
260 COMPONENT SOFTWARE 

New components being started now are likely to be 
written as Java applets, given the pervasive presence 
of the  Internet,  the explosive growth of intranet plat- 
forms as the new place for corporate application 
development,  and  the  overwhelming interest in the 
development  community  to  pursue  the current hot 
platform. However,  component  programming is made 
possible through interface standards that define how 
components may  interact-how one  component may 
exchange  information  with  another.  Components  that 
adhere  to such standards may be written in  any appro- 
priate language. One such  standard is C O D A  (Com- 
mon Object  Request Broker Architecture); another is 
Microsoft’s Component Object  Model (COM or 
DCOM, for distributed programming);  another, for 
Java, is Sun Microsystem’s Java  Beans. 

In the late 199Os, many  components  were sold to OEMs 
and developers, but first tested as downloaded  freeware 
from the  Internet. In fact,  components might  not have 
happened  at all without  the Internet as a free and nearly 
frictionless marketplace. We expect individual  devel- 
oper Websites and  Web-based  component  market- 
places  (like the one that IBM already has) to be the 
model  for  selling  individual components. We would  also 
expect new  pricing schemes  to  be  implemented as 
software developers, used to substantial revenues  from 
larger products, try out  new  bundling  schemes  to 
continue  to grow their revenue as the business  model 
for creating and selling software changes. 
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COMPRESSION, DATA 
See DATA COMPRESSION; and  IMAGE COMPRESSION. 

COMPUTATIONAL COMPLEXITY 

Once we have  developed an algorithm (q.v.) for  solving 
a  computational  problem  and analyzed its worst-case 
time  requirements as a function of the size of its input 
(most usefully,  in terms of the  0-notation; see ALGO- 
RITHMS, ANALYSIS OF), it is  inevitable to ask the ques- 
tion: “Can we do  better?”  In  a typical problem, we 
may be able to devise new algorithms for the  problem 
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that are more  and  more efficient.  But eventually, this 
line of research often seems  to hit an invisible barrier, 
a level beyond whch improvements  are very  difficult, 
seemingly  impossible, to come by. After many  unsuc- 
cessful attempts,  algorithm designers inevitably start  to 
wonder if there is something inherent in the  problem 
that makes it impossible to devise algorithms that  are 
faster than  the current one. They  may try to develop 
mathematical  techniques for proving  formally that 
there can  be  no algorithm for the given problem  which 
runs faster than the current one.  Such  a proof  would 
be valuable,  as it would suggest that it is  futile to keep 
working  on  improved algorithms for this problem, 
that further improvements  are certainly impossible. 
The realm of mathematical models and  techniques for 
establishing such impossibility proofs is  called compu- 
tational  complexity. 

For example, sorting n keys  is a  computational task 
that can be  easily  accomplished  in O( n2) time by naive 
exchange algorithms such as bubblesort, while more 
sophisticated techniques  such as quicksort and merge- 
sort bring the time  requirements  down  to O ( n  log n). 
Can  we do  better, or is n log n an unsurpassable mile- 
stone for sorting? Another interesting example is mat- 
rix multiplication. For a long time it was  assumed  that 
one  needs n3 operations to multiply two n x n mat- 
rices. In 1969, Volker Strassen showed  that  two n x n 
matrices can  be multiplied by an ingenious recursive 
algorithm in O(n2.81)  operations! Over the past thirty 
years this exponent has undergone  a breathtaking 
sequence of improvements,  and now stands below 2.4. 
Where is this sequence of improvements going to  end? 
can we  multiply two matrices in O(n2) time? Can  we 
prove a lower bound of the form n2 logn,  or, even 
more ambitiously, d 2 ,  for the matrix multiplication 
problem? 

