/\ AUTODESK

Post Processor Manual

Works with:
HSMWorks

Inventor HSM Express
Inventor HSM

Inventor HSM Pro © 2013 Autodesk, Inc. All rights reserved.

Autodesk Post Processor Manual

Scope

Intended audience

Skill level of audience

History

Why we need posts

Overview of post processor workings
Basic post processor functions
Overview of a simple X and Y axis post

W oo N R WN R

. Testing a post
10. Editing a post

Scope

This manual is intended for those who wish to makes their own edits to existing library
posts. It is also for those who wish to expand the functionality of their working posts.

Intended Audience

The instructions you find here are intended for machinists with some programming
experience, and CAM engineers looking to provide edit-free CNC programs for the machine
shop.

Skill level

It is assumed that the reader has a working knowledge of Inventor HSM Express. If you have
not done so already, review the programming examples that came with your CAM package.
You will need this to produce working CAM programs.

History

The first CAM software packages came with an executable program that was run on a
computer to convert the CAM instructions into G and M code. G&M code was developed as
a language to make machines move. Initially the code consisted of line and arc moves, but
as time went on it became more sophisticated and evolved into many variations of a
standard ISO code.

{/\ AUTODESK. 2

Why we need posts

The need for an interface program became necessary as G&M became more complicated
and evolved into more complex variations on each machine tool. More machine capabilities
like work fixture offsets, radius compensation, tool length compensation and automatic tool
changers were added. All these features vary from machine to machine so some kind of
editable interface had to be made.

Overview

The CAM program makes a non-readable intermediate data file from the instructions in the
CAM program. These are very generic and have no particular format. They contain positions
in X, Y, and Z, and functions like the tool data and the type of machining operation
(threading, drilling, etc.) The post processor program reads this data and looks for the
relevant section in the post processor file. When a relevant section is found, all the
instructions and logic are followed in that section. The post processor then continues to
read the intermediate file until it reaches the end.

CAM data Post Processor file

EIVE VNS N Roperation:doMultiple functi . _

R EIRITNETMEIGNULNULNULIN unction onRapid(x, y, z) { var xyz =
JUNULNULEOTINULNULINUL S TXA xOutput.format(x) + yOutput.format(y) +
)NV BNVANVRoperation:leadEndDistanc Post Processor zOutput.format(z);
TNULEO T NULNULNUL S TXNULN program if (xyz) { writeBlock("G0" + xyz +
operat\on S radiusCompensationTable.lookup(radiusCompensati
NUNV[operation:surfaceZLowffffffOAH on));

FFINULINUUNULIGSINULINULINULSh¢ feedOutput.reset();

examplepost.cps

%

01066

5G0Zz-1

6 TS5 S5000

7M3

8 GO X-0.5601 Y-0.0359 Z+0.6
9 GO Z+1.5991

10 GO Z+1.0384

11 G1 7+0.7591 F20

12 G1Y-0.1359

{\ AUTODESK. 2013 Autodesk,Inc. Allights reserve 3

Basic Functions

The post processor file has an extension .cps which is based on Java Script. The very core of the
post processor is comprised of sections that are interpreted in a linear sequence from the
beginning of the intermediate file until it reaches the end. Once the intermediate file has
ended, it is deleted. These sections are listed below:

onOpen

Starts the beginning of the NC program with items like the program Name for storage in the NC
control memory.

onSection

This section is interpreted for every OPERATION in the SETUP contained in the CAM program.

x

CAM v 2]
& Test part.ipt Operation(s)
== Setup3

=@ 2D Adaptive8
1 #102 - 20.2mm flat
L wes
I 149.1kb
E-4& 2D Pocket11
1 #102 - 20.2mm flat
L wes
i 1.1kb
£ Circular13
<% Dril14 [Rapid out]
4> Tracel5
4 2D Contour19

This could be the work fixture offset used, the tool, any subsequent tool for pre-selection, and
coolant codes. Also movements to a safe approach position, before the actual machining
moves.

onMovement

Handles feed by the movement type. This can also be done in the onRapid(), onLinear(), and
onCircular() sections.

