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Abstract. The model of adiabatic quantum computation is a relatively recent model of quantum com-
putation that has attracted attention in the physics and computer science communities.
We describe an efficient adiabatic simulation of any given quantum circuit. This implies
that the adiabatic computation model and the standard circuit-based quantum compu-
tation model are polynomially equivalent. Our result can be extended to the physically
realistic setting of particles arranged on a two-dimensional grid with nearest neighbor inter-
actions. The equivalence between the models allows one to state the main open problems
in quantum computation using well-studied mathematical objects such as eigenvectors and
spectral gaps of Hamiltonians.
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model, computation is performed by quantum circuits, which are similar to classi-
cal (i.e., nonquantum) circuits, except that quantum gates (such as Hadamard and
controlled-NOT) are used instead of classical gates (such as OR and NOT).

Around the year 2000, a new model of quantum computation emerged. This
model, known as adiabatic quantum computation, is based on a celebrated theorem
in quantum mechanics known as the adiabatic theorem [35, 42] and is quite unlike
the usual quantum circuit model. Farhi et al. [25] were the first to study quantum
adiabatic algorithms (though related ideas had already appeared more than a decade
earlier, e.g., [9,10,34]). Farhi et al.’s goal was to attempt to solve hard classical opti-
mization problems such as Satisfiability (Sat). Several simulations (see, e.g., [24])
on random instances of up to 20 quantum bits led to various optimistic specula-
tions. The bad news is that there is now mounting evidence [18, 19, 53] that the
algorithm of [25] takes exponential time in the worst case for NP-complete problems.
Nevertheless, adiabatic computation was since shown to be promising in other less
ambitious directions: it possesses several interesting algorithmic capabilities, as we
will soon review, and in addition it exhibits inherent robustness against certain types
of quantum errors [17]. We note that small-scale adiabatic algorithms have already
been implemented experimentally, using a nuclear magnetic resonance (NMR) system
(e.g., [51, 63]).

We briefly describe the model of adiabatic computation (a more precise descrip-
tion appears in section 2.3). A computation in this model is specified by two Hamil-
tonians named Hinit and Hfinal (a Hamiltonian is simply a Hermitian matrix). The
eigenvector with smallest eigenvalue (also known as the ground state) of Hinit is re-
quired to be an easy-to-prepare state, such as a tensor product state. The output of
the adiabatic computation is the ground state of the final Hamiltonian Hfinal. Hence,
we choose an Hfinal whose ground state represents the solution to our problem. We
require the Hamiltonians to be local ; i.e., we require them to involve only interactions
between a constant number of particles (this can be seen as the equivalent of allowing
gates operating on a constant number of qubits in the standard model). This, in par-
ticular, makes sure that the Hamiltonians have a short classical description, by simply
listing the matrix entries of each local term. The running time of the adiabatic com-
putation is determined by the minimal spectral gap1 of all the Hamiltonians on the
straight line connecting Hinit and Hfinal: H(s) = (1−s)Hinit +sHfinal for s ∈ [0, 1]. In
particular, the adiabatic computation runs in polynomial time if this minimal spectral
gap is at least inverse polynomial.

The motivation for the above definition comes from physics. The Hamiltonian
operator corresponds to the energy of the quantum system, and for it to be physically
realistic and implementable it must be local. Its ground state is the state of lowest
energy. We can set up a quantum system in the ground state of Hinit (which is
supposed to be easy to generate) and apply the Hamiltonian Hinit to the system. We
then slowly modify the Hamiltonian along the straight line from Hinit towards Hfinal.
It follows from the adiabatic theorem that if this transformation is performed slowly
enough (how slowly is determined by the minimal spectral gap), the final state of the
system will be in the ground state of Hfinal, as required.

