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Quantum computation remains an enormously appealing but elusive goal. It is appealing
because of its potential to perform superfast algorithms, such as finding prime factors
in polynomial time, but also elusive because of the difficulty of simultaneously manip-
ulating quantum degrees of freedom while preventing environmentally induced deco-
herence. A new approach to quantum computing is introduced based on the use of
multiple-pulse resonance techniques to manipulate the small deviation from equilibrium
of the density matrix of a macroscopic ensemble so that it appears to be the density
matrix of a much lower dimensional pure state. A complete prescription for quantum
computing is given for such a system.

The information-processing capability of
quantum systems has long been of theoret-
ical interest but has recently become of
great practical importance because of a se-
ries of remarkable results leading up to
Shor’s algorithm for finding prime factors in
polynomial time instead of exponential
time (1–4). This development has led many
groups to try to realize a quantum computer,
using systems such as trapped ions (5, 6),
quantum dots (7), and cavity quantum-
electrodynamics (8–10). The experimental
challenge is to find a system that has the
nonlinear interactions that are required for
computation and that simultaneously can
be influenced externally in order to control
it but that does not couple to the environ-
ment so strongly that the quantum coher-
ence is rapidly lost (11, 12). The most
successful realization to date is a two quan-
tum bit (‘‘qubit’’) computer that uses a
cooled single ion of beryllium (6). Because
of the enormous experimental effort re-
quired in such an experiment to isolate a
small number of quantum degrees of free-
dom and cool them to their ground state,
these approaches appear unlikely to provide
a practically accessible means for comput-
ing with a larger number of qubits.

In the quest to build a quantum comput-
er, one particularly attractive physical sys-
tem has been the nuclear spin because of its
extremely good isolation from electronic
and vibrational mechanisms that can lead
to decoherence. In fact, in Bloch’s original
1946 paper on nuclear induction (13), he
pointed out that relaxation times can be

inconveniently long (for observation) and
suggested that paramagnetic ions be intro-
duced to shorten them. Of course, we are
interested here in long relaxation times;
today, in chemical applications of nuclear
magnetic resonance (NMR), coherence
times on the order of thousands of seconds
can be observed (14), and protons in ordi-
nary water can remain coherent for tens of
seconds. Furthermore, the routine use of
complex sequences of hundreds of radio
frequency (rf) pulses for manipulating spins
in modern NMR spectroscopy (15) points
to the promise of nuclear spins for repre-
senting quantum information.

However, there is a problem: Quantum
computation requires the preparation, ma-
nipulation, coherent evolution, and mea-
surement of pure quantum states. In an
ensemble of systems prepared in a distribu-
tion of states, such as is the case for nuclear
spins in thermal equilibrium at room tem-
perature, there is a statistical mixture of
pure states. If computation were naı̈vely
attempted with such a mixture, the result-
ing destructive interference between differ-
ent states would eliminate the coherence
needed for quantum algorithms.

These pitfalls and potentials for NMR
quantum computation have been noted
(16, 17). One suggestion was to create an
apparatus to address single nuclear spins
one at a time, in a spirit similar to manip-
ulating single ions in a trap. This approach
would avoid the thermal problem because
by definition a single system is always in a
pure quantum state. Unfortunately, the
most promising experimental approach for
this, that of using an atomic-resolution
magnetic scanning force probe (18), is very
difficult to realize because of the high sen-
sitivity required to see the extremely small
magnetic induction signal created by a sin-
gle nucleus and the complications intro-

duced by the presence of a scanning probe.
This article presents a new approach to

quantum computing based on using bulk
samples rather than isolated degrees of free-
dom. The problem, of course, is that such
samples microscopically are in a thermal
distribution of states, and it is impractical to
hope to cool macroscopic materials to their
ground state; furthermore, bulk samples are
macroscopic ensembles whose members
cannot be addressed individually for read-
out. We present here solutions to these prob-
lems. First, we report on a procedure to take
advantage of the structure present in thermal
equilibrium to introduce into the system’s
large density matrix a perturbation that acts
exactly like a much smaller dimensional ef-
fective pure state. We then show how quan-
tum computation can be performed using
this ensemble system in such a way that the
result is deterministic and can be read out
efficiently. One great advantage of this ap-
proach is that, because of the massive redun-
dancy provided by having a large ensemble
of identical copies of the system, environ-
mental interactions or intentional measure-
ments only weakly perturb the computer’s
state. Thus, quantum computation becomes
experimentally accessible in many naturally
existing materials.

From the perspective of the NMR chem-
ist, our scheme is unusual in a fundamental
respect. In NMR spectroscopy, the primary
purpose is to elucidate molecular structure
and chemical dynamics, and great efforts
are made to enhance the desired signal and
render the detected spectra into a form that
reflects properties of the system under
study. Our purpose here is very different—
we view each molecule as a single comput-
er, whose state is determined by the orien-
tations of its spins. Sequences of rf pulses,
which manipulate spin orientations and
couplings, constitute quantum logic gates
and perform unitary transformations on the
state. We begin with molecules with known
configurations and spin couplings and de-
liberately suppress most of the NMR signal
in order to produce an output that is inde-
pendent of the molecular structure and is
due only to the quantum computation that
was performed.