A third example is the traveling  salesman  problem 
(Fig. l ) ,  a  problem  that is popular  and well-studied, as 
well as notorious for  its  difficulty. It is  trivial to  come  up 
with an algorithm which, given an instance of the 
traveling salesman  problem with n cities, will  find the 
optimum  tour in time O(n!)-just check all  possible 
permutations of the cities. This algorithm, is, of course, 
all but  unusable for any  but the smallest instances: even 
for a  modest instance with n = 30 cities, the  number 
of tours to be examined is larger than  the size of 
the  known universe (or its age  in picoseconds). 
A more detailed examination of the algorithm will 
reveal that  the  true running  time is O((n  - l)!), since 
the starting city can  be fixed with  no harm  to  the cor- 
rectness of the algorithm. It took some cleverness (and 
several decades  from the time  the  problem  was posed 
in the 1920s) to find a faster algorithm, requiring 
“only” 0(n22n) steps; this algorithm, discovered by 
Michael  Held and Richard M. Karp, uses a dynamic 

17 

Figure 1 In the traveling salesman problem we  are  given a set 
of cities and the  distances between them, and we seek 
the shortest  closed tour  that visits all cities.  The 
optimum  tour  in this simple example is shown in bold, 
with  total length 94. Because of the simplicity of its 
statement, i ts obvious appeal, and its maddening 
complexity, the traveling salesman problem has been 
studied extensively for decades, and it has been the 
testbed of every new algorithmic technique. Still, all 
algorithms known for it require exponential time in 
the worst case. 

programming technique (see ALGORITHMS, DESIGN AND 
CLASSIFICATION OF) that patiently  solves the problem 
for larger and larger subsets of the cities,  using the 
results from smaller subsets to  crack the larger ones, 
until the  optimum tour of the set of all  cities  is  finally 
identified. 

Can we do better? To this date,  there is no  known algo- 
rithm  that is guaranteed  to solve the traveling salesman 
problem exactly  for n cities faster than the dynamic 
programming algorithm. There are algorithms that 
are known empirically to solve quite large typical 
instances of the traveling salesman  problem reasonably 
fast, and there are fast algorithms that somehow 
approximate the optimum solution, but  there is no 
known  algorithm that is guaranteed  to  return the opti- 
mum, and  to  do so in time  that is polynomial in n- 
an algorithm with  a  running  time  such as O(n2) ,  or 
O(n5). It is thus  tempting  to conjecture, and try to 
prove, that the  traveling  salesman  problem  requires 
exponential  time for its  solution, that all algorithms 
that solve  it must  spend exponential time for some 
infinite  collection of instances. 

As the reader may  immediately suspect, the task of 
proving negative  results, or lower  bounds on the 
complexity of a  problem, is  usually a lot more intricate 
mathematically  than just devising an efficient dgo- 
rithm. Coming up with an efficient algorithm, however 
ingenious it  may be, requires only that the algorithm  be 
specified and analyzed. Proving a lower bound,  how- 
ever, necessitates that  the prover  must consider the 
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whole  spectrum of all possible  algorithms  for  the 
problem  in  hand, and show  that  none of them does 
better  than  the specified bound;  the difficulty of the 
task is obvious. Since its beginnings in the 1960s, com- 
putational complexity has  been  one of the most active 
research  areas within theoretical  computer science. 
However, despite hard work by some of the field’s most 
gifted researchers, the development of sophisticated 
mathematical  techniques,  a few  ingenious insights, and 
an ever-increasing understanding of the issue, it is fair 
to say that  the difficulty of the task has  heretofore 
prevailed: with  very  few and limited exceptions, lower 
bounds  are still  largely in the realm of conjecture. 

General Models 
The barrier  separating polynomial  algorithms  from 
exponential ones, upon  which  we  have  stumbled in the 
case of the traveling salesman problem, is one whose 
significance goes  beyond that problem. Polynomial- 
time algorithms, algorithms whose  running time is 
bounded by a  function like O( n),  O( n3),  etc., form a  sub- 
stantial and  important class of computations, broadly 
considered  akin to  the empirical concept of “prac- 
tically feasible computation.” Naturally, an O(n’OOO) 
algorithm  would hardy deserve to  be called “prac- 
tical”,  but  such  extreme polynomials  never come  up 
in practical situations. Typically, once  a polynomial 
algorithm  is  discovered for a  problem,  a sequence of 
improvements  ensues and the problem  is eventually 
brought within the limits of practical  computation. 
Unfortunately, there  are  many  important problems for 
which, like for the traveling salesman problem, the best 
known  algorithms are exponential in the worst case; it 
is these problems that have inspired the development 
of the main  branch of the field  of computational 
complexity, the  one  that deals with general  models of 
computation. In contrast,  problems  such  as  matrix 
multiplication and  sorting, for which the important 
open questions try to differentiate between different 
polynomial rates of growth,  must  be  treated within 
specialized models of computation, within  which there 
is some  hope of making such fine distinctions. 