AAUTODESK © Copyright 2013 Autodesk, Inc. All rights reservec 4

onRadiusCompensation

Commands used for radius compensation mode. This can also be done in the onRapid(),
onlinear(), and onCircular() sections.

onRapid

Commands for rapid traverse motion. Example GO.
onLinear

Commands for linear feed motion. Example GO1.
onCircular

Commands for output circular motion, if supported. Example G02 G03.
onRapid5D

Commands for output of rapid 5-axis traverse motion.
onLinear5D

Commands for output of linear 5-axis feed motion.
onDwell

Commands for output of a dwell time in the NC code.
onSpindleSpeed

Commands for output of spindle speed.

onCycle

Commands for NC “canned” cycles, like drilling and threading, that are executed on various
points in the CAM program.

{/\ AUTODESK.

onCyclePoint

Commands for output of the various points from the CAM system for the canned cycle to use.
onCycleEnd

End and reset the canned cycle.

onSectionEnd

Commands to retract the machine to a safe position and turn off modal codes. This function is
called at the end of each section, and may be useful to add code for tool break control.

onClose

Commands to append to the end of the NC program.

onTerminate

Allows access to the output file for external applications. The output file will be locked and not
fully closed until onTerminate() is invoked. The log file is still locked at this point.

Basic post internals

Because the post processor follows the rules of Java Script we have the ability to customize the
various sections of the NC program. We can have variables and control the flow of the program
using logic.

To use a variable, we just tell the post the name of the variable:
var coolantCode = §;

var stands for variable. Notice the semicolon on the end of the line.
We can also use variables to store text.

var coolant="MO08";

var radiusLeft="G41";

Note: radiusleft is not the same variable as RadiusLEFT because variables are case-sensitive.

{/\ AUTODESK. 6

We can also place variables on a single line.

var radiusLeft="G41", stop=30, coolant="M08";

To compare the values stored in variables, we use arithmetic operators.

+

var x=5;
var y=6;
var z=x+y;

Arithmetic operators:

Operator Description Example Value of y Resultingx

+ Addition x=y+2 5 7

- Subtraction x=y-2 5 3

* Multiplication x=y*2 4 8

/ Division x=y/2 5 2.5

++ Increment X=++y 6 6
X=y++ 6 5

-- Decrement X=--y 4 4
X=y-- 4 5

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved

Conditional Statements

When you write a post processor, you will want to perform actions for different reasons. You
can use conditional statements in the post processor to do this.

You can make comments in the code with //. The post processor ignores everything after this.

The braces {} surround the next commands.

if statement - This is used to process parts of the code only if a specified condition is

true.

if (useCoolant){
coolantCode="MO08”; // coolant on

}

if...else statement — Use this to execute some code if the condition is true and some

other code if the condition is false.

if (useCoolant){

coolantCode="MO08”; // coolant on continue here if useCoolant is set to true
Jelse{

coolantCode="M09”; // coolant off continue here if useCoolant is set to false

}

if...else if....else statement - Use this to select one of many chunks of code to be

processed.

if (useCoolant) {
coolantCode="M08”; // coolant on continue here if useCoolant is set to true
Jelse{
if (luseCoolant) {
coolantCode="M09”; // coolant off continue here if useCoolant is set to false
Jelse{
coolantCode="M07”; // coolant mist continue here if useCoolant is neither true or false
}
}

switch statement - Use this statement to select one of many chunks of code to be

executed.

switch(coolantCode) {

case 8:
coolantCode="M08"”;
break;

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved

case 9:
coolantCode="M09”;
break;

case 7;
coolantCode="M07";
default:
coolantCode="M61";

}

Assignment operators

If we start with x=10 and y=5, here are the results:

Operator Example Similar to Result
= X=y x=5
4= X+=y X=X+Y x=15
= X-=y X=X-y X=5
_ X=y x=x*y x=50
/= x/=y x=x/y x=2
%= x%=y X=x%y x=0

Text can also be modified using operators:
var coolantCode="M08",spindleStop=“M03"

var turnoff=coolantCode + SP + spindleStop (SP means space)
The variable called turnoff would become M08 MO03.