A different perspective may be taken
by the computer scientist. Our machine
can be visualized as a collection of
O(1023) redundant N-bit computers. Be-
cause the N spins in each molecule may be
in entangled quantum superposition
states, our computer can be a quantum
one. Therefore, although the clock cycle
time of each computer may be slow [each
rf rotation pulse can take O(100) micro-
seconds], there can be a significant speed-
up over a comparable classical computer
because we may execute exponentially
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faster quantum algorithms. The challenge
is to find a global way to use the ensemble
of independent quantum computers with-
out needing to address them individually.

Our solution operates by rearranging
the states of N-spin molecules (which are
initially in thermal equilibrium) such that
a portion forms a uniform background that
does not contribute to the measured sig-
nal, and the remainder forms a deviation
that does. This deviation will behave as a
pure state just as a vacancy in an electron-
ic conduction band in a semiconductor
behaves exactly like a quantum particle (a

hole). The procedure utilizes traditional
pulsed NMR techniques but requires novel
excitation sequences. Once the system is
prepared in this fashion, further pulses can
effect the computation and cause the re-
sult to be read out. First, we will show how
an effective pure state can be distilled
from a thermal ensemble, and we will then
turn to the more familiar question of how
to apply arbitrary unitary transformations
to such pure states and hence compute
(17, 19).

Pure states from a thermal ensemble. In
a conventional pulsed NMR experiment, a

transverse rf magnetic field is applied to a
sample in a strong longitudinal magnetic
field B0. The strong field induces a Zeeman
splitting of the levels of the spin system. In
thermal equilibrium, for a two-level system
(such as uncoupled protons) the ratio of the
populations of the higher energy and lower
energy levels differs from unity by ;1026.
This small difference gives rise to a macro-
scopic magnetization, which can be detect-
ed by its precession in a pickup coil.

Consider, for example, a typical homo-
nuclear two-spin molecular system such as
(2,3)-dibromothiophene. In a 4.7-T field,

the precession frequencies of the two hydro-
gen nuclei in this molecule are both ;200
MHz, but are slightly different by their
chemical shift that arises from their unique
local chemical environments. Typical
chemical shifts are a few parts per million,
which translates to a few kilohertz in strong
magnets. Single-spin rotations may be ac-
complished by applying semiselective trans-
verse rf pulses, which are resonant at one of
the proton frequencies, and cause the ad-
dressed nuclear spin to rotate around the
transverse axis while still precessing around
B0. Spins on the same molecule may also
interact with each other through dipolar- or
electron-mediated interactions; these non-
linearities are used to accomplish logic op-
erations, as will be discussed below. For
simplicity of discussion, we shall consider
only spin-1/2 systems and scalar-coupling
Hamiltonians here.

At high temperature, the state of a
system of N-spin molecules is well de-
scribed by the density matrix (see Box 1
for a derivation):

r̂ 5
Î
2N

1 r̂D (1)

The two terms describe an equilibrium part
that is proportional to the identity Î, and a
remaining traceless deviation part r̂D,
which we shall term the “deviation densi-
ty matrix” (20). Under the action of a
unitary transformation (for example, free
evolution or imposed pulse sequences),
the identity part of the density matrix will
not change:

Ûr̂Û† 5 ÛF Î2N 1 r̂DGÛ† 5
Î
2N

1 Ûr̂DÛ†

(2)

Therefore, the dynamics of the ensemble of
noninteracting molecules can further be ap-
proximated by using just the density matrix

Box 1. The thermal equilibrium density matrix. Let us assume that the state of the entire system is
well described as an ensemble of non-interacting molecules. For example, this is a good approxi-
mation in a liquid sample, where the rapid tumbling averages out intermolecular interactions (15). The
ensemble averaged state is described by a density matrix, which is a tensor product of the density
matrices for each molecule:

r̂ 5 r̂molecule 1 R r̂molecule 2 R r̂molecule 3 R · · · (14)

Because in thermal equilibrium these density matrices are all identical, and because during their
further evolution they do not interact, it is sufficient to consider the evolution of a single molecular
density matrix to represent the whole sample. The overall system of O(1023) N-spin molecules has a
huge number of degrees of freedom, but because it is not possible to address the molecules
individually, the system acts as though it has only N degrees of freedom. This means that we obtain
only a small number of useful quantum bits from the enormous number of underlying degrees of
freedom in the sample.
In thermal equilibrium, the N spins of each molecule are arranged in some distribution of energy

eigenstates (that is, aligned with or against B0). These states are described by a 2
N 3 2N diagonal

density matrix whose elements give the average populations of the 2N eigenstates. For example, the
equilibrium density matrix for a single spin is:

r̂i
equilibrium 5 Fp20 0

p1G (15)

where p2 and p1 denote the population probabilities for the two energy levels. In terms of the
Boltzmann factor ai 5 \vi/2kT:

r̂i
equilibrium '