What is the computational power of this model? In order to refer to the adiabatic
model as a computational model that computes classical functions (rather than quan-
tum states), we consider the result of the adiabatic computation to be the outcome of
a measurement of one or more of the qubits, performed on the final ground state. It is

1The spectral gap is the difference between the lowest and second lowest eigenvalues.
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known that adiabatic computation can be efficiently simulated by standard quantum
computers [18, 24]. Hence, its computational power is not greater than that of stan-
dard quantum computers. Several positive results are also known. In [18, 54] it was
shown that Grover’s quadratic speed-up for an unsorted search [28] can be realized as
an adiabatic computation. Moreover, [22, 53, 56] showed that adiabatic computation
can “tunnel” through wide energy barriers and thus outperform simulated annealing,
a classical counterpart of the adiabatic model. Finally, [7] proved that if we allow
nonlocal Hamiltonians, adiabatic quantum computation has the full power of quan-
tum computation.2 However, whether or not adiabatic computation with physically
realistic Hamiltonians can achieve the full power of quantum computation was not
known. In fact, it was not even known whether adiabatic computation can simu-
late general classical computations efficiently. The focus of this paper is the exact
characterization of the computational power of adiabatic computation.

Before we describe our results, let us clarify one subtle point. Most of the previous
work on the subject focused on a restricted class of adiabatic algorithms known as
adiabatic quantum optimization. In these algorithms, Hfinal is chosen to be a diagonal
matrix, corresponding to a combinatorial optimization problem. In particular, this
implies that the ground state of Hfinal (which is the output of the computation) is a
classical state, i.e., a state in the computational basis. In this paper, however, we de-
fine adiabatic computation as the more general class of adiabatic algorithms in which
the only restriction on Hfinal is that it be a local Hamiltonian. We do this because,
as noted in [7], from a physical point of view, there is no reason to force the physical
process described above to have a diagonal Hfinal, when all other Hamiltonians are
not restricted this way. Thus, our definition of adiabatic computation seems to be
the natural one to use.3

1.1. Results—Computational Complexity of the Adiabatic Model. Our main
result clarifies the question of the computational power of adiabatic algorithms.

Theorem 1.1. The model of adiabatic computation is polynomially equivalent to
the standard model of quantum computation.

As mentioned above, one direction of the equivalence is already known [18, 24].
Our contribution is to show that standard quantum computation can be efficiently
simulated by adiabatic computation. To prove this we use adiabatic computation
with 3-local Hamiltonians.

The search for new quantum algorithms is one of the most important questions
in the field of quantum computation. Theorem 1.1 shows that one can instead look
for adiabatic quantum algorithms without sacrificing computational power.

There are several reasons why it might be useful to search for quantum algo-
rithms in the adiabatic model. First, it has the benefit of a well-developed physics
intuition in the area of adiabatic evolution. In addition, there are powerful math-
ematical techniques to analyze spectral gaps of matrices in the areas of expander
theory [27] and rapidly mixing Markov chains [41, 60]. Indeed, probability theory is

2More precisely, [7] showed that adiabatic computation using simulatable Hamiltonians is as
powerful as standard quantum computation. Simulatable Hamiltonians are Hamiltonians that can
be simulated efficiently by a quantum circuit. They are very different from local Hamiltonians, and
cannot even be written explicitly. Instead, such Hamiltonians are specified using products of local
unitary matrices.

3Moreover, it seems unlikely that adiabatic quantum optimization can simulate arbitrary quan-
tum computation, since computing the ground state of a classical Hamiltonian is a problem in the
complexity class PNP, and it is a long-standing open question whether BQP is contained even in the
polynomial time hierarchy (see [11,38] for definitions).

D
ow

nl
oa

de
d 

01
/2

9/
16

 to
 1

8.
85

.8
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

758 D. AHARONOV, W. VAN DAM, J. KEMPE, Z. LANDAU, S. LLOYD, AND O. REGEV

often used in mathematical physics to analyze spectral gaps of Hamiltonians (see,
e.g., [62]). Finally, it is known that many interesting algorithmic problems in quan-
tum computation can be cast as quantum state generation problems [7]. The problem
of generating special quantum states seems more natural in the adiabatic model than
in the standard model.

1.2. Variants of Theorem 1.1. We mention here a trivial corollary of Theo-
rem 1.1. Local Hamiltonians are a special case of explicit sparse Hamiltonians. These
are Hermitian matrices that have at most polynomially many nonzero elements in
each row and column, and, moreover, for which there is an efficient Turing machine
that can generate a list of all nonzero entries in a given row or column. It was shown
in [7, 13] that adiabatic quantum computation with explicit sparse Hamiltonians can
still be simulated by standard quantum computation. Thus we obtain the following
corollary.

Corollary 1.2. The model of adiabatic computation with explicit sparse Hamil-
tonians is polynomially equivalent to the standard model of quantum computation.

