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Experimental Implementation of Fast Quantum Searching
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Using nuclear magnetic resonance techniques with a solution of chloroform molecules we impleme
Grover’s search algorithm for a system with four states. By performing a tomographic reconstructi
of the density matrix during the computation good agreement is seen between theory and experim
This provides the first complete experimental demonstration of loading an initial state into a quantu
computer, performing a computation requiring fewer steps than on a classical computer, and th
reading out the final state. [S0031-9007(98)05850-5]
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The study of computation in quantum systems bega
with the recognition of the theoretical possibility [1–3].
This was followed by a series of results leading up t
proofs that a quantum computer requires fewer operatio
than a classical computer for problems including factorin
[4] and searching [5,6]. Appreciation of the powe
of quantum computing was quickly tempered by th
realization that preserving quantum coherence made
implementation of practical quantum computers appear
be unlikely [7–9].

Two recent developments have changed that conclusio
The first is the recognition that quantum error correctio
can be used to compute with imperfect computers [10,11
And the second is that it is possible to decrease t
influence of decoherence by computing with mixed-sta
ensembles rather than isolated systems in a pure sta
This can be done by introducing extra degrees of freedo
[12] using quantum spins [13], space [14], or time [15
to embed within the overall system a subsystem whic
transforms like a pure state. We apply these ideas here
the first experimental realization of a significant quantum
computing algorithm, using nuclear magnetic resonan
(NMR) techniques to perform Grover’s quantum searc
algorithm [5,6].

Classically, searching for a particular entry in an
unordered list ofN elements requiresO sNd attempts.
The list could be stored as a table, such as finding a na
to go along with a phone number in a phone book, o
computed as needed, like testing possible combinatio
to unlock a padlock. Grover’s surprising result is that
quantum computer can obtain the result with certainty
O s

p
Nd attempts.

The simplest interesting application of Grover’s algo
rithm is theN  4 case, which can be posed as follows
on the setx  h0, 1, 2, 3j a functionfsxd  1 except at
somex0, wherefsx0d  21. How many evaluations of
f are required to determinex0? In the worst case,x0 has
a uniform probability of being either0, 1, 2, or 3, and
so the average number of evaluations required classica
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n

o
ns
g
r
e
the
to

n.
n
].

he
te
te.
m
]
h
in

ce
h

me
r
ns
a
in

-
:

lly

is 9y4  2.25. With a quantum computer using Grover’s
algorithm, this is reduced to asingleevaluation. We have
experimentally implemented this case using molecules
chloroform as a quantum computer, and confirmed the p
riodic behavior expected of the algorithm.

The algorithm works by representingx as a pair of two-
state quantum systems. We take these to be the sp
of the carbon and hydrogen nuclei, writingj "l  j1l
and j #l  j0l. The functionfsxd is implemented as a
unitary transform that flips the phase of thex0 element.
If the operator corresponding tox0  3 is applied to the
superpositionjc0l  sj00l 1 j01l 1 j10l 1 j11ldy2 the
result is sj00l 1 j01l 1 j10l 2 j11ldy2. Measurement
of this state is not useful because each answer occu
with equal probability. Grover’s algorithm amplifies the
correct answer by following the conditional flip with a
second operation that inverts each state about the me
Applied to a superposition

P
k akjkl this step gives a new

state
P

k bkjkl with bk  2ak 1 2kal, wherekal is the
mean value ofak . For N  4 and x0  3 the result
of the conditional flip followed by the inversion about
the mean is the statejc1l  j11l, providing the answer
immediately. For generalN , aboutp

p
Ny4 repetitions of

these two steps are required to findx0 [16].
Further iteration of the flip and inversion operations

leads to a periodicity in the state. LetU be the unitary
transform which does these two operations, so th
jcnl  Unjc0l is the state after thenth iteration. Boyer
et al. have shown that the amplitudekx0 j cnl ø
sinfs2n 1 1dug, where u  arcsins1y

p
Nd; this periodi-

city arises from the finite size of the system and the un
tarity of U. For N  4 the theoretical expectation is the
sequencej11l  jc1l  2jc4l  jc7l  2jc10l . . . , a
period of 6 (or 3 if the overall sign is disregarded).