If you add text and a number, the result is just text:

var mword="M0", mcode=8

coolant=mword + mcode

Coolant would be M08 but would contain only text.

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved

Comparison Operators

If we start with x equaling 5:

Operator Description Comparing Returns

== is equal to X== false

X== true
=== is exactly equal to (value and type) x==="5" false

X=== true
1= is not equal x1=8 true
== is not equal (neither value nor type) xl=="5" true

xl== false
> is greater than x>8 false
< is less than X<8 true
>= is greater than or equal to x>=8 false
<= is less than or equal to x<=8 true

Example:

if (workOffset > 6) var p = workOffset — 6

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved

Logical Operators

Logical operators are used to find the logic between variables or values.

If x=4 and y=7, the table below explains the logical operators:

Operator Description Example

&& And (x<10 && y>1)istrue
| Or (x==4 || y==5) is false

[Not I(x==y) is true
Example:

if ((programld >=8000) && (programld <= 9999))

This statement is true if program id is more than 8000 and less than 9999

My First Post

Now let’s make a post. First we will create a new post file using a text editor like Notepad. Any
file with the extension CPS is automatically recognized by the HSM Expresss Editor called
myfirstpost.cps in a folder on your hard drive. We will include the function onOpen which the
post software knows to process at the beginning of the NC program.

function onOpen() {
writeln("%");
writeln((programName ? (programName) : ""));

}

Open the sample CAM part (post work flow example.ipt) and select the first operation in the
CAM Browser, and then select Post Process to produce the NC output.

AAUTODESK © Copyright 2013 Autodesk, Inc. All rights reservec 11

@ [Post Process @D 17}) @ face Thread | [§ Orientation ~ [Tool Library B Post Exchange @)

2 sl i W Visibility ~ B [
[Setup Sheet Setup Folder | Drill |20 Adaptive 20 Pocket 2D Contour © 5t 8 Gircular | | Visibility Task Manager
© Generate & Trace [Bore = options
Toolpath Job Drilling 2D Milling View Manage | Help

Simulate Help/Tutorials

@ post work flow example.ipt Operation(s)
S Job1
=4 20D Contour2
|l #s- 0316 nat
ke wes
#8503 bytes
44 Drill3 [Rapid out)
=4 20 Contourd
1l #5 - ©3/16™ flat
L wes
572 bytes

The only thing we did in onOpen is to send a % to the function writeln. Then on a new line we
sent the program number from the post dialog box to the function writeln.

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved 12

Bl Post Process x|
Configuration Folder

| C:\ProgramData\Autodesk\Inventor HSM 2014\Posts _I Setup |
Post Configuration

myfirstpost.cps - Minimal G&M v IAII LI Open config |

Output folder
| C:\Temp

NC extension

~] [e

Open folder |

Program Settings

Program name or number

Value
I 02568 (Buliin) allowHelicalMoves Yes
allowedCircularPlanes 1
T EELET (Built-in) highFeedMapping Preserve ra...
I Inventor (Built-in) highPeedrate 0
. (Built-in) maximuMCircularRadius 1000
L (Built-in) minimumch 0.01
|D°Cume"t unit Ll (Built-in) minimumCircul2 0.01
(Built-in) tolerance 0.001
[~ Allow tool sorting
[v" Open NC file in editor
Post Cancel

When you click the Post button you should get this NC file in the output folder. Now if you open
the NC file you will see:

%
02568

Very cool, you just made you first piece of NC code! Okay, it’s just the percent sign and the
program number but it’s a start.

Most controls have a limit on the length of the NC file name. Later we will control this.
Now let’s add the CAM program tool information for the first operation with onSection.
var blockNumber = 5;
//writes the specified block of G code.
function writeBlock(block) {
writeln(“N” + blockNumber + SP + block);
++blockNumber;
}
function onOpen() {

writeln("%");

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved 13

writeln((programName ? (programName) : ""));
}
function onSection() {
writeBlock("T" + tool.number + SP + " S" + tool.spindleRPM);
}
Here is our new NC program.
%

02568
N5 T4 S5000

Note: The Tool number might be different depending on which Operation you have chosen to
post-process.