1
2 F10 0

1G 1
1
2 Fai

0
0

2ai
G (16)

where wi is the resonant frequency of the i
th spin. For protons at room temperature, a ' 4 3 1026

times B0 in tesla. Although this is a very small number, this small deviation is what almost all NMR
experiments measure.
For a molecule withN spins, in thermal equilibrium the density matrix is approximately given by the

tensor product of the states of of the individual spins;

r̂ 5 r̂i R r̂2 R · · · R r̂N (17)

For two spins, we find that:

r̂ 5
1
4 3

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1
4 1

1
4 3

a1 1 a2

0
0
0

0
a1 2 a2

0
0

0
0

2a1 1 a2

0

0
0
0

2a1 2a2

4 (18)

written in the energy eigenstate basis +&,(&,)&,_&.
For the N 5 4 case, the diagonal elements are approximately:

where the 16 spin states have been explicitly labeled. Now, a unitary transform on the spin states can
be used to selectively exchange populations among the different energy levels; mathematically, this
amounts to relabeling the states. Experimentally, this may be accomplished with logic gate pulse
sequences (shown below) or by selective rf pulses. Either way, we can produce the final state:
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for the macroscopic deviation from identity.
Because this is governed by quantum evo-
lution equations, the macroscopic signal re-
flects quantum dynamics (within the deco-
herence time scale, which can allow for
thousands of rf pulses). This interesting ob-
servation is the usual starting point in NMR
theory.

Now, let us consider the physical mean-
ing of the terms in rD at thermal equilibrium,
where the diagonal terms give the state pop-
ulations and the off-diagonal terms are zero.
For example, suppose that we have an N 5
2 spin system that has the deviation density
matrix:

r̂D 5 a3
3
0
0
0

0
21
0
0

0
0

21
0

0
0
0

21
4 (3)

This representation means that of the 1023
molecules, (1

4
1 3a) 3 1023 are in the u+&

state, while (1
4

2 a) 3 1023 are in each of
the u(&, u)&, and u_& states. The system
is clearly a statistical mixture, meaning that
it is an ensemble of molecules in a variety of
the four possible states. Nevertheless, the
system behaves like a pure state.

Why? Suppose that we tip one of the
spins (in all of the molecules) into the
transverse plane so that its precession gen-
erates a signal in our pickup coil. If the
u+& state had population 1

4
2 a just like

the other states, then because of the bal-
anced distribution, for every spin pointed
along x̂, there would be another in the 2x̂
direction, and the net magnetization
would be zero. However, the u+& state has
excess relative population, and thus the
only net signal arises from 4a 3 1023 u+&
spins, which are all in the same pure quan-
tum state. The lesson is that an excess (or
deficient) single state spin population
among a uniformly populated background
of levels behaves like a pure state.

We can use this result as follows. Let us
make the reasonable assumption that the
chemical shifts of the N spins are small
compared to their average frequency v, that
is, that uvi 2 vju ,, v. In this case, for N 5
2 we have that:

r̂D 5
2a

4 3
1
0
0
0

0
0
0
0

0
0
0
0

0
0
0

21
4 (4)

Let us think of the second spin as a label; it
tells us which of two pure states, u2& or
u1&, the first spin was prepared in. Mathe-
matically, this is represented by the block-
diagonal structure of r̂D, which indicates
that the state of the first spin is a pure state
when conditioned on a measurement result

of the second spin. Thus, if we arrange for
unitary transforms to occur to the first spin
alone (and for nothing to happen to the
second spin), then the state shown in Eq. 4
becomes:

Here, U represents the unitary transform
effected by a series of pulse sequences ap-
plied to the spin system; it may be some
one-bit operation carried out by a quantum
computation. The meaning of this result is
that the output is either Uu2&^2uU† or
Uu1&^1uU†, and moreover, these two are
distinguished by the state of the second
spin. Experimentally, this difference is de-
termined in the final readout of the state.
Thus, we may distill k 5 1 qubits from N 5
2 thermal spins.

This concept is easily generalized toN .
2 spins. The fundamental idea is to identify
equally populated states that naturally exist
in a thermal ensemble; unitary transforms
are then used to group together these states
to form a uniform background against
which a differently populated single pure-
state can express itself. We label this group
using some other spins and in this manner
produce a state in which a few of the spins
are in pure states when conditioned on the
state of the others.

As a final example, consider the N 5 4
case (see Box 1). The final state can be
represented by four independent pairs of
pure state spins. That is, we may write:

where “8” indicates equality up to a sign
and constant offset factor in each block.
The four blocks are four separate two-spin
pure states (let us call these our qubit
spins) when conditioned on the remaining
spins (the two “ancilla” spins). Note that
the state of the qubits alone would not
give a pure state; it is necessary to know
the state of the ancilla spins as well. In
this sense, the logical qubits we have are
actually collective states of the four spin
system. By freezing evolution of the an-
cilla spins (experimentally feasible with a
technique known as decoupling), we pro-
hibit the four block states from interacting
with each other, and thus we need not

concern ourselves with the dynamics of
the ancilla.