Our experiments used a 0.5 milliliter, 200 millimolar
sample of Carbon-13 labeled chloroform (Cambridg
Isotopes) in d6 acetone. Data were taken at room
temperature with a Bruker DRX 500 MHz spectrometer
The coherence times were measured to beT1  20 sec
© 1998 The American Physical Society
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and T2  0.4 sec for the proton, andT1  21 sec and
T2  0.3 sec for the carbon (the large ratio is due
C-Cl relaxation), and the coupling was measured to
J  215 Hz. All resonance lines from other nuclei an
the solvent were far from the region of interest in th
experiment. In the rotating frame of the proton (a
about 500 MHz) and carbon (at about 125 MHz), th
Hamiltonian for this system can be approximated as [17

H  2p h̄JIzAIzB 1 PfAstdIfA 1 PfBstdIfB 1 Henv ,

(1)

whereIfA and IfB are the angular momentum operato
in the f̂ direction for the proton (A) and carbon (B),
and Henv represents the coupling to the environmen
responsible for the decoherence.PfA and PfB describe
the strength of radio-frequency (rf) pulses which a
applied on resonance to perform single-spin rotations
each of the two spins. These rotations will be denoted
X ; expsipIxy2d for a 90± rotation about thêx axis, and
Ȳ ; exps2ipIyy2d for a 90± rotation about2ŷ, with a
subscript specifying the affected spin.

We used temporal labeling [15] to obtain the sign
from the pure initial state

jcinl  j00l 

2664
1
0
0
0

3775 (2)

by repeating the experiment three times, cyclically pe
muting the j01l, j10l, and j11l state populations before
the computation and then summing the results.

The calculation starts with a Walsh-Hadamard tran
form W , which rotates each quantum bit (qubit) fromj0l
to sj0l 1 j1ldy

p
2, to prepare the uniform superpositio

state

jc0l  W jcinl 
1
2

2664
1 1 1 1
1 21 1 21
1 1 21 21
1 21 21 1

3775
2664

1
0
0
0

3775


1
2

2664
1
1
1
1

3775 . (3)

Note thatW  HA ≠ HB, where H  X2Ȳ (pulses ap-
plied from right to left) is a single-spin Hadamar
transform.

The operator corresponding to the application offsxd
for x0  3 is as

C 

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 21

3775 . (4)

This conditional sign flip, testing for a Boolean strin
that satisfies theAND function, is implemented by
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using the coupled-spin evolution which occurs whe
no rf power is applied. During a timet the system
undergoes the unitary transformation exps2piJIzAIzBtd
in the doubly rotating frame. Denoting at  1y2J
(2.3 millisecond) period evolution as the operatort, we
find that C  YAX̄AȲAYBX̄BȲBt (up to an irrelevant
overall phase factor).

An arbitrary logical function can be tested by a networ
of controlled-NOT and rotation gates [13,18], leaving the
result in a scratch pad qubit. This qubit can then b
used as the source for a controlled phase-shift gate
implement the conditional sign flip, if necessary reversin
the test procedure to erase the scratch pad. In o
experiment these operations could be collapsed into
single step without requiring an extra qubit.

The operatorD that inverts the states about their mea
can be implemented by a Walsh-Hadamard transformW ,
a conditional phase shiftP, and anotherW :

D  WPW  W

2664
1 0 0 0
0 21 0 0
0 0 21 0
0 0 0 21

3775

W 
1
2

2664
21 1 1 1

1 21 1 1
1 1 21 1
1 1 1 21

3775 (5)

This corresponds to the pulse sequenceP 
YAXAȲAYBXBȲBt.

Let U  DC be the complete iteration. The state afte
one cycle is

jc1l  UW jc0l  j11l 

2664
0
0
0
1

3775 . (6)

A measurements of the system’s state will now give wit
certainty the correct answer,j11l. For further iterations,
jcnl  Unjc0l,

jc2l 
1
2

2664
21
21
21

1

3775 jc3l 
1
2

2664
21
21
21
21

3775
jc4l 

2664
0
0
0

21

3775 . (7)

We see that a maximum in the amplitude of thex0 state
j11l recurs every third iteration.