Wow, we will be cutting metal soon!

Before onOpen we added a user defined function called writeBlock. We made it a function
because we want to use it more than once.

It adds a number at the beginning of each line and then increments the number by one for the
next line. We also made a variable to be used for each NC block; then we will increase it by one
every time we use it.

// This function Writes an NC block of G code.
function writeBlock() {
writeWords2("N" + blockNumber, arguments);
++blockNumber;
}
Notice the use of // to make a comment that the post program ignores.

Now we can add some movement to our NC program. This will move the tool to the initial
position before cutting in the operation.

var blockNumber = 5;

// This function Writes an NC block of G code.
function writeBlock() {
writeWords2("N" + blockNumber, arguments);

++blockNumber;

}

function onOpen() {
writeln("%");
writeln((programName ? (programName) : ""));

}

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reservec 14

function onSection() {
var initialPosition = getFramePosition(currentSection.getinitialPosition());
writeBlock("T" + tool.number + SP + " §" + tool.spindleRPM);
writeBlock("GO " + initialPosition.x + initialPosition.y + initialPosition.z);

}

Now if we click post, we will get NC code that looks like this.

%

02568

N5 T4 S5000

N6 G0-0.56012596671036870.0078492124718943911.6400000054066575

The X, Y, and Z positions are raw data from the CAM software. We will have to add some
formatting commands so that the NC control can understand it.

var xyzFormat = createFormat({decimals:(unit == MM ? 3 : 4), forceSign:true});
var feedFormat = createFormat({decimals:(unit == MM ? 0 : 2)});

//linear Output

var xOutput = createVariable({prefix:"X"}, xyzFormat);

var yOutput = createVariable({prefix:"Y"}, xyzFormat);

var zOutput = createVariable({prefix:"Z"}, xyzFormat);

var feedOutput = createVariable({prefix:"F"}, feedFormat);

Okay, | know it looks complicated, but we will use it many times so it will save time in the long
run. Believe me.

var blockNumber = 5;
// This function Writes an NC block of G code.

function writeBlock() {
writeWords2("N" + blockNumber, arguments);

++blockNumber;

}
function onOpen() {
writeln("%");
writeln((programName ? (programName) : ""));

}

function onSection() {

var initialPosition = getFramePosition(currentSection.getinitialPosition());

writeBlock("T" + tool.number + SP + " §" + tool.spindleRPM);

writeBlock("GO " + xOutput.format(initialPosition.x) + yOutput.format(initialPosition.y) +
zOutput.format(initialPosition.z));

}

Look what we get! Making chips very soon | am thinking....

%

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved 15

02568
N5 T4 S5000
N6 GO X-0.1 Y+0.025 Z+0.64

Now to add some positioning code at the end of the post file for rapid movements.

function onRapid(x, y, z) {
writeBlock("GO0", xOutput.format(x), yOutput.format(y), zOutput.format(z));
feedOutput.reset();

}

If the CAM program contains two or more operations, notice that the post is producing the
rapids for all the rapids in all operations and speeds.

%

02568

N5 T4 S5000

N6 GO X-0.1 Y+0.025 7+0.64
N7 GO Z+0.0794

N8 GO X+0.1 Z+0.64

We now need to process the feed movements. Add these lines at the end of your post:

function onlinear(x, y, z, feed) {

writeBlock("G1", xOutput.format(x), yOutput.format(y), zOutput.format(z),
feedOutput.format(feed));
}

Now post the code again.

