

Fig. 2 shows algorithm 1, a simple grid-based algo-
rithm from Suffern [13], for contouring functions of
two variables. The procedure create_tree is called with
depth = 0, the parameters x and y are set to the lower
left coordinates of the square plotting area, and d to
the size of the plotting area. The algorithm uses a
quadtree subdivision to uniformly subdivide the plot-
ting area down to depth = search_depth(depth = 0
corresponds to whole plotting area), and then to further
subdivide those quadrants that contain the contour
down to depth = plot_depth > search_depth. Contour
segments are detected in the procedure contour_present
using point sampling, and plotted by the procedure
plot(x, y, d , f) . Quadrants at depth = plot_depth are
known as plotting cells. This algorithm has the advan-
tage over older grid-based algorithms, i.e., [15], in that
the plotting area only needs to be finely subdivided in
the neighbourhood of the contour. However, the point
sampling can miss contour segments as discussed in
the introduction. Fig. 3 shows some contours of the
simple function

f (x , y) = x 2 + y2 (4)

plotted with this algorithm. Although most of these
contours can be successfully detected with low search
depths of I or 2, the small innermost contour needs a
search...depth = 7 for detection. This corresponds to
dividing the plotting area into the fine search grid
shown in Fig. 4, which is very inefficient.

In contrast, interval methods allow this contour to
be detected with a search_.depth of (effectively) zero

(see discussion below of algorithm 3). This is because
they allow us to find with absolute certainty, parts of
the plotting region where the contour cannot exist. This
is best explained with a diagram. Fig. 5 shows the vari-
ation o fa funct ionf(x) of one variable over an interval
X = [a, b] on the x axis. The diagram also shows the
interval extension of the function F (X) ffi [A, B], and
some values c~, c2, and c3 that are to be tested for
inclusion in the interval F (X) . Since the variation of
the function always lies within its interval extension,
if a value c~ does not belong to the interval F (X) , it

Fig. 3. Contours of the function f(x, y) ffi x 2 + y2 over the
region -2.6 < x < 3.6, -1.7 ~; y ~; 4.7. The lowest contour
is c = 0.0005, and the highest is c = 30.0. These were plotted
by algorithm 1, with search.depth = 7 and plot...depth = 8.

334

Fig. 4. Search grid corresponding to search_depth = 7 used
for plotting Fig 3.

cannot be a value of the function in the interval X
= [a, b]. This is the case for cl ~ F(X). If the value
does belong to the interval F(X), it may or may not
be a value of the function. The value c2 E F(X) is not
a function value, but c3 E F(X) is. In two dimensions,
if a contour level c does not belong to the interval
extension F(X, Y) of a function f (x , y) over a rec-
tangular region x ~ X, y E Y of the (x, y) plane, the
contour cannot exist in that region. This is a contour
exclusion test which allows that region to be excluded
from further consideration.

The above discussion suggests the following ex-
tremely simple interval-based contouring algorithm,
which appears in Fig. 6. In algorithm 2, depth,
plot__depth, x, y, and d have the same use as in al-
gorithm 1, and FI is a function which returns the nat-
ural interval extension of the function f , which is being
contoured. The function contour_not_~oresent returns
true if the contour level c ~ FI (XI, YI). Any quad-
rants at plot__depth are coloured black by the procedure
colour-~luadrant_black. Algorithm 2 uses only the in-
terval extension of the function, and not the function
itself.

Fig. 7 displays some of the contours from Fig. 3
plotted on a 256 × 256 raster window with plot.depth
= 8. Algorithm 2 is not a practical algorithm because
its resolution is limited to the resolution of the raster
display, and this limits its usefulness for hard copy. In
addition, it is inefficient because high values of plot_
depth are required to produce thin contours. Even with
these high values, the fact that it draws sections of the
plotting area where contour__not_~oresent returns false,
means the contours can still be very thick. This is dem-
onstrated in Fig. 8 which displays some contours of
the function

f (x , y) = f i [(x - x j)2 + (y - y j) 2] (5)
j - !

plotted with plot_depth = 8.