In a similar manner, we may distill a
three qubit pure state from six spins, a six
qubit pure state from eight spins, and so
forth. If the resulting block-diagonal density
matrix is written as r̂ 5 r̂1 C r̂2 C z z z Cr̂M,
then a unitary transformation that acts on
just one set of spin degrees of freedom dis-
tributes over the blocks permitting an arbi-
trary transform to be applied to the qubit
block:

~Û1RÎ2R· · ·RÎM!~r̂1Cr̂2C· · ·Cr̂M!

z~Û1RÎ2R· · ·RÎM!†

5 Û1r̂1Û1
†CÛ1r̂2Û1

†C· · ·CÛ1r̂MÛ1
†

(7)

The N 5 2 and N 5 4 cases are special, in
that we are able to use all of the eigen-
states as either background or pure states.
In general, this will not be the case, and
some states of the ancilla spins will corre-
spond to “garbage blocks” rather than to
pure states. Alternatively, additional
smaller pure spin systems may be fit into
these blocks. The blocks may be thought
of as being parallel computers whose out-
puts we may distinguish by using the state
of the ancilla.

We now indicate how our procedure is
tolerant of errors. Perturbations in the prep-
aration process, for example, due to the uvi
2 vju never being exactly zero, will not pose
a problem for the above scenario for the
following reason. Suppose there is some
small error in preparing the initial condi-
tion, r̂ 5 22NÎ 1 r̂D 1 er̂error. By the same
argument used in Eq. 2, the result of a
complete computation (which can be ex-
pressed as the unitary transform Ûqc) is
22NÎ 1 Ûqcr̂DÛqc

† 1 eÛqcr̂errorÛqc
† . The

magnitude of the initial error is unchanged,
and thus for small e, standard statistical
techniques can be used to extract the com-
putational result efficiently. Errors that do
perturb the evolution of the computation
can be reduced through quantum-error cor-
rection (21, 22).

The principle behind our idea is that
there may exist significant structure in the
state distribution of a molecule’s spins, even
in thermal equilibrium. This structure cor-
responds to regularity from which we may
distill something close to being a pure state
(that has very low von-Neumann entropy,
Tr [r̂ log r̂]), for a subset of the spins. Our
procedure is a kind of compression, which
makes good use of the negative entropy
available in the initial state of the system.
In Eq. 6, the excess entropy is contained in
the constant offsets not shown between the
qubit blocks. Alternatively, excess entropy
can be rejected to the “garbage” blocks,
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which are distinguished from those of inter-
est by the ancilla spins. Thus, a subset of the
available spins inside each molecule are
used to label the remainder, creating con-
ditionally pure states.

Finally, how well does this procedure
scale? The density matrix for a pure state of
k quantum bits (qubits) must have 2k 2 1
zero eigenvalues. Under the small chemical
shift assumption, the initial rD for N spins
will have N!/[(N/2)!]2 ' 2N/(Np/2)1/2 ap-
proximately zero eigenvalues (which come
from states with equal spin up and spin
down populations). Unitary transforms
leave the spectrum of eigenvalues un-
changed but may be used to permute the
elements to arrange for a convenient block-
matrix structure, as previously demonstrat-
ed. The necessary condition for preparing a
k-qubit effective pure state is that:

k # log2 F N!
@~N/2!!#2

1 1G
' N 2 O~log2N! (8)

For large N, we may, therefore, fit at least
one k ' N qubit computer in a molecule
with N spins because, for example, logic
gate sequences can be used to assemble
together into one block the set of all states
with equal numbers of up and down spins
(these states have equal Boltzmann popula-
tions) and the single all spin-down state
(which is highly populated in comparison).

However, this does not come for free—
the price we pay is a decrease in the ob-
served signal strength. Fundamentally, this
is because we have not changed the overall
temperature of the system; only a very small
conditional subset has “cold” spins. In the
high-temperature approximation we use
here, the observed signal strength S of the
deviation density matrix scales as:

S } nV
Na

2N
(9)

where n is the molecular density, V is the
sample volume, and Na/2N is the probabil-
ity of finding a particular N-spin configura-
tion. For a fixed at room temperature, per-
forming a k 5 10 qubit calculation with an
N 5 15 spin molecule decreases S by '0.01
compared to a single-spin signal from the
sample. Modern phase-cycling and subtrac-
tion techniques make it possible to see such
a signal. Such a 10-qubit quantum comput-
er explores a state space of size 210; no other
(non-NMR) concept has come close to re-
alizing such a large system.

To scale beyond 10 spins, improvements
can be made by using more clever entropy
packing techniques (23) that take advan-
tage of additional structure in the initial
thermal state, but these will only give ad-
ditional polynomial factors of N. Gradient

fields (24) or coupling to other degrees of
freedom could also be used to perform non-
unitary operations that can make use of
more of the initial thermal state. Initial spin
cooling may be used (such as by coherence
transfer, optical pumping, or conventional
refrigeration), which can increase the signal
strength exponentially. It is also possible to
design quantum algorithms that produce
answers one bit at a time, trading off a
logarithmic increase in the number of times
a calculation needs to be run for greater
signal-to-noise.