%

02568

N5 T4 S5000

N6 GO X-0.1 Y+0.025 Z+0.64
N7 GO Z+0.0794

N8 G1 Z-0.2 F20

N9 G1 X-0.2375 Y-0.075
N10 G1 X-0.2373 Y-0.0835
N11 G1 X-0.2369 Y-0.0919
N12 G1 X-0.2361 Y-0.1004
N13 G1 X-0.2351Y-0.1088
N14 G1 X-0.2337Y-0.1172
N15 G1 X-0.2321Y-0.1255
N16 G1 X-0.2301 Y-0.1337
N17 G1 X-0.2279Y-0.1419
N18 G1 X-0.2253 Y-0.15
N19 G1 X-0.2225 Y-0.158

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved

16

| know you are thinking there are way too many feed moves for the program. That’s because
the post program will detect arc movements and if there is no section to deal with this, it will
just break down the arcs into lots of small feed moves. You can change the length of the Chord
it uses by changing the (Built-in) tolerance property.

-
\# Post Process ﬂ
Configuration Folder
C:\Users\warda.ADS\Documents\My Post Processors| (e Setup
Post Configuration
[myﬁrstpost.cps - Built-in configuration v] [AII v] [Open config]
Output folder NC extension
C:\Users\warda.ADS\AppData\Local\HSMWorks\nc B .nc Open folder
Program Settings
Program name or number Property Value
(4068 (Built-in) allowHelicalMoves No
Proaram comment (Built-in) allowedCircularPlanes 0
9 (Built-in) highFeedMapping Preserve ra...
100-213-002 and 100-212-002 (Built-in) highFeedrate 0
— (Built-in) maximumCircularRadius 1000 I
- (Built-in) minimumcChordLength 0.01
[Document unit v] (Built-in) minimumCircularRadius ~ 0.01
(Built-in) tolerance 0.001
[] Allow tool sorting
Open NC file in editor
Post] l Cancel
A S 4

Reduce its value from 0.001 to 0.01, and note the reduction of the number of lines.

Now we will add the code at the end of the post to read arc movements from the CAM
program.

function onCircular(clockwise, cx, cy, cz, x, y, z, feed) {

var start = getCurrentPosition();

var f = feedOutput.format(feed);

writeBlock("G" + (clockwise ? 2 : 3), xOutput.format(x), yOutput.format(y), zOutput.format(z),
iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), f); }

After posting it, you will notice absolutely no difference. That’s because the post needs some
settings for its own use to calculate arc movements.

Now add these lines at the beginning of your post file:

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved 17

minimumChordLength = spatial(0.01, MM);
minimumCircularRadius = spatial(0.01, MM);
maximumCircularRadius = spatial(1000, MM);
minimumCircularSweep = toRad(0.01);
maximumCircularSweep = toRad(180);

allowHelicalMoves = true;

allowedCircularPlanes = udefined; // allow any circular motion

And add these formatting lines after the formatting code for linear moves:

//circular output

var iOutput = createReferenceVariable({prefix:"1"}, xyzFormat);
var jOutput = createReferenceVariable({prefix:"]"}, xyzFormat);
var kOutput = createReferenceVariable({prefix:"K"}, xyzFormat);

Aha! You are saying that looks more like an NC program!

%

02568

N5 T4 S5000

N6 GO X-0.1 Y+0.025 Z+0.64
N7 GO Z+0.0794

N8 G1 Z-0.2 F20

N9 G1 X-0.2375 Y-0.075

N10 G3 X+0Y-0.3125 1+0.2375
N11 G1 X+0.5 F40

N12 G3 Y+0.3125 J+0.3125
N13 G1 X-0.5

N14 G3Y-0.3125J-0.3125

N15 G1 X+0

N16 G3 X+0.2375 Y-0.075 J+0.2375
N17 G1 X+0.1 Y+0.025

N18 GO Z+0.64

Okay, now let’s add the functionality to apply radius compensation on linear moves by changing

the writeBlock.