KEVIN G. SUFFERN and EDWARD D. FACKERELL

TO make algorithm 2 practical, only two changes
are required. First, the function being contoured is
added as a parameter to intervals.Jree, and second,
the procedure colour._quadranl_.black is replaced by
the procedure plot (x, y, d , f) , which uses point sam-
piing to detect a contour segment in the plotting cell
and then plots it. The method of false position is used
to calculate the intersections of the contour segment
with the edges of the plotting cell. The resulting algo-
rithm 3 appears in Fig. 9. Of course, not all quadrants
at plot_depth will contain contour segments, but the
interval function contour__not_present guarantees that
no quadrants larger than the plotting cells arc incor-
rectly discarded. Algorithm 3 is a hybrid algorithm
which uses the function for the actual plotting and the
interval extension to eliminate areas of the plotting
region.

Comparing algorithms 1 and 2 reveals that contours
are plotted by algorithm 3 with a search depth of ef-
fectively zero, because the code in the body of the pro-
cedure intervals__quadtree in Fig. 9 is equivalent in its
results to

i f depth < 0 { ie, search__depth = 0 }
then subdivide
else if contour_.not_present (x,y,d, FI)

t h e n { discard current quadrant }
else if depth < plot__depth

t h e n subdivide
else plot (x,y, d f).

Algorithm 3 was used to reproduce the contours in
Fig. 3 with plot__depth = 8, and the quadrants that
were discarded in detecting the innermost contour ap-
pear in Fig. 10. This figure should be compared with
Fig. 4. Algorithm 3 is much more efficient than algo-
rithm 1 for the function (4), and Table 1 gives the
relative timings. The "3.1" entry in the table indicates
algorithm 3 ran 3.1 times faster than algorithm 1.

Figure 11 shows contours of the function (5) pro-
duced by algorithm 1 with search_depth = 8 and
plot__depth = 9, and algorithm 3 with plot_depth = 9
(both algorithms produced identical contours). With-
out using intervals, algorithm I required search__depth

y

c 1

B
C

C 3

A

I I
I
I
a

f(x)
/

___i__ B]

X

b

Fig. 5. Range of a one-dimensional functionf(x) over a finite
interval, and the range of its interval extension F(X).

procedure

Interval methods in computer graphics

intervals_quadtree (depth: integer;
x,,y, d:~(l~!:, ,~ ~ • ,

funcnoff'~ (X! YI : interval) • interval) ;

procedure subdivide ;
begin { subdivide }

intervals_quadtree (depth + 1, x, y, d / 2, FI) ;
intervals_quadtree (depth + 1, x, y + d / 2, d / 2, FI) ;
intervals_quadtree (depth + 1,x + d / 2, y + d / 2, d / 2, FI) ;
intervals_quadtree (depth + 1, x + d / 2, y, d / 2, FI)

end ; { subdivide }

begin { intervals_quadtree }
if contour not present (x,y,d,Fl)

then { discard quadrant }
else if depth < plotdepth

then subdivide
else colour_quadrant_black (x,y,d)

end ; { intervals_quadtree }

Fig. 6. Algorithm 2 for plotting contours using interval methods.

335

= 8 to detect the very small closed loops. For the other
contours, search_depth in the range 5 to 7 was used
with plot_depth in the range 6 to 8. For this function,
algorithm 3 is still faster than algorithm l, as can be
seen by the timings in Table l, but the speed difference
is not great. This is because, in general, it takes longer
to evaluate the interval extension of a function than it
does to calculate the function itself. The interval op-
erations in eqn. (2) require a number of arithmetic
operations for their evaluation, and multiplication and
division also require the evaluation of Boolean expres-
sions. For example, the multiplication of two finite
intervals requires four multiplications and the extrac-
tion of the minimum and maximum values from a list

of four values. The complexity of the interval calcu-
lations increases again when the infinite interval types
ofeqn. (3) are included. In addition, the interval arith-
metic operations are implemented in our system as
function subprograms.

The many long contour segments in Fig. ! 1 result
in many quadrants being checked by contour_not_
present at high values of depth before being discarded.
These are clustered along the contours and are shown
in Fig. 12 for the c = 0.1 contour in Fig. 11. This was
plotted with plot_depth = 7 in both figures. The relative
speed of algorithms l and 3 thus depends on the func-
tions being contoured.

The natural interval extensions used in this article

O

O

(3

O \

O

Fig. 7. Some of the contours from Fig. 3 plotted by algorithm Fig 8. Some contours of the function (5) plotted by algorithm
2 with plot_depth = 8. 2 with plot_..depth = 8.