The  process of proving a lower bound on  the complex- 
ity of a  problem  must  start with a precise mathemat- 
ical  model for algorithms and  their complexity. There 
are several useful mathematical models of algorithms, 
starting with the many  variants of the Turing machine, 
proceeding to  more  down-to-earth models such as the 
random  access  machine (an  abstraction of the von 
Neumann machine--q.v.), pointer machines,  and 
many others. For each  such model  we  have a way of 
evaluating the  time required for the solution of an 
instance (in the case of the Turing machine,  this is 
simply the number of steps the machine takes to  come 

up with the final answer). This  confusing diver- 
sity of models appears to add  another layer of difficulty, 
besides the fundamental  mathematical  one,  to  the 
development of a  theory of computational complexity. 
Fortunately, all these various models of computation 
have  been  proved to have computational powers that 
differ only  by  a  polynomial. If a problem can be  solved 
in polynomial  time in any one of a wide array of models 
of computation, it can  be solved  in  polynomial  time in 
all  of them. It is this fundamental  fact, the  quantitative 
analog of  the  Church-Turing  thesis  (see UNDECIDABLE 
PROBLEMS), that allows us to study the polynomial/ 
exponential  dichotomy in algorithms  in a principled 
and model-independent manner.  (It should  be  noted 
that this principle is not as universally  accepted  as 
the Church-Turing thesis; in fact,  its most serious and 
credible challenge has  come recently, as physicists 
and  computer scientists have joined forces to define 
and study quantum  computing (q.v.), a model of com- 
putation  that exploits quantum mechanical phenom- 
ena  to achieve, presently only in theory,  apparent 
exponential  speed-ups  over  conventional computers 
and models of computation.) 

Complexity Classes 
In computational complexity  we  classify computa- 
tional problems into complexity  classes. The  most 
important complexity class is the set of  all problems 
that  can  be solved  by  polynomial-time  algorithms 
(by Turing  machines, or algorithms in any other  one 
of a  broad set of standard  models). This important 
complexity class is denoted P, for polynomial time. 
Actually, for reasons of convenience, uniformity, and 
tradition, complexity classes are comprised not of 
problems, but of languages, that is, sets of strings 
in  some  fixed  alphabet such as { 0: l} (see FORMAL 
LANGUAGES). Any computational problem of interest 
can  be  transformed  into  a corresponding  language in 
a way that  captures its complexity.  For  example, the 
traveling salesman  problem can  be  captured by the lan- 
guage L ~ s p ,  consisting of all strings of Os and 1s which 
encode an n x n matrix of nonnegative integers (the 
distances between the cities) plus another integer B,  
such  that  there is a  tour of the n cities of total length 
equal  to B or less. 

As we mentioned, it  is  widely conjectured  that  the 
language h s p  is not in  P.  However,  it  does  belong 
in a  broader, albeit somewhat less natural, complex- 
ity  class  called  NP, for nondeterministic  polynomial. 
Any language in this class can be  decided by a poly- 
nomial nondeterministic  Turing  machine, a  hypothet- 
ical device that  has  the ability to  make  correct guesses. 
For example, to recognize a string in bsp ,  a  nondeter- 
ministic Turing machine would correctly guess the 
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optimum  tour of the instance encoded,  and  check that 
its length is  indeed  below the given bound, A language 
belongs  in the class NP  if such a recognition algorithm 
-a guessing phase, followed  by a polynomial-time 
checking  phase-exists.  This important class contains, 
besides  all of P, the traveling salesman  problem  and 
many other notoriously  difficult problems. It is widely 
believed that  the class P is strictly included in the class 
NP (Le. that  there  are  problems in NP not in  P); this 
conjecture, as  yet unproven, is the most central, 
important,  and well-studied  problem  in computational 
complexity. A proof of this conjecture would  establish 
in particular that the traveling salesman  problem can- 
not  be solved  by a  polynomial-time algorithm; this is 
because k s p ,  along  with a surprising variety of other 
languages  encoding  natural  problems,  has  been  shown 
to  be NP-complete. A problem in NP  is NP-complete if 
all other problems in NP reduce  to it in  polynomial 
time. If there are any problems in  NP that require 
exponential time, all  NP-complete problems must  
necessarily be  among  them. 