From:

function onlinear(x, y, z, feed) {

writeBlock("G1", xOutput.format(x), yOutput.format(y), zOutput.format(z),
feedOutput.format(feed));
}

To:

function onlinear(x, y, z, feed) {
var xyz = xOutput.format(x) + “ “

" u

+ yOutput.format(y) + “ “ + zOutput.format(z);

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved

var f = feedOutput.format(feed);
if (xyz) {
writeBlock("G1 " + xyz + radiusCompensationTable.lookup(radiusCompensation) + “ “ + f);
}
}

After this section ending...

maximumCircularSweep = toRad(180);
allowHelicalMoves = true;
allowedCircularPlanes = undefined; // allow any circular motion

...add this code:

var radiusCompensationTable = new Table(
[" G40”, n G41 "’ n G42” ,
{initial:RADIUS_COMPENSATION_OFF},
"Invalid radius compensation"

)

This is a table for choosing radius compensation from the CAM program. Now post again and
you should see this:

%

02568

N5 T4 S5000

N6 GO X-0.1 Y+0.025 Z+0.64
N7 GO Z+0.0794

N8 G1 Z-0.2 F20

N9 G1 X-0.2375 Y-0.075 G41
N10 G3 X+0 Y-0.3125 1+0.2375
N11 G1 X+0.5 F40

N12 G3 Y+0.3125 J+0.3125
N13 G1 X-0.5

N14 G3Y-0.3125 J-0.3125

N15 G1 X+0

N16 G3 X+0.2375 Y-0.075 J+0.2375
N17 G1 X+0.1 Y+0.025 G40
N18 GO Z+0.64

%

Note: The G41 and G40 will only show up if the radius compensation is set to be created by the
Post Processor as shown below. This is also only an option in the 2D Contour strategy.

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved 19

&")_ %

» 2D Contour
viels ¥l
Passes A el

Tolerance: 0.0004 -
[Make sharp corners
Sideways compensation:
[Left (cimb miling) ~|
Compensation type:

(l In control ;l
Com radius all... =
Minimum cutting radius: m=

‘-l &

Did you see the G41 and G40 codes added to the linear moves to apply radius compensation?
Very cool.

We need some kind of safety move at the end of every section or CAM operation. Add this code
at the end of your post file.

function onSectionEnd(){
writeBlock("GO0 G91 G28"); // retract
writeBlock("G90");

}

%

02568

N5 T4 S5000

N6 GO X-0.1 Y+0.025 Z+0.64
N7 GO Z+0.0794

N8 G1 Z-0.2 F20

N9 G1 X-0.2375 Y-0.075 G41
N10 G3 X+0Y-0.3125 1+0.2375
N11 G1 X+0.5 F40

N12 G3 Y+0.3125 J+0.3125
N13 G1 X-0.5

N14 G3Y-0.3125 J-0.3125

N15 G1 X+0

N16 G3 X+0.2375 Y-0.075 J+0.2375
N17 G1 X+0.1 Y+0.025 G40
N18 GO Z+0.64

N19 GO G91 G28

N20 G90

Now we have a safety move between operations in the CAM program.

A AUTODESK © Copyright 2013 Autodesk. Inc. All rights reserved 20

At the end of the program we need to cancel a few things out and end the NC program. Add
these lines at the end of your post file:

function onClose() {
writeBlock("M30"); // stop program, spindle stop, coolant off
writeln("%");

}

This will only be used at the end of the program. This is how posting only the first operation
should look.

%

N5 T4 S5000

N6 GO X-0.1 Y+0.025 Z+0.64
N7 GO Z+0.0794

N8 G1 Z-0.2 F20

N9 G1 X-0.2375 Y-0.075 G41
N10 G3 X+0 Y-0.3125 1+0.2375
N11 G1 X+0.5 F40

N12 G3 Y+0.3125 J+0.3125
N13 G1 X-0.5

N14 G3Y-0.3125 J-0.3125

N15 G1 X+0

N16 G3 X+0.2375 Y-0.075 J+0.2375
N17 G1 X+0.1 Y+0.025 G40
N18 GO Z+0.64

N19 GO G91 G28

N20 G90

N21 M30

%

The post software will output drilling moves without the use of functions; just like when we

machined arcs without the onCircular function. To see this, just highlight the Drilll operation in

the CAM example and post again. You will get this:

