
260 COMPONENT SOFTWARE

New components being started now are likely to be
written as Java applets, given the pervasive presence
of the Internet, the explosive growth of intranet plat-
forms as the new place for corporate application
development, and the overwhelming interest in the
development community to pursue the current hot
platform. However, component programming is made
possible through interface standards that define how
components may interact-how one component may
exchange information with another. Components that
adhere to such standards may be written in any appro-
priate language. One such standard is C O D A (Com-
mon Object Request Broker Architecture); another is
Microsoft’s Component Object Model (COM or
DCOM, for distributed programming); another, for
Java, is Sun Microsystem’s Java Beans.

In the late 199Os, many components were sold to OEMs
and developers, but first tested as downloaded freeware
from the Internet. In fact, components might not have
happened at all without the Internet as a free and nearly
frictionless marketplace. We expect individual devel-
oper Websites and Web-based component market-
places (like the one that IBM already has) to be the
model for selling individual components. We would also
expect new pricing schemes to be implemented as
software developers, used to substantial revenues from
larger products, try out new bundling schemes to
continue to grow their revenue as the business model
for creating and selling software changes.

Bibliography
1998. Szyperski, C. Component Software: Beyond Object-

Oriented Programming. Reading, MA: Addison-Wesley.

Amy D. Wohl

COMPRESSION, DATA
See DATA COMPRESSION; and IMAGE COMPRESSION.

COMPUTATIONAL COMPLEXITY

Once we have developed an algorithm (q.v.) for solving
a computational problem and analyzed its worst-case
time requirements as a function of the size of its input
(most usefully, in terms of the 0-notation; see ALGO-
RITHMS, ANALYSIS OF), it is inevitable to ask the ques-
tion: “Can we do better?” In a typical problem, we
may be able to devise new algorithms for the problem

COMPUTATIONAL COMPLEXITY 261

that are more and more efficient. But eventually, this
line of research often seems to hit an invisible barrier,
a level beyond whch improvements are very difficult,
seemingly impossible, to come by. After many unsuc-
cessful attempts, algorithm designers inevitably start to
wonder if there is something inherent in the problem
that makes it impossible to devise algorithms that are
faster than the current one. They may try to develop
mathematical techniques for proving formally that
there can be no algorithm for the given problem which
runs faster than the current one. Such a proof would
be valuable, as it would suggest that it is futile to keep
working on improved algorithms for this problem,
that further improvements are certainly impossible.
The realm of mathematical models and techniques for
establishing such impossibility proofs is called compu-
tational complexity.

For example, sorting n keys is a computational task
that can be easily accomplished in O(n2) time by naive
exchange algorithms such as bubblesort, while more
sophisticated techniques such as quicksort and merge-
sort bring the time requirements down to O (n log n).
Can we do better, or is n log n an unsurpassable mile-
stone for sorting? Another interesting example is mat-
rix multiplication. For a long time it was assumed that
one needs n3 operations to multiply two n x n mat-
rices. In 1969, Volker Strassen showed that two n x n
matrices can be multiplied by an ingenious recursive
algorithm in O(n2.81) operations! Over the past thirty
years this exponent has undergone a breathtaking
sequence of improvements, and now stands below 2.4.
Where is this sequence of improvements going to end?
can we multiply two matrices in O(n2) time? Can we
prove a lower bound of the form n2 logn, or, even
more ambitiously, d 2 , for the matrix multiplication
problem?

A third example is the traveling salesman problem
(Fig. l) , a problem that is popular and well-studied, as
well as notorious for its difficulty. It is trivial to come up
with an algorithm which, given an instance of the
traveling salesman problem with n cities, will find the
optimum tour in time O(n!)-just check all possible
permutations of the cities. This algorithm, is, of course,
all but unusable for any but the smallest instances: even
for a modest instance with n = 30 cities, the number
of tours to be examined is larger than the size of
the known universe (or its age in picoseconds).
A more detailed examination of the algorithm will
reveal that the true running time is O((n - l)!), since
the starting city can be fixed with no harm to the cor-
rectness of the algorithm. It took some cleverness (and
several decades from the time the problem was posed
in the 1920s) to find a faster algorithm, requiring
“only” 0(n22n) steps; this algorithm, discovered by
Michael Held and Richard M. Karp, uses a dynamic

17

Figure 1 In the traveling salesman problem we are given a set
of cities and the distances between them, and we seek
the shortest closed tour that visits all cities. The
optimum tour in this simple example is shown in bold,
with total length 94. Because of the simplicity of its
statement, i ts obvious appeal, and its maddening
complexity, the traveling salesman problem has been
studied extensively for decades, and it has been the
testbed of every new algorithmic technique. Still, all
algorithms known for it require exponential time in
the worst case.

programming technique (see ALGORITHMS, DESIGN AND
CLASSIFICATION OF) that patiently solves the problem
for larger and larger subsets of the cities, using the
results from smaller subsets to crack the larger ones,
until the optimum tour of the set of all cities is finally
identified.