Complexity  classes  go  beyond  NP.  The  class  EXP 
contains, informally,  all problems solvable by expo- 
nential-time algorithms. By a straightforward quanti- 
tative extension of the diagonalization  proof which 
establishes that the halting  problem is undecidable (see 
UNDECIDABLE PROBLEMS), it can  be  shown  that  there 
are  problems in  EXP that  are not  in P. EXP  itself is a 
proper subset of the decidable languages. And  it  is 
known that EXP contains all of  NP. 

Complexity  classes  also deal with resources other  than 
time, most  significantly space. In analogy to P, 
PSPACE  is the complexity  class of all languages that 
can be  recognized by a computer using an  amount of 
memory (number of Turing machine tape squares, for 
example) that is bounded by a polynomial in the size of 
the input. Memory  is a resource that is more  powerful 
and robust than  time (obviously,  you can  compute 
more things with 1,000,000 memory  words  and 
unlimited time, than you can with 1,000,000 instruc- 
tions and  unlimited memory). For example, PSPACE 
contains both  P  and NP (but is contained in  EXP). 
Also, another sign of the robustness of space is that 
nondeterminism  makes  no big  difference  in the space 
domain,  and nondeterministic machines  can simulate 
deterministic ones  with only quadratic increase in 
space (but exponential increase in  time)-hence the 
absence of an NPSPACE class.  Because of the  power 
of memory as a resource, there are interesting tasks 
(such as the evaluation of formulas  and  the traversal 
of rooted trees-q.v.) that  can be accomplished in 
logarithmic space, whereas  no  computational task of 
the kinds considered  here, in  which one  must  examine 
the whole input, can  be carried out in logarithmic time. 
(Many computational tasks of the database  query 

Figure 2. 

Undecidable 

NP-complete 
problems 

The complexity classes introduced in this article are 
depicted here as regions arranged according to the 
currently most prevalent view among experts in 
computational complexity. I f  a region A contains 
another region €3, then the corresponding classes are 
known  to contain one another in the same way. 
However, whether the containment is proper-that is, 
whether there is  any  space inside region A and outside 
region €3-is for most of this map currently a subject of 
conjecture. There  are a few known proper 
containments-for example,  we  can prove that EXP 
properly contains P, that PSPACE properly contains L, 
and that EXP is properly contained in the class of 
decidable problems. 

variety can of course be accomplished in logarithmic 
time, for example by binary search; there is a branch of 
computational complexity that studies these too.) The 
class of problems solvable  in logarithmic space is often 
denoted L. 

There is an  important  and intriguing connection 
between  space  and parallel  time: it turns  out  that, 
again within a broad  range of “reasonable” models 
of sequential and parallel computation (see PARALLEL 
PROCESSING),  the  computational tasks that can  be 
accomplished with a given amount of memory are 
closely related to  the tasks that can  be carried out 
in the  same  amount of parallel  time-assuming that 
there  are  no limitations on  the  number of processors 
that  are available.  Another  complexity class, called 
NC, is supposed  to model  feasible parallel computa- 
tion more accurately: it includes all problems  that  can 
be solved  in O((1og n)k)  parallel time, for some fixed 
integer k, on polynomially many processors. This  class 
is a subset of  P, and is  in  fact  believed to be a proper 
subset of  P-as there  seem  to  be  many tasks which can 
be solved  efficiently on sequential computers  but can- 
not be  successfully  parallelized  beyond  some  level. 
Alas, as with most of our  more interesting insights 
related to complexity  classes, that NC is different  from 
P is currently yet another  unproven conjecture. 

Fig. 2 depicts the various  complexity  classes  and their 
inclusions. 
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Other Aspects of Computational 
Complexity 
In a  certain  sense, the first important results in com- 
putational complexity are  the undecidability results 
proved by  Alan M. Turing (q.v.), Alonzo  Church (q.v.), 
Stephen C. Kleene, and many others in the 1930s and 
1940s, establishing that  certain problems cannot  be 
solved  by  algorithms at  all, however inefficient. When 
computers  became available shortly thereafter, it be- 
came  apparent that not all  decidable  problems  deserve 
to  be called “solvable,” since excessive time require- 
ments  make many  algorithms  completely impractical. 
The current emphasis on polynomial time emerged in 
the 1960s  from the experiences of researchers, most 
notably Jack Edmonds  and Alan Cobham, trying to 
attack seriously hard  problems in  optimization and 
logic. The  foundations of the  present “complexity class” 
paradigm in computational complexity were laid by 
Juris  Hartmanis  and Richard E. Stearns in the 1960s. 

