Designing with Functional
Representations: GUI and Solver

Matt Keeter
matt.keeter@cba.mit.edu

Spring 2012

=== THE CENTER FOR
BITS AND ATOMS
I vassachusets insituteof Tochnology

Formats for Fabrication

m How do we represent objects?
m 2D areas and 3D volumes
m Design — fabrication

Boundary Representations

Data describing surface of an object

Boundary Representations

Advantages:
m Easy to render
m Long history
m Common in computer graphics

Boundary Representations

Advantages:

m Easy to render

m Long history

m Common in computer graphics
Disadvantages:

m Finite resolution

m Requires surface — volume conversion

m Constructive solid geometry is hard / messy

Boundary Representations

Functional Representation

X*xX + YxY < 1

Functional Representation

(X*X + Y*Y < 1) && (X*X + YxY > 0.5)

Functional Representation

Resolution-independent
Platform-independent

Easy to transform and modify
Hard to render

Design Tools

m Library of common shapes and operators
m Python scripts as design files
m Interactive GUI:

cad UL_{Users mkoeter/grad]cbaj repos kokampej devienad) test]pcb.cad

I[13) x¢. 105 ,02.pod(4).5,2),

POLAECKTALI. xv.12,XTALL pod(1]
XTALLpod 11}

- wra(pen,x,
1.poa(s]

(6], J1.p0d(6]. y- 81,23,
2, XTALL.pod (2] ¥, 2),

Solver Fundamentals

How to convert an expression into an image?

(X*X + Y*Y < 1) && (X*xX + YxY > 0.5)

!

Solver Fundamentals

m Previous solver:
m Brute-force evaluation
m Paste expression into template C program
m Compile & run!
m Evaluates expression for every pixel

Solver Fundamentals

m Previous solver:
m Brute-force evaluation
m Paste expression into template C program
m Compile & run!
m Evaluates expression for every pixel

m We can do better.

Solver Architecture

m Parser
m Converts string into tree structure
m Optimizes tree structure
m Solver
m Evaluates expression on region
m Interval arithmetic speeds up evaluation
m Uses caching and multithreading

Expressions — trees

Expressions — trees

X + Y > 0 becomes

Expressions — trees

X + Y > 0 becomes

Uses shunting-yard algorithm

other expressions

constants
variables

c
(@)
{e10]
c
B
o]
—
(D]
o
o
[%2]
c
.0
)]
(V2]
(]
et
o
X
(]
G
(@)
(D]
(D)
et
=

Tree Structure

Distinct data types:
Floating-point value/interval] G2
Tri-bool (true, false, or / ™
ambiguous) i
Color (32-bit integer)

(o) To2) 1=

Architecture

m Parser
m Converts string into tree structure
m Optimizes tree structure

m Solver

m Evaluates expression on region
m Interval arithmetic speeds up evaluation
m Uses caching and multithreading

m Operations are applied to regions in space

Interval Arithmetic

m Operations are applied to regions in space

m Logic operations are true, false, or ambiguous
m [—-1,1] <2is true
m [—1,1] < -2 s false
m [—1,1] < 0 is ambiguous

Subdivision & Recursion

Solver algorithm:
m Evaluate on initial region
m If true or false, color and return
m |f ambiguous, subdivide and recurse

Subdivision & Recursion

Solver algorithm:
m Evaluate on initial region
m If true or false, color and return
m |f ambiguous, subdivide and recurse

Regions below a minimum size are evaluated
point-by-point, which improves performance.

Subdivision & Recursion

Time taken (seconds)

10

=
e

1

10°

102

isp alien gear
.
.
.
.
. [] L]
* ° . °
.
. .
o °® ° °
L]
.
.
.
. .
10 20 50 100 10 20 50 100 10 20 50 100

Resolution (pixels/mm)

Future Work

m Improving GUI design tools
m Generating surfaces

m Improving standard library
m Possibly switching to GPU

Resources

€« C ff © kokompe.cba.mit.edu/dist/downloads.html

Fab Modules

software to run any fab lab machine

Download stable release

Download them all here: fab.zip (bin folder compiled for Ubuntu 10.04)

configuration: fab_set.py fab_send

Download development snapshot

Source & Mac binaries: fab_darwin.zip (Mac OS 10.6.8)
Source & Linux binaries: fab_linux.zip (Ubuntu 11.10)
Source: fab_src.zip

cad_ui Mac application: cad_ui.zip

)

