
Designing with Functional
Representations: GUI and Solver

Matt Keeter
matt.keeter@cba.mit.edu

Spring 2012

Formats for Fabrication

How do we represent objects?

2D areas and 3D volumes

Design → fabrication

Boundary Representations

Data describing surface of an object

Boundary Representations

Advantages:

Easy to render

Long history

Common in computer graphics

Disadvantages:

Finite resolution

Requires surface → volume conversion

Constructive solid geometry is hard / messy

Boundary Representations

Advantages:

Easy to render

Long history

Common in computer graphics

Disadvantages:

Finite resolution

Requires surface → volume conversion

Constructive solid geometry is hard / messy

Boundary Representations

Functional Representation

X*X + Y*Y < 1

Functional Representation

(X*X + Y*Y < 1) && (X*X + Y*Y > 0.5)

Functional Representation

Resolution-independent

Platform-independent

Easy to transform and modify

Hard to render

Design Tools

Library of common shapes and operators
Python scripts as design files
Interactive GUI:

Solver Fundamentals

How to convert an expression into an image?

(X*X + Y*Y < 1) && (X*X + Y*Y > 0.5)

↓

Solver Fundamentals

Previous solver:
Brute-force evaluation
Paste expression into template C program
Compile & run!
Evaluates expression for every pixel

We can do better.

Solver Fundamentals

Previous solver:
Brute-force evaluation
Paste expression into template C program
Compile & run!
Evaluates expression for every pixel

We can do better.

Solver Architecture

Parser
Converts string into tree structure
Optimizes tree structure

Solver
Evaluates expression on region
Interval arithmetic speeds up evaluation
Uses caching and multithreading

Parser

Expressions → trees

X + Y > 0 becomes

0

X Y

+

>

Uses shunting-yard algorithm

Parser

Expressions → trees

X + Y > 0 becomes

0

X Y

+

>

Uses shunting-yard algorithm

Parser

Expressions → trees

X + Y > 0 becomes

0

X Y

+

>

Uses shunting-yard algorithm

Tree Structure

Tree of expressions operating on

constants

variables

other expressions

−

0.5−

0.75

−

0.36

−

1

−

0.1

1.75 0.25

0.18 0.2

0.010.16

0.09

X

Y

−

−

<=

>=

− −

−

×

× ×

×

+

/

<= >= − −×

 && + −×

 && <=

<=

<= + ×

 && ! <= +

 && !! <=

 && && !

 && !

 &&

Tree Structure

Distinct data types:

Floating-point value/interval

Tri-bool (true, false, or
ambiguous)

Color (32-bit integer)
−

0.5−

0.75

−

0.36

−

1

−

0.1

1.75 0.25

0.18 0.2

0.010.16

0.09

X

Y

−

−

<=

>=

− −

−

×

× ×

×

+

/

<= >= − −×

 && + −×

 && <=

<=

<= + ×

 && ! <= +

 && !! <=

 && && !

 && !

 &&

Architecture

Parser
Converts string into tree structure
Optimizes tree structure

Solver
Evaluates expression on region
Interval arithmetic speeds up evaluation
Uses caching and multithreading

Interval Arithmetic

Operations are applied to regions in space

Logic operations are true, false, or ambiguous
[−1, 1] < 2 is true
[−1, 1] < −2 is false
[−1, 1] < 0 is ambiguous

Interval Arithmetic

Operations are applied to regions in space
Logic operations are true, false, or ambiguous

[−1, 1] < 2 is true
[−1, 1] < −2 is false
[−1, 1] < 0 is ambiguous

Subdivision & Recursion

Solver algorithm:

Evaluate on initial region

If true or false, color and return

If ambiguous, subdivide and recurse

Regions below a minimum size are evaluated
point-by-point, which improves performance.

Subdivision & Recursion

Solver algorithm:

Evaluate on initial region

If true or false, color and return

If ambiguous, subdivide and recurse

Regions below a minimum size are evaluated
point-by-point, which improves performance.

Subdivision & Recursion

Performance

Future Work

Improving GUI design tools

Generating surfaces

Improving standard library

Possibly switching to GPU

Resources

Questions?

Extra Slides

Parser-Level Optimizations

Tree Simplification

0 0

1

X Y

+ +

×

<

1

X Y

×

<

(X+0) * (Y+0) < 1

Tree Simplification

0 0

1

X Y

+ +

×

<

1

X Y

×

<

(X+0) * (Y+0) < 1

Node Combination

1 1

1

X X

Y Y + +

× ×

+

<

1 X

Y +

× ×

+

<

(X+1)*(X+1) + Y*Y < 1

Node Combination

1 1

1

X X

Y Y + +

× ×

+

<

1 X

Y +

× ×

+

<

(X+1)*(X+1) + Y*Y < 1

Extra Slides

Solver-Level Optimizations

Branch Caching

(X > 0) && (X*X + Y*Y < 1)

Branch Caching

0 1X

X X Y Y

>

× ×

+

<

 &&

Branch Caching

0 1X

X X Y Y

>

× ×

+

<

 &&

Branch Caching

0 1X

X X Y Y

>

× ×

+

<

 &&

Multithreading

Problem has parallel structure
Distribute work over multiple cores:

Divide region evenly
Assign each core a subregion

GPU could also be used

Z-culling

For 3D objects, goal is height-map

Skip evaluation if region is occluded

Extra Slides

Test Procedures & Results

Test Files

Alien

Test Files

Bearing

Test Files

Castle

Test Files

Gear

Test Files

PCB

File Statistics

Dimensions Volume File size
File W H D (MPixels) (chars)
alien 3 555 3 555 1 12.6 1 880

bearing 711 711 237 119.8 1 414
castle 447 447 203 40.6 49 854
gear 1 904 1 904 1 3.6 8 128
pcb 2 273 1 460 1 3.3 378 743

Speed Test Procedure

Enable/disable one optimization (with all
others optimizations disabled/enabled)

Run 10x

Find average run time

Calculate speedup/slowdown

Caveat:

Behavior is sensitive to the selected resolution

Results

Results

Extra Slides

Implementation & Code Details

Implementation Details

4,370 lines of C++.

Inheritance is used for Node classes
Parent class Node is derived into

NonaryNode

UnaryNode

BinaryNode

(which are further derived into operator classes)

Evaluation Procedure

Two solve functions:
Float (single point)
Interval (region)

Nodes store results of evaluation locally

Nodes with children look up children’s locally
stored results

Children must be evaluated before parents!

Tree Data Structure

Lists of nodes, sorted by weight into levels
Variables and constants: weight = 0

Others: weight = max(child weights) + 1

Evaluate nodes with weight = 0, then nodes
with weight = 1, then nodes with weight =

2, etc.

This order of evaluation ensures that children
are evaluated before parents.

Branch Cache Implementation

Each level keeps a count of “active nodes”
“Push” (recursing on sub-interval):

Swap unambiguous nodes to the back of the list
Deactivate children of unambiguous nodes
Decrement active node count.
Save the number of cached nodes

“Pop” (returning from recursion):
Increment active node count
Revive cached nodes
Activate children of revived nodes