%

02568

N5T1 S500

N6 GO X-0.85 Y-0.3154 Z+0.64
N7 GO Z+0.24

N8 GO Z+0.2

N9 G1 Z-0.2 F5.82
N10 GO Z+0.24
N11 GO Y+0.35
N12 GO Z+0.2

N13 G1 Z-0.2 F5.82

AAUTODESK © Copyright 2013 Autodesk, Inc. All rights reservec

21

N14 GO Z+0.24
N15 GO X+0.85
N16 GO Z+0.2

N17 G1Z-0.2 F5.82
N18 GO Z+0.24
N19 GO Y-0.3154
N20 GO Z+0.2

N21 G1Z-0.2 F5.82
N22 GO Z+0.24
N23 GO Z+0.64
N24 GO G91 G28
N25 G90

N26 M30

%

This next section will add Tool Length Offset Compensation which corrects the Z height of the
toolpath for tools of different lengths.

Add the following line to the bottom of the Onsection function:
writeBlock("G43" + SP + "HO" + tool.number);
The Onsection function should now look like the following:

function onSection() {

var initialPosition = getFramePosition(currentSection.getinitialPosition());

writeBlock("T" + tool.number + SP + " S" + tool.spindleRPM);

writeBlock("GO " + xOutput.format(initialPosition.x) + yOutput.format(initialPosition.y) +
zOutput.format(initialPosition.z));

writeBlock("G43" + SP + "H0" + tool.number);
}

| ended here, as this is what is necessary to understand to get the basics.

This produced very basic G code to drill holes. Now we can add a simple drilling canned cycle to
the post. To do this, we use onCyclepoint and onCycleEnd. To see how to output a very basic
canned cycle, add this code to the end of your post file:

function onCyclePoint(x, y, z) {

if (isFirstCyclePoint()) {
repositionToCycleClearance(cycle, x, y, z); // return to clearance plane and set absolute mode
var F = cycle.feedrate;
if (cycleType == "drilling") {
writeBlock(
"G98 G90 G81" + xOutput.format(x)+ yOutput.format(y)+ zOutput.format(z) +
feedOutput.format(F));
}

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved 22

}else {
writeBlock(xOutput.format(x) + yOutput.format(y));
}
}

function onCycleEnd() {
if (IcycleExpanded) {
writeBlock("G80");
zOutput.reset();

}
}

The onCycleEnd function will be output after the last hole in the CAM operation. The posted
output for the operation Drilll should look like this:

%

N6 T1 S500

N7 GO X-0.85 Y-0.3154
N8 GO Z+0.6

N9 GO

N10 GO

N11 GO Z+0.2

N12 G98 G90 G81 Z-0.24 F5
N13 Y+0.35

N14 X+0.85
N15Y-0.3154

N16 G80

N17 GO Z+0.6

N18 GO G91 G28

N19 G90

N20 M30

%

We should now look at simple indexing to another coordinate system. Change the onOpen
section to look like this:

function onOpen() {
var aAxis = createAxis({coordinate:0, table:true, axis:[1, 0, 0], range:[-360,360], cyclic:true,
preference:1});
machineConfiguration = new MachineConfiguration(aAxis);
setMachineConfiguration(machineConfiguration);
optimizeMachineAngles2(1);

writeln("%");

}

Also change the onSection in your post to look like this:

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved

23

function onSection() {
var abc = machineConfiguration.getABC(currentSection.workPlane);
setRotation(machineConfiguration.getRemainingOrientation(abc, currentSection.workPlane));
writeBlock("GO0", "A" + abcFormat.format(abc.x));

writeBlock("T" + tool.number, "S" + romFormat.format(tool.spindleRPM));

xOutput.reset();

yOutput.reset();

zOutput.reset();

var initialPosition = getFramePosition(currentSection.getinitialPosition());
writeBlock("GO0", xOutput.format(initialPosition.x), yOutput.format(initialPosition.y));
writeBlock("GO0", zOutput.format(initialPosition.z));

Now select the Job 1 setup and post again.