Single-spin operations. We have dem-
onstrated that a pure state initial condi-
tion can be prepared from a thermal bulk
spin ensemble. To complete the task of
showing that this system may perform
quantum computation, we need to show
that two more things are possible: any
unitary transformation (quantum logic
gate), and final state readout. Taking ad-
vantage of the fact that any quantum logic
gate can be constructed from combining
arbitrary single qubit rotations and con-
trolled-NOT gates (25), we concentrate
here on showing how the traditional tools
of pulsed NMR allow us to perform these
two functions.

To start, we assume that we have uncou-
pled identical spins in a strong magnetic
field B5 B0ẑ. The Hamiltonian for the spin
degree of freedom is H 5 2m z B 5
2g\B0Îz, where g is the gyromagnetic ratio
for the spin and Îz is the operator for the
z component of the angular momentum.
The time-advance operator exp(iHt/\) 5
exp(2igB0tÎz) 5 R̂z(u 5 gB0t) thus shows
the time evolution to be a rotation by an
angle u about the ẑ axis.

If a nearly resonant oscillating rf field is
now applied in the x̂ direction, then in the
rotating-wave approximation, we find that
in the rotating frame the spin evolves under
an effective field {B1 cos(w)x̂, B1 sin(w)ŷ,
(B0 2 v/g)ẑ} (where w is the rf phase). For
spins close to resonance, even a moderately
large B1 can dominate the small deviation
of v from gB0 due to chemical shifts, and so
it is a good approximation to ignore the B0
term and take all of the nearby spins to
rotate around the effective field B1 by the
same amount. Because it is possible to in-
dependently rotate around each axis, it is
possible to compose these operators to gen-
erate an arbitrary rotation. We shall use
Rf(u) to denote a single-spin rotation
around the axis f 5 {x, y, z}.

Arbitrary single-spin rotations are still
possible with interacting spins. For example,
in a two-spin system such as (2,3)-dibromo-
thiophene, if the interaction strength is
weak compared to the Zeeman energy, then
the Hamiltonian can be taken to have the
scalar coupling form H 5 \vAÎzA 1 \vBÎzB

1 \vABÎzAÎzB (for strong coupling, the full
ÎA z ÎB term must be used). These three
terms lead to three rotation operators that
commute and can be applied in any order.
The first two give the time-evolution oper-
ators RzA(vAt) and RzB(vBt), rotations of the
A and B spin degrees of freedom around ẑ.
The third term is:

R̂zAB~vABt! 5 eivABtÎzAÎzB 5 cos~vABt/2!zÎ

1 i sin~vABt/2!3
1
0
0
0

0
21
0
0

0
0

21
0

0
0
0
1
4
(10)

The effect of this term is a coupled two-spin
rotation.

We now assume that the chemical shift
vA 2 vB is sufficiently large so that the spins
can be addressed individually. Then a 180°
pulse on A about any axis f has the property
that it may be used to reverse the evolution of
terms containing ÎzA in the Hamiltonian.
Namely, R̂fA(180) R̂zA(vAt) 5 R̂zA(2vAt)
R̂fA(180), and R̂fA(180)R̂zAB(vABt) 5
R̂zAB(2vABt)R̂fA(180) (26). This mecha-
nism is known as refocusing and is useful to
apply selected terms in the Hamiltonian and
to remove reversible broadening effects (such
as spin interactions and magnetic-field inho-
mogeneity). Repeated fast refocusing, known
as decoupling, is also useful because it com-
pletely stops the dynamics of the affected
terms.

Thus, one way to apply a ẑ rotation to
one spin alone in the coupled two-spin
system is by a refocusing pulse between
free evolutions, by using RxB(180) exp[iHt/
\]RxB(180) exp[iHt/\] 5 RzA(2vAt). Of
course, Rz(u) 5 Ry(290)Rx(u)Ry(90) can
also be performed. Refocusing is more gen-
erally useful because of its selectivity. For
example, if refocusing pulses are applied to
both spins, then the only active term is
RzAB(2vABt) (refocusing it twice has no
net effect). If the two coupled spins can-
not be addressed separately, standard
NMR techniques can be used to effect
selective and semiselective excitations by
using longer nonselective pulse sequences
(15).

The controlled-NOT. Given the ability
to perform arbitrary single-bit operations,
the next element required for quantum log-
ic gates is a nonlinear interaction between
spins, such as the controlled-NOT
(CNOT) operation, which conditionally
flips one spin based on the value of the
other (17). The interaction terms in the
Hamiltonian provide the required nonlin-
earity. For the two-spin case with scalar
coupling, a CNOT can be implemented as a
controlled phase shift preceded and fol-
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lowed by rotations, given by the sequence
CAB 5 RyA(290)RzB(290)RzA(270 5
290)RzAB(180)RyA(90) (Fig. 1). Multiply-
ing the rotation matrices corresponding to
the pulses sequence shown in Fig. 1 yields
the operator corresponding to

CAB 5
1
25/23

1
1
0
0

21
1
0
0

0
0
1
1

0
0

21
1
4

z3
12i
0
0
0

0
12i
0
0

0
0
11i
0

0
0
0
11i

4
33

12i
0
0
0

0
11i
0
0

0
0
12i
0

0
0
0
11i

4
z3
11i
0
0
0

0
12i
0
0

0
0
12i
0

0
0
0
11i

4
33

1
21
0
0

1
1
0
0

0
0
1

21

0
0
1
1
4

5 Î2i3
1
0
0
0

0
1
0
0

0
0
0
1

0
0
1
0
4 (11)

This is the CNOT operation (up to an
irrelevant overall phase, which could be
removed by extra rotations). In terms of the
CNOT operation, we may now give the
pulse sequence necessary to transform Eq.
19 to Eq. 20 in Box 1: CACCBCCCBCCA,
where the four spins are labeled alphabeti-
cally from right to left (note that no trans-
form needs to occur to spin D).