Questions?

cad Ul: /Users/mks

ter/ grad/cbarepos/kok dev/mod/test/ mbrot_color.cad

cad_ui 0.20
from cad_shapes impart *
DEPTH = 15
a=x
PN
8 mbrot = '
9 for i in range(DEPTH):

prev_level
@, b)=C

this_level

this_level

value = Cint(pon(float(i+1) E
CintCpon(float(i+l) / DEPTH, 2) *
CintCpow(float(i+l) / DEPTH, 1) *

mbrot - addCmbrot, color(value, this_level))

o mbrot = add(nbrot, color(white, % (a,))

25.4 # inch units
Boolean or RGB

1
9 cad.function = mbrot

Extra Slides

Parser-Level Optimizations

(X+0) * (Y+0) < 1

(X+0) * (Y+0) < 1

(X+1)*x(X+1) + Y*xY < 1

(X+1)*x(X+1) + Y*xY < 1

Extra Slides

Solver-Level Optimizations

Branch Caching

(X > 0) && (X*X + Y*xY < 1)

Branch Caching

&&

/

(o) x] (1)

x]Ix]] [y

Branch Caching

&&

I\
>
Co)[x] (1)

x]Ix]] [y

Branch Caching

x]Ix]] [y

Multithreading

m Problem has parallel structure
m Distribute work over multiple cores:

m Divide region evenly
m Assign each core a subregion

m GPU could also be used

Z-culling

m For 3D objects, goal is height-map
m Skip evaluation if region is occluded

Extra Slides

Test Procedures & Results

Test Files

Alien

Test Files

Bearing

Test Files

Castle

Test Files

Gear

Test Files

U2 DIy 5V

c2

PCB

File Statistics

Dimensions Volume | File size

File W H D | (MPixels) | (chars)
alien | 3555 3555 1 12.6 1880
bearing | 711 711 237 119.8 1414
castle | 447 447 203 40.6 49 854
gear | 1904 1904 1 3.6 8128

pcb | 2273 1460 1 3.3 378743

Speed Test Procedure

m Enable/disable one optimization (with all
others optimizations disabled /enabled)

m Run 10x
m Find average run time
m Calculate speedup/slowdown

Caveat:
Behavior is sensitive to the selected resolution

Results

6x

Sx |

2x |

Ix -

Single Optimization Enabled

janni

Nodes combination
Tree simplification
Branch caching
Multithreading
z-culling

bearing

Results

20x

15x

10x

Slowdown

5x

1x

Single Optimization Disabled

Jann

Nodes combination
Tree simplification
Branch caching
Multithreading
z-culling

al

\ \
alien bearing

\
castle

.
gear

Extra Slides

Implementation & Code Details

Implementation Details

m 4,370 lines of C++-.

m Inheritance is used for Node classes
m Parent class Node is derived into

m NonaryNode
m UnaryNode
m BinaryNode

(which are further derived into operator classes)

Evaluation Procedure

m Two solve functions:
m Float (single point)
m Interval (region)

m Nodes store results of evaluation locally

m Nodes with children look up children’s locally
stored results

m Children must be evaluated before parents!

Tree Data Structure

m Lists of nodes, sorted by weight into levels

m Variables and constants: weight = 0
m Others: weight = max(child weights) + 1

m Evaluate nodes with weight = 0, then nodes
with weight = 1, then nodes with weight =
2, etc.

m This order of evaluation ensures that children
are evaluated before parents.

Branch Cache Implementation

m Each level keeps a count of “active nodes”
m "Push” (recursing on sub-interval):

m Swap unambiguous nodes to the back of the list
m Deactivate children of unambiguous nodes

m Decrement active node count.

m Save the number of cached nodes

m “Pop” (returning from recursion):

m Increment active node count
m Revive cached nodes
m Activate children of revived nodes