This corollary might be more useful than Theorem 1.1 in the design of quan-
tum algorithms, due to the extensive mathematical literature on sparse matrices and
their spectral gaps. Moreover, it is trivial to generalize it further to allow adiabatic
computation with a general path between Hinit and Hfinal rather than a straight line
(see [7, 23] for a rigorous definition).

1.3. Results—Towards Experimental Implications. Theorem 1.1 uses 3-local
Hamiltonians that act on qubits (i.e., 2-state particles) that may be arbitrarily far
apart. From a practical point of view, it is often difficult to create controlled in-
teractions between particles located far away from each other. Moreover, 3-local
Hamiltonians are technologically very difficult to realize. If one wants to physically
realize adiabatic algorithms, it would be much better to have only 2-local interactions
between nearest neighbor particles. To this end we prove the following theorem.

Theorem 1.3. Any quantum computation can be efficiently simulated by an
adiabatic computation with 2-local nearest neighbor Hamiltonians operating on 6-state
particles set on a two-dimensional grid.

For recent improvements on this theorem, see subsection 1.6.
Theorems 1.1 and 1.3 open up the possibility of physically realizing universal

quantum computation using adiabatically evolving quantum systems. As mentioned
before, there is a possible advantage to this approach: adiabatic quantum computation
is resilient to certain types of noise [17], mainly due to the existence of a spectral gap in
the Hamiltonian. It is well known in physics that such a gap plays an important role in
the context of protecting quantum systems from noise (e.g., this is a crucial ingredient
in topological and geometrical quantum computation4 [32, 39, 50]). However, further
study, both experimental and theoretical, is needed to determine the right model for
noisy adiabatic computation, and whether fault tolerant adiabatic computation can
be achieved (see subsection 1.7).

1.4. Proof of Theorem 1.1: Overview. Given an arbitrary quantum circuit [47],
our goal is to design an adiabatic computation whose output is the same as that of

4Note, however, that in those models the spectral gap has no effect on the running time or on
any other algorithmic aspect, and it is used only to separate the computational subspace from the
“noisy” subspace. In contrast, the spectral gap in adiabatic computation is between the correct
state of the computation and other states, and is crucial from the algorithmic point of view, since it
determines the time complexity of the computation.
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the quantum circuit. Some similarities between the models are obvious: one model
involves unitary gates on a constant number of qubits, while the other involves local
Hamiltonians. However, after some thought, one eventually arrives at the following
difficulty. The output state of the adiabatic computation is the ground state of Hfinal.
The output state of the quantum circuit is its final state, which is unknown to us.
How can we specify Hfinal without knowing the output state of the quantum circuit?
Notice that this state can be some complicated quantum superposition. One might
wonder why our task is not trivial, since this state does have an efficient local clas-
sical description, namely, the quantum circuit. However, local quantum gates, which
operate in sequence to generate a nonlocal overall action, are very different from local
Hamiltonians, which correspond to simultaneous local constraints. To explain the
solution, we first set some notation.

Without loss of generality we assume that the input to the quantum circuit con-
sists of n qubits all initialized to |0〉’s.5 Then a sequence of L unitary gates, U1, . . . , UL,
each operating on one or two qubits, is applied to the state. The system’s state after
the �th gate is |α(�)〉. The output of the quantum circuit is in general a complicated
quantum state |α(L)〉 of n qubits, which is then measured in the standard basis. We
now want to associate with it a corresponding adiabatic computation.

A first natural attempt would be to define Hfinal as a local Hamiltonian with
|α(L)〉 as its ground state. However, this attempt encounters the difficulty mentioned
above: not knowing |α(L)〉, it seems impossible to explicitly specify Hfinal.

The key to resolving this difficulty is a beautiful idea that goes back to Feyn-
man [26], which we call the circuit-to-Hamiltonian construction. This idea was a core
ingredient in an ingenious result of Kitaev [38], which inspired our work. In this
result Kitaev provides the first complete problem for the class QMA, the quantum
analogue of NP. Roughly speaking, QMA is defined like NP, except the verifier is a
quantum algorithm and the witness is a quantum state. Kitaev shows that for some
constant k (5, to be precise), the k-local Hamiltonian problem is QMA-complete. This
problem is defined roughly as follows. The input is a local Hamiltonian on n qubits,
of polynomially many terms involving k qubits each. The goal is to estimate the
ground state energy of the Hamiltonian to within inverse polynomial precision. The
exact definition of QMA and the local Hamiltonian problem are not important for us
(see [38]). What we need presently from Kitaev’s result is the circuit-to-Hamiltonian
construction on which it is based. We now explain how it works.