An experimental demonstration of the
feasibility of this CNOT sequence (albeit in
a heteronuclear system) is routinely provid-
ed by the common NMR sequence INEPT
(insensitive nuclei enhancement by polar-
ization transfer) (27). This similar se-
quence, RyA(90)RzAB(90)RxA(90), is typi-
cally used to transfer the population from
the abundant proton to the less-responsive
carbon nucleus. The corresponding unitary
operator has the same form as the CNOT
matrix in Eq. 11, but there are phase differ-
ences among the non-zero elements.

Molecular structure determinations can
involve sequences of hundreds of pulses
that probe coupling in networks of hun-
dreds of spins. To construct systems with
many qubits, it is possible to use just the
two-spin interaction terms because the pro-
cess of refocusing or decoupling turns on or
off interaction terms in the Hamiltonian
based on the parity of the number of times
that the affected spin appears in each term,
and such a parity matrix is a complete basis.
Furthermore, couplings are not required be-
tween all pairs of nuclei; it is only necessary
to have local interactions because universal
computations can be performed with a
quantum cellular automata (16). It is also
possible to directly use higher order terms to
save steps [for example, six-quantum tran-
sitions have been observed in benzene
(28)]; an open question is how the scaling
of such higher order terms can be used to
reduce the number of operations over an
algorithm based solely on two-spin terms.
More powerful techniques, such as average
Hamiltonian theory (15), may also be useful
for quantum computation.

Readout. Finally, we show how logical-
state readout may be accomplished. A
general quantum computation produces as
output some pure state uc& 5 Ûqcuc0&. The
result is usually found from a measurement
of the probabilities u^cuc&u2. Can these be
obtained from an NMR quantum comput-

er? Two issues must be considered: in an
NMR system, only certain spin states con-
tribute to observable experimental quan-
tities. Furthermore, only ensemble averag-
es are accessible.

Recall that our computational basis was
chosen to be the longitudinal orientation
of each spin. However, in an NMR appa-
ratus, these terms do not contribute a
signal. Rather, what is experimentally de-
tected by the pickup coil is the net trans-
verse magnetization:

nV^mx 1 imy& 5 nVg\Tr@r̂D~Îx 1 iÎy!# (12)

In other words, if the density matrix is
expanded in a basis of products of angular
momentum operators (15), then the signal
in the pickup coil gives the coefficients of
the Îx and Îy terms. An arbitrary computa-
tion can be designed to move the result to
these terms. Furthermore, the readout se-
quence can be designed such that only
those blocks in the density matrix that cor-
respond to a valid computation will output,
either by conditioning the readout flip puls-
es on the ancilla state or by using phase
cycling techniques. Therefore, measure-
ment of the free induction decay can iden-
tify the coherence terms that contain the
computation result (by the precession fre-
quency) and read out the answer (by deter-
mining the amplitude and phase).

The second issue arises because the usual
output from a quantum computation is non-
deterministic, and thus averages out in an
ensemble averaged measurement. However,
this need not be the case, as we show here.
Consider, for example, Shor’s quantum fac-
toring algorithm, whose output is a random
number known to be close to some integer
ratio c/r, where c is unknown (and nearly
uniformly distributed), and r is the desired
result (the answer to a discrete logarithm
problem, which can be used to factor a
composite number). If only one quantum
computer were involved, projective mea-
surement of each final qubit state would
retrieve the random ratio, from which r
could be determined efficiently with some
classical calculation. However, when an en-
tire ensemble of quantum computers exists
and only ensemble averaged measurement
results are available, this algorithm fails be-
cause each computer ends up in a final state
with different c. That is, ^c/r& is not neces-
sarily rational, and thus r cannot be deter-
mined from it.

This problem can be resolved by a small
modification of Shor’s algorithm. In this
case, the ith quantum computer in the en-
semble will obtain a result xi 5 ci/r, where ci
is a random (unknown) integer, which is
almost certainly co-prime to r. Physically, xi
could be represented in each quantum com-
puter as the state of some spins inside the

Fig. 1. (A) A controlled-NOT
gate acting on two qubits,
(B) the controlled-NOT
gates implemented by a
controlled phase shift gate
(specified by a unitary matrix
with diagonal elements {1,
1, 1, 21}) preceded and fol-
lowed by p/2 rotations, and
(C) the pulse sequence cor-
responding to the compo-
nents in (B).
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molecule. Now, a classical computation
may also be performed on a quantum com-
puter (for a spin computer, this need only
be carried out within the T1 time, and not
the T2 time, because phase damping is in-
consequential for classical states), and thus
using a continued fraction expansion algo-
rithm, each quantum computer may deter-
mine ci from xi and thus obtain r (4, 29).
This algorithm involves the following steps
to determine p and q from x ' p/q: let x
denote the greatest integer less than or
equal to x. A series of numbers aj 5 1/jj
are calculated, where j0 5 1/x and jj 5
1/jj21 2 aj21. These then give a series of
convergents (pj, qj) from the recurrence re-
lation p0 5 a0, q0 5 1, p1 5 a1a0 1 1, q1 5
a1, pj 5 ajpj21 1 pj22, qj 5 ajqj21 1 qj22,
where the desired (p, q) is one of the con-
vergents. r is found to be the qj that satisfies
the discrete logarithm. All of this can be
accomplished in polynomial time.