Can we do better? To this date, there is no known algo-
rithm that is guaranteed to solve the traveling salesman
problem exactly for n cities faster than the dynamic
programming algorithm. There are algorithms that
are known empirically to solve quite large typical
instances of the traveling salesman problem reasonably
fast, and there are fast algorithms that somehow
approximate the optimum solution, but there is no
known algorithm that is guaranteed to return the opti-
mum, and to do so in time that is polynomial in n-
an algorithm with a running time such as O(n2) , or
O(n5). It is thus tempting to conjecture, and try to
prove, that the traveling salesman problem requires
exponential time for its solution, that all algorithms
that solve it must spend exponential time for some
infinite collection of instances.

As the reader may immediately suspect, the task of
proving negative results, or lower bounds on the
complexity of a problem, is usually a lot more intricate
mathematically than just devising an efficient dgo-
rithm. Coming up with an efficient algorithm, however
ingenious it may be, requires only that the algorithm be
specified and analyzed. Proving a lower bound, how-
ever, necessitates that the prover must consider the

262 COMPUTATIONAL COMPLEXITY

whole spectrum of all possible algorithms for the
problem in hand, and show that none of them does
better than the specified bound; the difficulty of the
task is obvious. Since its beginnings in the 1960s, com-
putational complexity has been one of the most active
research areas within theoretical computer science.
However, despite hard work by some of the field’s most
gifted researchers, the development of sophisticated
mathematical techniques, a few ingenious insights, and
an ever-increasing understanding of the issue, it is fair
to say that the difficulty of the task has heretofore
prevailed: with very few and limited exceptions, lower
bounds are still largely in the realm of conjecture.

General Models
The barrier separating polynomial algorithms from
exponential ones, upon which we have stumbled in the
case of the traveling salesman problem, is one whose
significance goes beyond that problem. Polynomial-
time algorithms, algorithms whose running time is
bounded by a function like O(n), O(n3), etc., form a sub-
stantial and important class of computations, broadly
considered akin to the empirical concept of “prac-
tically feasible computation.” Naturally, an O(n’OOO)
algorithm would hardy deserve to be called “prac-
tical”, but such extreme polynomials never come up
in practical situations. Typically, once a polynomial
algorithm is discovered for a problem, a sequence of
improvements ensues and the problem is eventually
brought within the limits of practical computation.
Unfortunately, there are many important problems for
which, like for the traveling salesman problem, the best
known algorithms are exponential in the worst case; it
is these problems that have inspired the development
of the main branch of the field of computational
complexity, the one that deals with general models of
computation. In contrast, problems such as matrix
multiplication and sorting, for which the important
open questions try to differentiate between different
polynomial rates of growth, must be treated within
specialized models of computation, within which there
is some hope of making such fine distinctions.

The process of proving a lower bound on the complex-
ity of a problem must start with a precise mathemat-
ical model for algorithms and their complexity. There
are several useful mathematical models of algorithms,
starting with the many variants of the Turing machine,
proceeding to more down-to-earth models such as the
random access machine (an abstraction of the von
Neumann machine--q.v.), pointer machines, and
many others. For each such model we have a way of
evaluating the time required for the solution of an
instance (in the case of the Turing machine, this is
simply the number of steps the machine takes to come

up with the final answer). This confusing diver-
sity of models appears to add another layer of difficulty,
besides the fundamental mathematical one, to the
development of a theory of computational complexity.
Fortunately, all these various models of computation
have been proved to have computational powers that
differ only by a polynomial. If a problem can be solved
in polynomial time in any one of a wide array of models
of computation, it can be solved in polynomial time in
all of them. It is this fundamental fact, the quantitative
analog of the Church-Turing thesis (see UNDECIDABLE
PROBLEMS), that allows us to study the polynomial/
exponential dichotomy in algorithms in a principled
and model-independent manner. (It should be noted
that this principle is not as universally accepted as
the Church-Turing thesis; in fact, its most serious and
credible challenge has come recently, as physicists
and computer scientists have joined forces to define
and study quantum computing (q.v.), a model of com-
putation that exploits quantum mechanical phenom-
ena to achieve, presently only in theory, apparent
exponential speed-ups over conventional computers
and models of computation.)