Although research in computational complexity has 
ample internal  unity,  one  can discern certain styles, 
trends,  and  research  traditions. In the late 1960s a 
rich axiomatic  theory of complexity was  developed by 
Manuel  Blum,  in  which  complexity  was studied in the 
abstract as a  property relating recursive functions (see 
RECURSION) and  computational  resources  that  must 
obey a small number of common-sense axioms. Struc- 
tuval  complexity, whose style is also influenced by 
the  theory of recursive functions, studies complexity 
classes, various kinds of reductions, as well as the intri- 
cate  connections  between the  two  concepts.  There 
have of course been several attempts  to solve the major 
open  problems of the field, of which the P vs.  NP 
question  is the most  well-known and  fundamental; 
many of these  approaches redefine complexity  in terms 
of Boolean  circuits or  other  such primitive devices, in 
the  hope of making the quest for lower bounds  more 
concrete  and tangible; other  approaches  to  the  P vs. NP 
question  evoke the rich  connections between com- 
putational complexity and  mathematical logic. There is 
a  research  tradition of growing importance that uses 
computational complexity to study the foundations of 
cryptographic  and  other protocols (see CRYPTOGRAPHY, 
COMPUTERS IN), as well as of randomness,  a study 
which often results in unexpected  connections  and in- 
sights into the  more  central problems in computa- 
tional complexity. An interesting variant is commu-  
nication  complexity, which  seeks to  bound from  below 
the  amount of information that must  be exchanged 
between  two  parties,  each of which is in possession of a 
private input, in order  to  compute  a complex func- 
tion of the  two  inputs;  communication complexity  is 
often a useful tool in other subfields such as circuit 
complexity and VLSI complexity.  There  is also much 
research on using concepts  from  computational  com- 
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A lower bound  for sorting by  comparisons  can  be 
obtained within the decision tree model of 
computation. In this model,  any algorithm that sorts 
n keys A [ 1 ] ,  . . . , A [ n ]  starts with a comparison of two 
keys (in our example, A [ 3 ]  with A [ 4 ] ) ,  branches to 
two new comparisons depending on the outcome, 
from these to two new comparisons, and so on. Thus, 
every algorithm  in this model is a tree. (The  analysis  of 
the related model in which comparisons  have three 
outcomes, <, =, and >, is very  similar.) Notice that 
this model suppresses the instructions,  present in any 
sorting algorithm, that move keys around according 
to the comparison outcome;  since our goal is to prove 
a lower bound, such omission i s  legitimate. The 
complexity of this algorithm is captured by the height 
of  the tree, the length of the longest path from the 
root to a leaf. 

Each  leaf of this tree must correspond to the outcome 
of  the sorting algorithm, that is, to an ordering of  the n 
keys.  Since this algorithm must sort correctly all 
possible initial permutations of the keys, there must be 
a t  least one leaf corresponding to each  possible 
permutation. Therefore, this tree must have at least n! 
leaves. 

We  are very  close to a proof of our lower bound:  it is 
well-known (and easily provable by induction)  that 
a binary tree that has height h can  have up to 2h 
leaves. So, a tree that has n! leaves must have height 
a t  least the logarithm of n!  Now, a calculation shows 
that the logarithm of n! is about n log n, which 
completes the proof. 

most often NP-completeness and its many 
variants, in order  to  understand  better  particular  prob- 
lems,  and application areas, often problems in seem- 
ingly non-computational realms of the  pure, applied, 
and social sciences. 