F r ‘a ‘\B post work flo... Type a keyword or phrase AN % ® Sgnin > (?)
3D Model Inspect Too}s CAM Manage V»ew Enwronments BIM Get Started Autodesk 360
> & - (7))

F ol 59" @ o w8 s (A

9@%

—

Simulate Ij SetupiShest Setup Folder Dr||| 2D Adaptive 2D Pocket 2D Contour - & Sot g ousy Adaptive Pocket 2 —J g (’ @ @ Help
< Generate & Trace [Bore o s s B v
Toolpath ‘ Job Driling 2D Miling 3D Miling View |Manage | Help

x

-0 X

& post work flow example.ipt Operatio
b 1]
=4 2D Contour2
Il #5 - @3/16" flat
L wCs
1 683 bytes
<% Dril3 [Rapid out]
=4 2D Contour4
1 #5 - @3/16" flat
L WCs
1 536 bytes

< | Bl
For Help, press F1 ll_ll—/

Now we see the A axis moves about the X Axis for the rotation.

%

N5 GO AO

N6 T4 S5000

N7 GO X-0.1Y0.025
N8 G0 Z0.6

A AUTODESK © Copyright 2013 Autodesk, Inc. All rights reserved 24

N9 GO

N10 GO Z0.0394

N11 G1Z7-0.24 F20

N12 G1 X-0.2375Y-0.075 G41
N13 G3 X0. Y-0.312510.2375
N14 G1 X0.5 F40

N15 G3Y0.3125J0.3125
N16 G1 X-0.5

N17 G3Y-0.3125 J-0.3125
N18 G1 XO0.

N19 G3 X0.2375 Y-0.075 J0.2375
N20 G1 X0.1Y0.025 G40
N21 GO Z0.6

N22 GO G91 G28

N23 G90

N24 GO AO.

N25 T1 S500

N26 GO X-0.85 Y-0.3154
N27 GO Z0.6

N28 GO

N29 GO

N30 GO Z0.2

N31 G0 Z0.16

N32 G1Z7-0.24 F5

N33 G0 Z0.2

N34 GO Y0.35

N35 GO

N36 GO Z0.16

N37 G1Z-0.24 F5

N38 GO Z0.2

N39 GO X0.85

N40 GO

N41 G0 Z0.16

N42 G1 Z-0.24 F5

N43 GO0 Z0.2

N44 GO Y-0.3154

N45 GO

N46 GO Z0.16

N47 G1Z-0.24 F5

N48 GO Z0.2

N49 GO0 Z0.6

N50 GO G91 G28

N51 G90

N52 GO A-90

N53 T5 S5000

N54 GO X0.4 Y0.3031

A AU TODESK © Copyright 2013 Autodesk. Inc. All rights reserved

25

N55 GO Z1.4525

N56 GO

N57 GO Z0.8919

N58 G1 Z0.375 F20

N59 G1 X0.2969 Y0.2031 G41
N60 G3 X0.5 Y0. 10.2031

N61 G1 X-0.5 F40

N62 G3 X-0.2969 Y0.2031 J0.2031
N63 G1 X-0.4 Y0.3031 G40
N64 GO Z1.4525

N65 GO G91 G28

N66 G90

N67 M30

%

Now make this change to the post file [1, 0, 0] to [-1, O, O]:
var aAxis = createAxis({coordinate:0, table:true, axis:[-1, 0, 0], range:[-360,360], cyclic:true,

Post again and notice the A move became positive. This is how to change the direction of the
rotary axis.

Future work:

Let’s return to that program number. As we said before, NC controls have a limit on the name
of the program for storage in the controls memory. We need to add some logic to limit the
name.

function onOpen() {
writeln("%");
if (programName) {
var programld;

try {
programld = getAsint(programName);

}catch(e) {
error(localize("Program name must be a number."));
return;

}

writeln((programName ? (programName) : ""));

}

This will produce an error dialog and replace the NC program with an error file. This very simple
post processor is intended for educational purposes only, and is not intended to be used for the
manufacturing of parts in CNC machine tools.

AAUTODESK © Copyright 2013 Autodesk, Inc. All rights reservec 26