To understand the idea, it is best to first consider the celebrated classical Cook–
Levin theorem [11], which Kitaev’s result generalizes to the quantum case. The
Cook–Levin theorem states that for some constant k (3, to be precise), k-Sat is
NP-complete. The idea of the proof is that correct classical computation can be
verified locally. In slightly more detail, we consider the history of the computation
performed by a verifier of the NP language. The computation starts with an input
x and a witness y written on the tape. One can write the state of the tape at time
0 as the first row in a two-dimensional tableau. Then the state of the tape at the
next time step can be written in the next row, and so on. The point is that since the
computation is performed by a local Turing machine which evolves by modifying only
a constant number of places on the tape in each time step, it is possible to check that a
given tableau is a valid history of an accepting computation, using local tests, namely,
by considering windows of constant size in the tableau. These local constraints form a
k-Sat formula which is satisfiable if and only if there exists a valid accepting tableau

5Otherwise, the first n gates can be used to flip the qubits to the desired input.
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for the input x, which is equivalent to saying that the input x is accepted by the NP
verifier.

For his proof of the quantum analogue of this theorem, Kitaev needed to define
a local Hamiltonian that checks the correct propagation of the quantum circuit cor-
responding to the verifier of the QMA language. Following Feynman, Kitaev [38]
constructed a Hamiltonian whose ground state is the entire history of the quantum
computation of the verifier, in superposition:

|η〉 := 1√
L + 1

L∑
�=0

|α(�)〉 ⊗ |1�0L−�〉c.(1)

The right (L qubit) register is a clock that counts the steps by adding 1’s from left to
right. The superscript c denotes clock qubits. The idea is that the unary representa-
tion of the clock enables a local verification of correct propagation of the computation
from one computational step to the next. To explain why Kitaev needs a clock, and
does not use a tableau of quantum states, consider a computational step in which no
computation is performed. The two consecutive rows in the tableau need to be the
same in this case. In the classical case, the fact that two rows are the same can of
course be checked location by location. In the quantum case, on the other hand, two
given states can be very different even if all their local reduced density matrices are
the same, and so we cannot verify that the states are equal by comparing their local
reduced density matrices one by one! The entanglement with the clock is what enables
the checks to be local nevertheless. We refer the reader to [6] for more on the analogy
between the classical and quantum Cook–Levin theorems. Notice that this construc-
tion of a local Hamiltonian whose ground state is the history state |η〉 of a given
quantum circuit can be done for any quantum circuit and not only to QMA verifiers.

Our key idea is to use the circuit-to-Hamiltonian construction for the circuit
we would like to simulate adiabatically, and take the resulting Hamiltonian to be
the final Hamiltonian Hfinal of the adiabatic computation. The ground state of this
Hamiltonian is the history state of the circuit we are trying to simulate, namely, |η〉.
Extracting the output of the quantum circuit from the history state is easy: Measure
all the qubits of the clock and if the clock is in the state |1L〉, the computational
qubits carry the output of the circuit. Otherwise, start from scratch.6

For the initial Hamiltonian Hinit we require that it have |α(0)〉 ⊗ |0L〉c, the first
term in the history state, as its unique ground state. It is easy to define such a local
Hamiltonian, because |α(0)〉 ⊗ |0L〉c is a tensor product state. Crucially, Hinit and
Hfinal can be constructed efficiently from the given quantum circuit; no knowledge of
|α(L)〉 is required for the construction.

A technical problem lies in showing that the spectral gap of the intermediate
Hamiltonians H(s) is lower-bounded by some inverse polynomial (more specifically,
we show it is larger than 1/L2). To do this, we notice that the state in the adiabatic
evolution evolves in some low dimension invariant subspace, spanned by the states
of the circuit at various times. It thus suffices to consider the Hamiltonian in this
subspace. We map the restricted Hamiltonian to a Markov chain corresponding to a
random walk on the L + 1 time steps. We then apply the conductance bound from
the theory of rapidly mixing Markov chains [60] to lower bound the spectral gap of
this chain by Ω(1/L2). This completes the proof of Theorem 1.1.