336 KEVIN G. SUFFERN and EDWARD D. FACKERELL

procedure intervals_quadtree (depth: integer;
x, y, d: real;
function f (x,y : real) : real ;
function FI (XI, YI : interval) : interval) ;

procedure subdivide ;
begin { subdivide }

intervals_quadtree (depth + 1, x, y, d / 2f, FI) ;
intervals_quadtree (depth + 1, x, y + d / 2, d / 2f, FI) ;
intervals quadtree (depth + 1, x + d / 2, y + d / 2, d / 2~, F1) ;
intervals_quadtree (depth + 1, x + d / 2, y, d / 2~ FI)

end ; { subdivide }

begin { intervals_quadtree }
i f contour not present (x,y,d,Fl)

then { discard current quadrant }
else i f depth < plotdepth

then subdivide
else plot (x,y,df)

end ; { intervals_quadtree }

Fig. 9. Algorithm 3 for plotting contours using interval methods.

Fig. 10. The squares inside the plotting area (outer square) are quadrants for which contour_not_present
in algorithm 3 returns true when plotting the innermost contour of Fig. 3.

Interval methods in computer graphics 337

Table 1. Ratio of timings: noninterval methods/
interval methods.

Fig. Ratio of timings

3 3.1
11 1.1
13 0.8
15 0.5
16 48.2
17 0.9

references also discuss the version of algorithm 4 which
d¢~'s not use intervals. In the noninterval algorithm,
tl/e v i e ~ n g cube i~ s u ~ v i d e d to search_depth, and
those octants that contain the surface (as detected by
point sampling) are further subdivided to plot_depth.
Bloomenthal [1] discusses similar algorithms for po-
lygonising implicit surfaces.

Some results are given in Figs. 15-17. Fig. 15 shows
the function

are the simplest interval representations to calculate,
but usually give the widest intervals. Narrower intervals
can be constructed, but these usually involve deriva-
tives of the functions. Narrower intervals could make
the algorithms more efficient in one way, because
quadrants could be discarded at higher depths, but these
would require more calculation, thus reducing the ef-
ficiency.

4. RENDERING IMPLICIT SURFACES

The techniques discussed for contouring functions
of two variables are readily extended for rendering im-
plicit surfaces. Mathematical surfaces can be rendered
in many different ways, and here we discuss two dif-
ferent techniques. The first technique, based directly
on algorithm 3, allows the user to plot contours of a
function f (x , y, z) = 0 in a series of planes parallel to
the coordinate planes. Since one of x , y, or z is constant
in these planes, this technique reduces the problem of
rendering a surface to the repeated application of con-
touring a function of two variables. The user first spec-
ifies a cube in which the function is to be rendered
(the viewing cube), which planes to use, the number
of planes, plot...depth (as in algorithm 2), and the view
point. The contours are then drawn in perspective, with
depth cueing used as an option.

Fig. 13 shows contours of a function which is the
three-dimensional analogue of the function (5). This
figure shows contours on 41 planes parallel to the (x,
y) plane. Without using intervals, search_depth = 6
and plot_..depth = 6 were required to detect the small
disconnected part of the surface on the bottom right.
The interval algorithm was used with plot_depth = 6,
and Table I gives the relative timings. For this function,
the interval methods are slower than the noninterval
methods.

The second technique uses an octree subdivision of
the viewing cube to plot the surface. Algorithm 4, which
is a generalisation to three dimensions of algorithm 3,
appears in Fig. 14. The output is a polygonisation of
the implicit surface in the viewing cube which can be
rendered in a variety of ways. The function sur-
face_not__present returns true if the surface is not pres-
ent in an octant, and the procedure plot_3D calculates
the intersections of the surface with the three-dimen-
sional plotting cell edges. Wire frame views can be pro-
duced, hidden lines can be removed, or shaded images
can be produced. When shaded images are chosen, a
single light source is used with constant shading of the
polygons. Details are given in Sutfern[10-13]. These

f (x , y, z)

,L" q,.
(6) L (x _ xj) ~ + (y - yj)2 + (z - zj) 2 c

j ' l

which can consist of an arbitrary number of small sep-
arate closed surfaces surrounding the points (xj, Yi,
zj). Thus, it is a good candidate for testing interval
techniques, as the separate sections can easily be missed
if intervals are not used. Without using intervals,
search_depth = 5 was required to detect all 12 separate
parts of the surface in the viewing cube. Fig. 16 shows
the function

f (x , y, Z) ---- X2(y 2 + Z 2 + a) 2n + y 2 + z 2 -- r 2 (7)

where a, r, and n are constants. The surface is plotted
by algorithm 4. When intervals are not used,
search_depth = 6 is required to detect all parts of the
surface because with search._depth = 5 the point sam-
pling misses the two pointed ends.