The freedom to append this continued
fraction step to Shor’s algorithm has been
pointed out elsewhere (30). What was not
recognized previously is that this is useful
because it allows an ensemble to provide as
an output a deterministic estimate of r. This
output r will be randomly distributed [say,
according to p(r)] about some mean ^r& 5 •r
p(r) r, whose value we wish to determine.
Our apparatus can measure this result bit-
by-bit in the following manner: Let rm be
the mth bit of r. Then it follows that

^r& 5 O
m
2mFO

r
p~r!rmG (13)

where the bracketed term is experimentally
observable. Therefore, in one experiment,
the N quantities ^rm& are determined as
described above, efficiently giving the de-
sired result ^r&. For other known quantum
algorithms (31–33), similar modifications
can be used to make the algorithm give a
deterministic output.

We have described one strategy for per-
forming bitwise readout of the computation
result. To emphasize the variety of possible
strategies, consider an alternative and possi-
bly more efficient approach: one may encode
the state of multiple qubits into the phase of
the signal output from each molecule. For
example, quadrature phases can be used to
encode the state of two qubits, and so on.
The microscopic phases are averaged to be-
come a detectable macroscopic quantity, and
by virtue of the quantum algorithm, phases
corresponding to the desired output signal
will add coherently. However, because high
phase resolution requires more observation
time, a trade-off will exist between such an
approach and the alternative of multiple re-
peated experiments. The general idea is that
there exist many classical coding strategies

that may improve the efficiency with which
a bulk spin quantum computer can commu-
nicate the answer through the ensemble
measurement channel.

A final practical but central issue is the
problem of decoherence. Slow decoherence
is one of the primary attractions of an NMR
quantum computer. A global limit is set by
the thermal relaxation time scale T1, which
can be up to thousands of seconds, and a
more stringent limit by T2, the phase damp-
ing time, which is shorter but still may be a
few seconds long. The critical figure of mer-
it is the ratio of the decoherence and logic
gate time scales. Depending on the spin
system chosen, single spin operations using
semiselective pulses may require roughly 0.1
to 10 ms, whereas conditional dynamics
through coupled evolution may require
roughly 1 to 100 ms. Thus, a few thousand
primitive logic operations may be feasible
within the decoherence time.

The viability of bulk-spin quantum com-
puting arises because on one hand, nuclear
systems are very well decoupled from their
environment, while on the other hand, we
can obtain a strong signal from these systems
because of the large ensemble. These two
apparently contradictory attributes are com-
patible here because most of the Hilbert
space of the total system is not used for
quantum computation. The validity of this
scenario is demonstrated by any multidi-
mensional NMR experiment [such as corre-
lated spectroscopy, or COSY (26)] in which
off-diagonal peaks occur because of quantum
coherences among spins. Study of these peak
widths has led to a detailed understanding of
the relevant decoherence processes (15),
with the surprising conclusion that many
multidimensional spectra may be adequately
predicted by ignoring decoherence entirely.
Long coherence times are the final requisite
for practical NMR quantum computation.

Conclusions. With these primitives of
preparing the initial state, performing arbi-
trary unitary transformations, and reading
out the state, it is straightforward to pro-
gram more complex operations. For exam-
ple, the maximally entangled GHZ state
(34) (which has yet to be experimentally
realized) can be reached from three qubits
with the sequence CAC CAB RyA(90). As a
final programming example, we give the
pulse sequence for a three-spin system to
implement a Toffoli gate using controlled
NOT operations (25): RyC(245) CBC
RyC(245) CAC RyC(45) CBC RyC(45). This
is a “controlled-controlled-NOT” gate in
that when both A and B are logical one,
then the state of C is inverted. Although
this unitary transform matches the classical
truth table, internally there are entangled
and superposition states, and so the corre-
sponding classical network of CNOT gates

would not give the correct answer. This
sequence (preceded by the appropriate ini-
tialization and followed by readout) can
therefore serve as a proof-of-principle test
for bulk-spin quantum computing (35).

A more ambitious proof-of-principle is a
demonstration of Shor’s factoring algorithm
by using a 6-qubit system (which can be
prepared by using N 5 9 spins, with relative
signal strength S ' 0.1) to “factor” the
number 15 with the procedure described in
(36). Assuming perfect timing, a few tens of
rf pulses would be needed to prepare the
initial state, ;40 more to perform the com-
putation, and a final few tens of pulses to
initiate the readout. This experiment is a
daunting challenge for the current ion-trap
quantum computer but should be feasible
for many NMR systems (by using more
complex molecules than the simple intro-
ductory examples shown here).