6This gives an overhead factor of L. This factor can be avoided; see the end of this subsection,
and subsection 3.3.
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The proof outlined above does not provide a lower bound on the global spectral
gap, i.e., on the spectral gap inside the entire Hilbert space. Instead, we used the fact
that the adiabatic evolution is confined to some small invariant subspace and ana-
lyzed the spectral gap of the Hamiltonian restricted to that subspace. This does not
imply anything about the global spectral gap, since there may be states of arbitrary
energy outside of the invariant subspace. Such a situation might be problematic for
experimental implementation, in which noise might induce transitions to outside of
the invariant subspace. In particular, we refer to constructions in which the global
spectral gap is 0 (i.e., the ground state is not unique) as degenerate adiabatic com-
putations. As we shall show in Lemma 4.1, our adiabatic computation does have a
nonnegligible global spectral gap, which makes it possibly more relevant for physical
implementations and will also be used in our later results.

The next step we make is to improve the construction from 5-local to 3-locality.
The proof is based on a simple idea (used in [36] to prove that the 3-local Hamiltonian
problem is QMA-complete). Here, there is no longer an invariant subspace. Obtaining
a lower bound on the (now inevitably global) spectral gap requires some additional
technical issues beyond those that we used to prove the global spectral gap for the
5-local case.

One final point worth mentioning is how to avoid the factor L increase in the
running time as a result of ending with the history state instead of the final state of
the circuit. One easy way to do this is to add to the end of the quantum circuit being
simulated O( 1

εL) identity gates. This has the effect that most of the history state |η〉
is concentrated on the final state |α(L)〉. See subsection 3.3 for more details.

Following this work, Siu [61] suggested an alternative and somewhat more efficient
way to avoid the extra L factor, which also has the advantage that the adiabatic
computation ends in the desired final state of the circuit rather than in the history
state. His construction, however, necessarily gives degenerate adiabatic computations.
Siu’s Hamiltonian path consists of two parts. The first part is identical to ours, leading
us from the initial state |α(0)〉⊗|0L〉c to the history state |η〉. For the second part, one
observes that by applying (a slight modification of) our construction to the inverted
circuit U†L, . . . , U

†
1 , one obtains an adiabatic evolution taking the state |α(L)〉 ⊗ |1L〉c

to the history state. In the second part of his construction, Siu applied the time
reversal of this latter evolution, taking |η〉 to |α(L)〉 ⊗ |1L〉c.

1.5. Proof of Theorem 1.3: Overview. The idea underlying the proof of The-
orem 1.1 by itself does not suffice to prove Theorem 1.3. The basic problem lies in
arranging sufficient interaction between the computational and clock particles, since
if the particles are set on a grid, each clock particle can interact with only four neigh-
bors. We circumvent this problem as follows. Instead of having separate clock and
computational particles, we now assign to each particle both clock and computational
degrees of freedom (this is what makes our particles 6-state). We then construct a
computation that propagates locally over the entire set of particles, snaking up and
down each column of the lattice. The adiabatic evolution now ends up in the history
state of this snake-like sequence of states.

The lower bound on the spectral gap is obtained in an essentially identical way
to the 3-local Hamiltonian case.

1.6. Discussion of Follow-up Work. Since the initial publication of our results
in 2004 [3], the study of adiabatic computation and computational complexity of
quantum Hamiltonian systems in general has advanced considerably, partly motivated
by our work. We now summarize some of those recent developments.
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Improvements in Parameters. Motivated mainly by experimental considera-
tions, much of the follow-up work focused on improving the various parameters in
Theorems 1.1 and 1.3, such as the running time, the number of states of the particles,
and their geometry.

First, [37] improved Theorem 1.1 and showed that 2-local interactions (as op-
posed to our 3-local interactions) between qubits (i.e., 2-state particles) are suffi-
cient to achieve adiabatic universality. The interactions they use are not confined
to a grid but occur between any two qubits. Oliveira and Terhal [48] improved
the result further and showed how to achieve adiabatic universality with a two-
dimensional grid of qubits with nearest neighbor interactions. Other improvements
can be found in Nagaj’s thesis [44]. A somewhat related construction of adiabatic com-
putation with local Hamiltonians was suggested by Mizel, Lidar, and Mitchell [43];
they sketch a proof of correctness, which presumably can be extended into a complete
proof.