Finally, Fig. 17 displays the function

f (x , y, z) = (x 2 - y x + z2y)e ~yz. (8)

The timing results appear in Table 1, where it can be
seen that the relative speeds of the interval and non-

Fig. 11. Contours of the function (5) in the region -1 < x ,
y < 1 plotted by algorithm 3. The lowest contour is c = 0.0006,
and the highest is c ffi 8000. The values ofplot...depth ranged

from 9 for c = 0.0006 to 6 for c = 8000.

338 KEVIN G. SUFFERN and EDWARD D. FACKERELL

I I I I I I I I !
I I I III:I:IL'~II I

I ' l l l i ' l I I I I I l

I

I I-ft1~ I
I

I, ,I

I

I I

I I~',tt~#-.I I I I I ~ /= ! i i i i i i i i ~ .~ -
I ~ I t I l l l l ~ / ~ " i " i ~ i : i i ~

t I I I I I ' +1 '%~ I~ l t~l I I I I 1 I ~ / / ~ ' + I + I , I I ' , , , ,+,..
I j,'+T " ~ ' ' ' " ' " I I I I I I I I I I . ,+ ,~ ' , . ,~ I I I I I
I I l l " r i i ~ . . : = ' - : l : b - % ' + ' + ' / . , ~ l l J 1
I I 1 I I I I I'I'~'~---'",,~ /',l~t-'l I I I

Fig. 12. Quadrants which returned contour_not...present = true in algorithm 3 for the contour c = 0.1 in
Fig. 11 with plot...depth = 7.

interval algorithms are strongly dependent on the sur-
face. Where the surface is distributed throughout the
viewing volume, as in Figs. 13, 15, and 17, the interval
methods slow down the algorithms, because high sub-
division depths are required before parts of the viewing
volume can be discarded. In Fig. 16, the surface oc-
cupies only a small percentage of the viewing volume
(not drawn in this figure), with the result that large
regions of the viewing volume can be discarded at low
subdivision depths. The subdivision process here is
similar to that in Fig. 10, and the interval algorithm is
approximately 48 times faster for this surface.

5. DIRECTIONS FOR FUTURE RESEARCH
There are number of aspects of the algorithms pre-

sented here which will benefit from future research.
First, the robustness of the algorithms can be further
improved by applying interval methods to the plotting
cells. This can help guarantee that algorithm 3 will
correctly handle the (rare) plotting cells shown in Fig.
1 (h) where two contour segments are present. The
current procedure plo t in algorithm 3 would not plot
these contours at all. Plotting cells of this type require
a c o n t o u r inc lus ion test so that they can be further sub-
divided until, ultimately, the only type of cell plotted
is similar to Fig. I (a) . Interval methods can be used
to test if there are multiple contour segments in a plot-

ting cell, but the intervals used would have to be much
tighter than those provided by the natural interval ex-
tensions. Virtually every plotting cell we tested with

Fig. 13. Perspective view of a function which is the three-
dimensional analogue of eq. (5) plotted with ploL..depth

~6.

Interval methods in computer graphics 339

procedure intervals_octree (depth : integer ;
x, y, z, di: reatj
funct ion f (x,y,z : real) : real ;
funct ion FI (XI,YI,ZI : interval) • interval) ;

procedure subdivide ;
var

j, k, 1 : integer ;
begin { subdivide }

f o r j :=Oto l do
f o r k : = O t o l do

for l := O to l do
intervals_octree (depth + 1,

x+j*d/2, y+k*d/2, z+l*d/2, d/2f, Fl) ;
end ; { subdivide }

begin { intervals octree }
i f surface_not_present (x, y, z, size, FI)

then { discard current octant }
else i f depth < p lo tdepth

then subdivide
else plot_3D (x, y, z, dr);

end ; { intervals octree }

Fig. 14. Algorithm 4 for rendering implicit surfaces using interval methods.

contour_not.._present and surface_.not_..present re-
turned false because of the broadness of the intervals
and the proximity of the plotting cells to the contours
or surfaces. Saddle points (where contours cross) can
be handled in a similar manner, as can the ana!ogous
cases for implicit surfaces.