Complexity Classes
In computational complexity we classify computa-
tional problems into complexity classes. The most
important complexity class is the set of all problems
that can be solved by polynomial-time algorithms
(by Turing machines, or algorithms in any other one
of a broad set of standard models). This important
complexity class is denoted P, for polynomial time.
Actually, for reasons of convenience, uniformity, and
tradition, complexity classes are comprised not of
problems, but of languages, that is, sets of strings
in some fixed alphabet such as { 0: l} (see FORMAL
LANGUAGES). Any computational problem of interest
can be transformed into a corresponding language in
a way that captures its complexity. For example, the
traveling salesman problem can be captured by the lan-
guage L ~ s p , consisting of all strings of Os and 1s which
encode an n x n matrix of nonnegative integers (the
distances between the cities) plus another integer B,
such that there is a tour of the n cities of total length
equal to B or less.

As we mentioned, it is widely conjectured that the
language h s p is not in P. However, it does belong
in a broader, albeit somewhat less natural, complex-
ity class called NP, for nondeterministic polynomial.
Any language in this class can be decided by a poly-
nomial nondeterministic Turing machine, a hypothet-
ical device that has the ability to make correct guesses.
For example, to recognize a string in bsp , a nondeter-
ministic Turing machine would correctly guess the

COMPUTATIONAL COMPLEXIW 263

optimum tour of the instance encoded, and check that
its length is indeed below the given bound, A language
belongs in the class NP if such a recognition algorithm
-a guessing phase, followed by a polynomial-time
checking phase-exists. This important class contains,
besides all of P, the traveling salesman problem and
many other notoriously difficult problems. It is widely
believed that the class P is strictly included in the class
NP (Le. that there are problems in NP not in P); this
conjecture, as yet unproven, is the most central,
important, and well-studied problem in computational
complexity. A proof of this conjecture would establish
in particular that the traveling salesman problem can-
not be solved by a polynomial-time algorithm; this is
because k s p , along with a surprising variety of other
languages encoding natural problems, has been shown
to be NP-complete. A problem in NP is NP-complete if
all other problems in NP reduce to it in polynomial
time. If there are any problems in NP that require
exponential time, all NP-complete problems must
necessarily be among them.

Complexity classes go beyond NP. The class EXP
contains, informally, all problems solvable by expo-
nential-time algorithms. By a straightforward quanti-
tative extension of the diagonalization proof which
establishes that the halting problem is undecidable (see
UNDECIDABLE PROBLEMS), it can be shown that there
are problems in EXP that are not in P. EXP itself is a
proper subset of the decidable languages. And it is
known that EXP contains all of NP.

Complexity classes also deal with resources other than
time, most significantly space. In analogy to P,
PSPACE is the complexity class of all languages that
can be recognized by a computer using an amount of
memory (number of Turing machine tape squares, for
example) that is bounded by a polynomial in the size of
the input. Memory is a resource that is more powerful
and robust than time (obviously, you can compute
more things with 1,000,000 memory words and
unlimited time, than you can with 1,000,000 instruc-
tions and unlimited memory). For example, PSPACE
contains both P and NP (but is contained in EXP).
Also, another sign of the robustness of space is that
nondeterminism makes no big difference in the space
domain, and nondeterministic machines can simulate
deterministic ones with only quadratic increase in
space (but exponential increase in time)-hence the
absence of an NPSPACE class. Because of the power
of memory as a resource, there are interesting tasks
(such as the evaluation of formulas and the traversal
of rooted trees-q.v.) that can be accomplished in
logarithmic space, whereas no computational task of
the kinds considered here, in which one must examine
the whole input, can be carried out in logarithmic time.
(Many computational tasks of the database query

Figure 2.

Undecidable

NP-complete
problems

The complexity classes introduced in this article are
depicted here as regions arranged according to the
currently most prevalent view among experts in
computational complexity. I f a region A contains
another region €3, then the corresponding classes are
known to contain one another in the same way.
However, whether the containment is proper-that is,
whether there is any space inside region A and outside
region €3-is for most of this map currently a subject of
conjecture. There are a few known proper
containments-for example, we can prove that EXP
properly contains P, that PSPACE properly contains L,
and that EXP is properly contained in the class of
decidable problems.

variety can of course be accomplished in logarithmic
time, for example by binary search; there is a branch of
computational complexity that studies these too.) The
class of problems solvable in logarithmic space is often
denoted L.