There  are also branches of computational complexity 
studying the inherent complexity of problems such as 
matrix multiplication and  sorting, in which the desired 
complexity distinctions are  much finer than  the  funda- 
mental  one  between polynomials and exponentials. 
Necessarily, such problems are studied within more 
specialized models of computation. For example, in 
order to study the complexity of sorting, we  may want 
to consider a model of computation in which sorting 
algorithms are seen as comparison  trees. In this model, 
an  nlog n lower bound for sorting can be  proved (see 
Fig. 3). Complexity results within limited models of 
computation,  such  as  the decision tree model, are 
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often met with  skepticism: there may  be  useful  algo- 
rithms for  solving the problem  that  are outside the 
limitations of the model.  There  are classical algorithms 
like radix sort, using  primitives other  than  compar- 
isons (such as array access); these algorithms succeed 
in sorting certain kinds of key arrays faster than 
nlog n. Moreover,  there  are recent algorithms which 
appear  to sort general arrays of keys faster than n log n 
by manipulating  the bits of the keys.  The ultimate value 
of lower bounds in restricted models  may be, ironi- 
cally, that they point to the kinds of primitives that 
must  be  used  in order  to  circumvent  them! The related 
field of algebraic complexity seeks to  answer  complex- 
ity questions such as the  matrix multiplication prob- 
lem, within a model of computation in which the 
primitive operations are algebraic operations (addi- 
tions, multiplications, and so on).  Information-based 
complexity  seeks to  understand the complexity of 
computations involving real numbers in which the 
scarce resource is the amount of information  on the 
precise  values of the inputs required for carrying out 
the computation. 

Finally,  in computational complexity  we do  not 
attempt  to evaluate the complexity of a single input 
or  a single string; we are interested only  in the  com- 
plexity of whole problems  and languages. Still, it is 
intuitively  obvious that the bit string 

x =  011011101110001011011011010101111011 

is more  complex  than the string 

y =  010101010101010101010101010101010101. 

Kolmogorov  complexity  is an approach to computa- 
tional  complexity that  attempts  to  capture this intui- 
tion by defining the complexity of a string to be the 
length of the shortest program (in some fixed program- 
ming language) that generates this string. For example, 
string y above  is generated by the  program “ p r i n t  
‘01 ’ 18 times ‘I, whereas there may  be no  such short 
program generating the string x .  Kolmogorov com- 
plexity  is a well-developed  field which, interestingly, 
has often been  a valuable tool to researchers in more 
mainstream, aspects of computational complexity. 
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COMPUTATIONAL GEOMETRY 

Computational geometry is the study of algorithmic 
problems involving geometry. Although the ruler and 
compass constructions of ancient Greek  geometry were 
essentially algorithms for producing  geometric objects, 
modern  computational  geometry begins  with M. I. 
Shamos’s 1975 Ph.D. dissertation, which solved  several 
fundamental  geometric  problems  and posed many 
more. Since the 1980s, computational geometry has 
been  perhaps  the most  active area of algorithms 
research,  and  a recent bibliography  lists  over 8,000 
relevant publications. The  explosive growth of this field 
can  be traced to the intuitive appeal of geometric prob- 
lems as  well  as the wide range of practical applications. 

Geometric  problems arise in a variety of applications, 
some of which would not  seem  to have  geo- 
metric aspects. VLSI circuits are described by over- 
lapping rectangles of different materials. To prevent 
wires from short-circuiting, it  is  necessary to test 
designs so that  no  two rectangles intersect. The huge 
number of rectangles in a large circuit implies the need 
for  fast intersection-detection algorithms. Mobile 
robots must find paths to  a goal through  rooms full of 
obstacles without  bumping into anything. This can be 
more difficult than it  might appear, as anyone  who tries 
to move a  piano  through  a  door quickly discovers. 
Finite element  methods  (4.v.) used to simulate the 
performance of physical  systems such as aircraft 
depend  upon dividing the surface of the object into 
triangular regions, and effort spent in  finding a  “good” 
triangulation (such as the Delaunay triangulation 
described below)  pays  dividends  in more efficient and 
accurate simulations. Database queries of the form 
“how many  people are between 180 and 200 centi- 
meters tall and weigh between 60 and 75 kilograms” 
can  be  thought of as  asking  how many points lie  in a 
given rectangle, where the x-axis represents the height 
and  the y-axis the weight. Finally, eliminating hidden 
lines and surfaces is typical of the geometric  problems 
arising  in computer graphics. 

Computational geometry often deals with questions of 
how to  compute various aspects of geometric  struc- 
tures. Many brute force algorithms for  solving  geo- 
metric problems  can  be improved upon by algorithmic 
techniques  and sophisticated data structures (4 .v . ) .  To 
a larger extent than most traditional algorithmic prob- 
lems, efficient solutions often rely on  a  combinatorial 
understanding of the problem, for example, knowing 
how  many regions of a certain type can be formed by 
an  arrangement of n lines. 