Second, the algorithms described here use a fixed,
user-specified plot__depth, regardless of the local cur-
vature of the contours or surfaces. Algorithms which
employ plot depths which depend on the local cur-
vature can be much more efficient, and these tech-
niques need to be incorporated into the current algo-
rithms. Curvature-driven plot depths were used for

Fig. 15. Shaded perspective image of the surface defined by
eq. (6) plotted by algorithm 4 with p l o t . d e p t h = 6.

contouring by Suffern[10] and polygonising implicit
surfaces by Bloomenthal[l]. Automatic algorithms
which require a minimum of user-specified input pa-
rameters are desirable, and curvature-based interval
algorithms similar to algorithms 3 and 4 would, in
principle, need no parameters other than those to
specify the viewing geometry.

6. CONCLUSIONS
Interval methods, which are widely used in numer-

ical analysis, have important applications in computer

m

Fig. 16. Perspective view of the surface defined by eq. (7) with
a = 0.985, r = 0.5, and n = 50, plotted by algorithm 4 with

plot_.depth = 6.

340 KEVIN G. SUFFERN and EDWARD D. FACKERELL

viewing region into a very fine grid to detect the contour
or surface. Interval methods achieve the same robust-
hess without the fine subdivision.

The algorithms discussed here produce polygoni-
sations of implicit surfaces, but interval methods can
also be used to produce robust algorithms for ray trac-
ing implicit surfaces in a manner similar to the Lip-
schitz constants used by Kalra and Barr[3]; see also
Mitchell [4].

Fig. 17. Shaded image of the surface defined by eq. (8) plotted
by algorithm 4 with plot_depth = 6.

graphics. They can be used to improve the robustness
of algorithms for contouring functions of two variables,
and rendering implicit surfaces. In algorithms using
space subdivision techniques they can guarantee that
no part of the viewing region above a user-specified
size is discarded that could possibly contain part of the
contour or surface. This is something that point-sam-
pling techniques alone are unable to do. Because in-
terval arithmetic is slower than real arithmetic, interval
algorithms often run slower than their noninterval
counterparts, but can also run considerably faster.
Relative speeds depend on the type of contours or sur-
faces being rendered. Depending on the type of graphics
application, robustness can be far more important than
speed. In principle, algorithms which do not use in-
terval methods can achieve the same degree of ro-
bustness as the interval algorithms presented here, but
only at the cost of always uniformly subdividing the

REFERENCES
1. J. Bloomenthal, Polygonization of implicit surfaces.

Camp. Aided Geom. Design 5, 341-355 (1988).
2. E. R. Hansen, Global optimization using interval anal-

ysis-the multidimensional case. Numerische Mathe-
matik 34, 247-270 (1980).

3. D. Kalra & A. H. BAIT, Guaranteed ray intersections with
implicit surfaces. Camp. Graphics 23, 297-306 (1988).

4. D. Mitchell, Graphics Interface '90. 68-72 (1990).
5. R. E. Moore, Interval arithmetic and automatic error

analysis in digital computation. PhD Thesis, Stanford
University (1962).

6. R. E. Moore, Interval Analysis, Prentice-Hall, Engiewood
Cliffs, NJ (1966).

7. S.P. Mudur & P. A. Koparkar, Interval methods for pro-
cessing geometrical objects. IEEE Camp. Graphics and
Applications 4, 7-17 (1984).

8. H. Ratschek &J. Rokne, Computer Methods for the Range
of Functions, Ellis Horwood, London (1984).

9. H. Ratschek & J. Rokne, New Computer Methods for
Global Optimization, Ellis Horwood, London (1988).

10. K.G. Suffem, Quadtree algorithms for contouring func-
tions of two variables. School of Computing Sciences,
University of Technology, Sydney, Technical Report 87.1
(1987).

i 1. K. G. Suffem, An octree algorithm for displaying im-
plicitly defined mathematical functions, School of Com-
puting Sciences, University of Technology, Sydney,
Technical Report 87.9 (1987).

12. K. G. Suffem, Recursive space subdivision techniques
for displaying implicitly defined surfaces, Ausgraph '89
Proceedings, 239-249 (1989).

13. K.G. Suffern, Quadtree algorithms for contouring func-
tions of two variables. The Comput. £ 33, 402-407
(1990).

14. K. G. Suffern, An octree algorithm for displaying im-
plicitly defined mathematical functions. The Australian
Comput. J. 22, 2-10 (1990).

15. D. C. Sutcliffe, An algorithm for drawing the curvef(x,
£) = O. The Comp. J. 19, 246-249 (1976).