We have introduced to the study of quan-
tum computation some familiar notions from
multidimensional pulsed NMR (the ability
to use decoupling and refocusing to selec-
tively manipulate a Hamiltonian) and some
new ones (the use of extra spins to prepare
an ensemble density matrix deviation from
thermal equilibrium that has collective states
that act exactly like low-dimensional pure
states, and the usefulness of quantum algo-
rithms with deterministic outputs). We be-
lieve that our observations have significant
practical implications: Complex experimen-
tal apparatus to isolate a small number of
spins can be replaced by simple naturally
occurring materials, with the massive redun-
dancy providing macroscopically detectable
signals, so that experimental quantum com-
puting may become a widely accessible field.
Although extensions to handle the problems
of scaling beyond ;10 qubits may be possi-
ble, even a system of that size offers an
unprecedented opportunity to observe and
explore superfast quantum algorithms, quan-
tum error correction, and the evolution of
decoherence and entanglement.
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Alterations in Synaptic Strength
Preceding Axon Withdrawal

H. Colman, J. Nabekura,* J. W. Lichtman†

Permanent removal of axonal input to postsynaptic cells helps shape the pattern of
neuronal connections in response to experience, but the process is poorly understood.
Intracellular recording from newborn and adult mouse muscle fibers temporarily inner-
vated by two axons showed an increasing disparity in the synaptic strengths of the two
inputs before one was eliminated. The connection that survived gained strength by
increasing the amount of neurotransmitter released (quantal content), whereas the input
that was subsequently removed became progressively weaker, because of a reduction
in quantal content and a reduction in quantal efficacy associated with reduced postsyn-
aptic receptor density. Once the synaptic strengths of two inputs began to diverge,
complete axonal withdrawal of the weaker input occurred within 1 to 2 days. These
experiments provide a link between experience-driven changes in synaptic strength and
long-term changes in connectivity in the mammalian nervous system.

The ability of the nervous system to re-
spond to experience in an enduring way
may depend on alterations in the structure
or function of synaptic connections. An
indelible synaptic alteration induced by ex-
perience early in postnatal life is the loss of
some of the axonal inputs that converge on
a target cell (1). A large body of work also
indicates that the strength of existing syn-
apses can be potentiated or depressed in
response to activity (2), and several inves-
tigations have suggested that such changes
in synaptic efficacy ultimately lead to struc-
tural plasticity (3). However, the relation
between alterations in synaptic strength
and permanent structural changes in synap-

tic connectivity is not well understood.
The neuromuscular junction is a simple

and accessible place to examine the relation
between functional and structural synaptic
changes, especially during early postnatal
life when each muscle fiber undergoes a
transition from polyneuronal to single in-
nervation (4). Earlier attempts with the use
of techniques with relatively low sensitivity
failed to detect functional correlates of syn-
apse loss at the neuromuscular junction,
and led to the hypothesis that the loss of
synaptic transmission during synapse elimi-
nation must be abrupt and must result from
the sudden degeneration of the eliminated
axonal branch and all of its synapses (5).
Subsequent anatomical studies, however,
provided no evidence of degeneration (6)
and later studies demonstrated a progressive
loss of synaptic area before axon withdrawal
(7). Utilizing more sensitive physiological
techniques, we have now reexamined
whether alterations in synaptic strength oc-

cur prior to axonal withdrawal.
Intracellular recording from muscle fi-

bers (n 5 600) in the mouse trapezius mus-
cle, chosen because of its favorable anatom-
ical features, showed that most fibers under-
went the transition from multiple to single
axonal innervation during the first two
postnatal weeks with some muscle fibers
achieving single innervation substantially
earlier than others (8). On postnatal day 2,
approximately three-fourths of muscle fibers
were multiply innervated (.95 percent by
two axons), whereas about one-third were
multiply innervated on day 6 and less than
one-tenth remained multiply innervated at
day 10. The progressive loss of polyneuronal
innervation in the trapezius indicated that
synapse elimination here (as elsewhere) was
not occurring synchronously on each
postsynaptic cell. Rather, some target cells
achieved single innervation much sooner
than others. Thus, if there were functional
changes in synaptic strength associated
with the elimination of synapses, at any one
time, different muscle fibers should be at
different stages in this process.

In order to independently activate two
axons converging at the same junction, suc-
tion electrodes were applied to two nearby
nerve branches projecting to the same re-
gion of the neonatal mouse trapezius (Fig.
1A). Muscle fibers innervated by two ax-
ons (Fig. 1B), one input traveling through
each of these nerve branches, were select-
ed for study by intracellular recording.
High magnesium (10 to 17 mM) recording
solution was used to reduce the size of the
evoked endplate potentials (EPPs) (Fig.
1C) (9), so that the quantal content of
each input could be measured by repeti-
tive stimulation (mean 5 770) with the
method of failures (10).

Changes in quantal content. During the
first 10 days after birth, the average quantal
contents of the inputs to individual fibers
diverged (Fig. 2A). At young ages (P1 to
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