Like any computer program that is compiled to a mi
crocode, the rf pulse sequence forU can be optimized
to eliminate unnecessary operations. In a quantum com
puter this is essential to make the best use of the ava
able coherence. Ignoring irrelevant overall phase factor
and noting thatH  X̄2Ȳ also works, we can simplifyU
3409
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by removing sequential rotations which cancel each oth
out, to get

U  X̄AȲAX̄BȲBtXAȲAXBȲBt sx0  3d . (8)

The other possible cases are obtained by changing
signs of the first twoX rotations,

U 

8<: X̄AȲAX̄BȲBtXAȲAX̄BȲBt sx0  2d ,
X̄AȲAX̄BȲBtX̄AȲAXBȲBt sx0  1d ,
X̄AȲAX̄BȲBtX̄AȲAX̄BȲBt sx0  0d .

(9)

Because the magnetization that is detected in an NM
experiment is the result of a weak measurement o
the ensemble, the signal strength gives the fraction
ithm
early
2% to
FIG. 1. Theoretical and experimental deviation density matrices (in arbitrary units) for seven steps of Grover’s algor
performed on the hydrogen and carbon spins in chloroform. Three full cycles, with a periodicity of three iterations are cl
seen. Only the real component is plotted (the imaginary portion is theoretically zero and was found to contribute less than 1
the experimental results). Relative errorsjjrtheory 2 rexptjjyjjrtheory jj are shown as percentages.
3410
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the population with the measured magnetization rathe
than collapsing the wave function into a measuremen
eigenstate. The readout can be preceded by a sequen
of single spin rotations to allow all terms in the deviation
density matrixrD  r 2 trsrdyN to be measured [19].
Nine experiments—no rotation, rotation aboutx̂, and
about ŷ, for each of the two spins—were performed to
do this reconstruction of the density matrix to facilitate
comparison between theory and experiment.

Figure 1 shows the theoretical and measured devia
tion density matricesrDn  jcnl kcnj 2 trsjcnl kcnjdy4
for the first seven iterations ofU. As expected,rD1 clearly
reveals thej11l state corresponding tox0  3. Analo-
gous results were obtained for experiments repeated fo
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the other possible values ofx0. Measuring each density
matrix required9 3 3  27 experimental repetitions, nine
for the tomographic reconstruction and three for the pu
state preparation. Both of these operations were perform
as tests of the computation, but neither was necessary.
our experiment, starting from the thermal state the max
mum population can be identified in a single iteration, with
the result obtained from a single output spectrum. In th
generalN case, readout of logN expectation value mea-
surements would be required, and good inputs for Grover
algorithm can be distilled in a number of steps polynomia
in logsNd [15].

The longest computation, forn  7, took less than
35 milliseconds, which was well within the coherence
time. The periodicity of Grover’s algorithm is clearly seen
in Fig. 1, with good agreement between theory and expe
ment. The large signal-to-noise ratio (typically better tha
104 to 1) was obtained with just single-shot measurement
Numerical simulations indicate that the 7%–44% error
are primarily due to inhomogeneity of the magnetic field
magnetization decay during the measurement, and imp
fect calibration of the rotations (in order of importance).

These experimental results demonstrate the operation
a simple quantum computer that can load an initial stat
perform a computation, and read out the answer. Whi
there is a long way to go from such a demonstratio
to a system that can exceed the performance of t
fastest classical computers, the experimental study
quantum computation has already come much farther
its short life than either early theoretical predictions o
the history of mature computing technologies would hav
suggested. While scaling up to much larger systems pos
daunting challenges, many optimizations remain to b
taken advantage of, including increasing the sample siz
using coherence transfer to and from electrons, and optic
pumping to cool the spin system [19]. Furthermore
Grover’s algorithm can be matched to convenient physic
operations by performing generalized rapid search, whic
uses transforms other than the Walsh-Hadamard [20].

The NMR system that we have described already has
of the components of a complete computer architectur
including the rudiments of compiler optimizations. It
can implement a nontrivial quantum computation; th
challenge now is to accomplish a useful one.
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