11 Computational Geometry

CGAL
fab modules

11.1 MESHES

triangulation
FEM, STL, GL

maximize minimum angle

closest points
voting, ecology, networking
dual
simplices with no vertex in circumsphere

start arbitrary bounding simplex
add point, delete intersecting circumspheres, create simplices from polytope faces
not unique, perturb
construct tree from subdivisions
11.2 Shapes

randomized incremental
N log N

guayon

ear-clipping, diagonal contained

volume
CT, sim, frep

marchine cubes

decimation

11.2 SHAPES

mesh
NURB
brep
CSG
frep

Boolean
distance metric
interval arithmetic
octree

Pion, Sylvain. "Interval arithmetic: An efficient implementation and an application to computational geometry." Workshop on Applications of Interval Analysis to systems and Control (MISC). 1999.

ASDF

Hierarchical Volumetric Object Representations for Digital Fabrication Workflows, Matthew Keeter (May 2013)

folding

11.3 DISTANCES

offset

biarc

discretize
thicken, thin, fill
distance transform

naive $O(N^2)$

pixel p_{ij} zero interior nonzero exterior

\[f_{ij} = \min_{x \in \text{interior}} (i-x)^2 \]

(11.1)

sweep left, right
every point assigned

\[g_{ij} = \min_{y \in \text{interior}} f_{iy} + (j-y)^2 \]

(11.2)

sweep up, down

\[g_{ij} = \min_{y \in \text{interior}} f_{iy} + (j-y)^2 \]
\[= \min_{y \in \text{interior}} \min_{x \in \text{interior}} (i-x)^2 + (j-y)^2 = 0 \]

(11.3)

bound distance by f
higher dimensions

photogrammetry
triangulation
structured light
Gray code

11.4 ROTATIONS

quaternions

Lie groups

Berry’s phase

11.5 GRAPHS

types
linked lists

routing
shortest path

Dijkstra’s algorithm

dynamic programing
mathematical programing

Bellman-Ford

Hamiltonian path, TSP
NP complete
relaxations

11.6 SELECTED REFERENCES

Old and new classics.

11.7 PROBLEMS

(11.1) frep
(11.2) 720 rotation
(11.3) mesh routing