There is an important and intriguing connection
between space and parallel time: it turns out that,
again within a broad range of “reasonable” models
of sequential and parallel computation (see PARALLEL
PROCESSING), the computational tasks that can be
accomplished with a given amount of memory are
closely related to the tasks that can be carried out
in the same amount of parallel time-assuming that
there are no limitations on the number of processors
that are available. Another complexity class, called
NC, is supposed to model feasible parallel computa-
tion more accurately: it includes all problems that can
be solved in O((1og n)k) parallel time, for some fixed
integer k, on polynomially many processors. This class
is a subset of P, and is in fact believed to be a proper
subset of P-as there seem to be many tasks which can
be solved efficiently on sequential computers but can-
not be successfully parallelized beyond some level.
Alas, as with most of our more interesting insights
related to complexity classes, that NC is different from
P is currently yet another unproven conjecture.

Fig. 2 depicts the various complexity classes and their
inclusions.

264 COMPUTATIONAL COMPLEXITY

Other Aspects of Computational
Complexity
In a certain sense, the first important results in com-
putational complexity are the undecidability results
proved by Alan M. Turing (q.v.), Alonzo Church (q.v.),
Stephen C. Kleene, and many others in the 1930s and
1940s, establishing that certain problems cannot be
solved by algorithms at all, however inefficient. When
computers became available shortly thereafter, it be-
came apparent that not all decidable problems deserve
to be called “solvable,” since excessive time require-
ments make many algorithms completely impractical.
The current emphasis on polynomial time emerged in
the 1960s from the experiences of researchers, most
notably Jack Edmonds and Alan Cobham, trying to
attack seriously hard problems in optimization and
logic. The foundations of the present “complexity class”
paradigm in computational complexity were laid by
Juris Hartmanis and Richard E. Stearns in the 1960s.

Although research in computational complexity has
ample internal unity, one can discern certain styles,
trends, and research traditions. In the late 1960s a
rich axiomatic theory of complexity was developed by
Manuel Blum, in which complexity was studied in the
abstract as a property relating recursive functions (see
RECURSION) and computational resources that must
obey a small number of common-sense axioms. Struc-
tuval complexity, whose style is also influenced by
the theory of recursive functions, studies complexity
classes, various kinds of reductions, as well as the intri-
cate connections between the two concepts. There
have of course been several attempts to solve the major
open problems of the field, of which the P vs. NP
question is the most well-known and fundamental;
many of these approaches redefine complexity in terms
of Boolean circuits or other such primitive devices, in
the hope of making the quest for lower bounds more
concrete and tangible; other approaches to the P vs. NP
question evoke the rich connections between com-
putational complexity and mathematical logic. There is
a research tradition of growing importance that uses
computational complexity to study the foundations of
cryptographic and other protocols (see CRYPTOGRAPHY,
COMPUTERS IN), as well as of randomness, a study
which often results in unexpected connections and in-
sights into the more central problems in computa-
tional complexity. An interesting variant is commu-
nication complexity, which seeks to bound from below
the amount of information that must be exchanged
between two parties, each of which is in possession of a
private input, in order to compute a complex func-
tion of the two inputs; communication complexity is
often a useful tool in other subfields such as circuit
complexity and VLSI complexity. There is also much
research on using concepts from computational com-

Figure 3.

plexity,

A lower bound for sorting by comparisons can be
obtained within the decision tree model of
computation. In this model, any algorithm that sorts
n keys A [1] , . . . , A [n] starts with a comparison of two
keys (in our example, A [3] with A [4]) , branches to
two new comparisons depending on the outcome,
from these to two new comparisons, and so on. Thus,
every algorithm in this model is a tree. (The analysis of
the related model in which comparisons have three
outcomes, <, =, and >, is very similar.) Notice that
this model suppresses the instructions, present in any
sorting algorithm, that move keys around according
to the comparison outcome; since our goal is to prove
a lower bound, such omission i s legitimate. The
complexity of this algorithm is captured by the height
of the tree, the length of the longest path from the
root to a leaf.

Each leaf of this tree must correspond to the outcome
of the sorting algorithm, that is, to an ordering of the n
keys. Since this algorithm must sort correctly all
possible initial permutations of the keys, there must be
a t least one leaf corresponding to each possible
permutation. Therefore, this tree must have at least n!
leaves.

We are very close to a proof of our lower bound: it is
well-known (and easily provable by induction) that
a binary tree that has height h can have up to 2h
leaves. So, a tree that has n! leaves must have height
a t least the logarithm of n! Now, a calculation shows
that the logarithm of n! is about n log n, which
completes the proof.

most often NP-completeness and its many
variants, in order to understand better particular prob-
lems, and application areas, often problems in seem-
ingly non-computational realms of the pure, applied,
and social sciences.

There are also branches of computational complexity
studying the inherent complexity of problems such as
matrix multiplication and sorting, in which the desired
complexity distinctions are much finer than the funda-
mental one between polynomials and exponentials.
Necessarily, such problems are studied within more
specialized models of computation. For example, in
order to study the complexity of sorting, we may want
to consider a model of computation in which sorting
algorithms are seen as comparison trees. In this model,
an nlog n lower bound for sorting can be proved (see
Fig. 3). Complexity results within limited models of
computation, such as the decision tree model, are

COMPUTATIONAL GEOMETRY 265

often met with skepticism: there may be useful algo-
rithms for solving the problem that are outside the
limitations of the model. There are classical algorithms
like radix sort, using primitives other than compar-
isons (such as array access); these algorithms succeed
in sorting certain kinds of key arrays faster than
nlog n. Moreover, there are recent algorithms which
appear to sort general arrays of keys faster than n log n
by manipulating the bits of the keys. The ultimate value
of lower bounds in restricted models may be, ironi-
cally, that they point to the kinds of primitives that
must be used in order to circumvent them! The related
field of algebraic complexity seeks to answer complex-
ity questions such as the matrix multiplication prob-
lem, within a model of computation in which the
primitive operations are algebraic operations (addi-
tions, multiplications, and so on). Information-based
complexity seeks to understand the complexity of
computations involving real numbers in which the
scarce resource is the amount of information on the
precise values of the inputs required for carrying out
the computation.

Finally, in computational complexity we do not
attempt to evaluate the complexity of a single input
or a single string; we are interested only in the com-
plexity of whole problems and languages. Still, it is
intuitively obvious that the bit string

x = 011011101110001011011011010101111011

is more complex than the string

y = 010101010101010101010101010101010101.

Kolmogorov complexity is an approach to computa-
tional complexity that attempts to capture this intui-
tion by defining the complexity of a string to be the
length of the shortest program (in some fixed program-
ming language) that generates this string. For example,
string y above is generated by the program “ p r i n t
‘01 ’ 18 times ‘I, whereas there may be no such short
program generating the string x . Kolmogorov com-
plexity is a well-developed field which, interestingly,
has often been a valuable tool to researchers in more
mainstream, aspects of computational complexity.

Bibliography
1979. Garey, M. R., and Johnson, D. S. Computers and

Intractability: A Guide to the Theory of NP-completeness.
New York: W. H. Freeman.

1992. Harel, D. Algorithmics: The Spirit of Computing, 2nd Ed.
Reading, MA: Addison-Wesley.

1994. Papadimitriou, C. H. Computational Complexity.
Reading, MA: Addison-Wesley.

Christos H. Papadimitriou

COMPUTATIONAL GEOMETRY

Computational geometry is the study of algorithmic
problems involving geometry. Although the ruler and
compass constructions of ancient Greek geometry were
essentially algorithms for producing geometric objects,
modern computational geometry begins with M. I.
Shamos’s 1975 Ph.D. dissertation, which solved several
fundamental geometric problems and posed many
more. Since the 1980s, computational geometry has
been perhaps the most active area of algorithms
research, and a recent bibliography lists over 8,000
relevant publications. The explosive growth of this field
can be traced to the intuitive appeal of geometric prob-
lems as well as the wide range of practical applications.

Geometric problems arise in a variety of applications,
some of which would not seem to have geo-
metric aspects. VLSI circuits are described by over-
lapping rectangles of different materials. To prevent
wires from short-circuiting, it is necessary to test
designs so that no two rectangles intersect. The huge
number of rectangles in a large circuit implies the need
for fast intersection-detection algorithms. Mobile
robots must find paths to a goal through rooms full of
obstacles without bumping into anything. This can be
more difficult than it might appear, as anyone who tries
to move a piano through a door quickly discovers.
Finite element methods (4.v.) used to simulate the
performance of physical systems such as aircraft
depend upon dividing the surface of the object into
triangular regions, and effort spent in finding a “good”
triangulation (such as the Delaunay triangulation
described below) pays dividends in more efficient and
accurate simulations. Database queries of the form
“how many people are between 180 and 200 centi-
meters tall and weigh between 60 and 75 kilograms”
can be thought of as asking how many points lie in a
given rectangle, where the x-axis represents the height
and the y-axis the weight. Finally, eliminating hidden
lines and surfaces is typical of the geometric problems
arising in computer graphics.

Computational geometry often deals with questions of
how to compute various aspects of geometric struc-
tures. Many brute force algorithms for solving geo-
metric problems can be improved upon by algorithmic
techniques and sophisticated data structures (4 .v .) . To
a larger extent than most traditional algorithmic prob-
lems, efficient solutions often rely on a combinatorial
understanding of the problem, for example, knowing
how many regions of a certain type can be formed by
an arrangement of n lines.