For a while, it was speculated that one-dimensional systems cannot achieve uni-
versality. Somewhat surprisingly, Aharonov et al. [4] recently showed that one-dimen-
sional quantum systems of 9-state particles with nearest neighbor interactions can
achieve adiabatic universality using techniques similar to those in the proof of Theo-
rem 1.3. Recently, Pepper [52] managed to improve this to 7-state particles; it is an
open question whether one can get all the way down to qubits.

The results in this paper are far from optimal in terms of the running time of the
adiabatic algorithm. In [20], Deift, Ruskai, and Spitzer provided an alternative and
somewhat simpler analysis of the Hamiltonians we describe here, which in particular
improved the bound on the spectral gap in Lemma 4.1 by a factor of L, and might
translate to better bounds on the running time. Further improvements were achieved
by Nagaj [44].

Connection with QMA-Completeness. Prior to our work, circuit-to-Hamilton-
ian constructions (as in [38] and follow-up work) were primarily used for proving that
certain local Hamiltonian problems are QMA-complete. One of our main contribu-
tions is the realization that the circuit-to-Hamiltonian method can also be used to
prove the universality of adiabatic computation. Thanks to this realization, most
circuit-to-Hamiltonian constructions nowadays imply two separate results: QMA-
completeness and adiabatic universality. This is, for instance, the case in much of the
follow-up work mentioned above, such as [37], [48], and [4].

One should note, however, that there is currently no general statement show-
ing how to obtain the two results from a circuit-to-Hamiltonian construction. In-
stead, these results are obtained on a case-by-case basis. Roughly speaking, proving
QMA-completeness is easier than proving adiabatic universality since the latter re-
quires bounding the minimal spectral gap along the entire Hamiltonian path, whereas
the former requires arguing about the ground energy of just one Hamiltonian (in-
deed, some works, such as [15, 21, 45], prove only a QMA-completeness result, even
though presumably one can extend them to adiabatic universality). On the other
hand, adiabatic universality is sometimes easier to achieve if we allow degenerate
adiabatic computation, since in this case it suffices to analyze the spectral gap in
an invariant subspace. The local Hamiltonian problem, by definition, applies to
the entire Hilbert space and cannot be restricted to a subspace. Such a case, for
instance, showed up in [4]: their QMA-completeness result required 12-state par-
ticles, whereas their (degenerate) adiabatic universality result required only 9-state
particles.
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Circuit-to-Hamiltonian constructions similar to the one presented in the proof
of Theorem 1.3 were used also outside of the context of adiabatic computation or
QMA-completeness; see, e.g., [46, 58].

Fault Tolerance. The fact that adiabatic computation is universal for quantum
computation motivates studying the possibility of experimentally realizing quantum
computation using adiabatic systems. Since noise is inevitable in any physical system,
a major question is whether noisy adiabatic systems (with a realistic model of noise)
can be made as powerful (from a computational point of view) as ideal adiabatic
computers. In other words, we ask whether adiabatic systems can be made fault
tolerant. Fault tolerance for the standard quantum circuit model was shown already
in 1996 (see [2] and the references therein).

Several researchers have begun to study noisy adiabatic computation, and var-
ious methods to protect the computation against noise were suggested (see, e.g.,
[1, 40, 55, 57]). In particular, quantum error correcting codes tailored for adiabatic
evolution were discovered by Jordan, Farhi, and Shor [33], and it was shown that
these codes achieve significant robustness to noise. They quantify noise in terms of
the temperature in the system, and argue that whereas without error correcting, the
temperature must be inverse polynomial, when error corrections are applied, it suffices
that the temperature behaves inverse logarithmically in the size of the computation.
We believe that more needs to be done in this direction; see the following section for
open questions.

1.7. Open Questions. This paper demonstrates that quantum computation can
be studied and implemented entirely within the adiabatic computation model, without
losing any computational power. This result raises several interesting open questions.

Obviously, an important problem is to minimize the physical requirements for
adiabatic universality as much as possible. In particular, can adiabatic universality
be achieved with nearest neighbor interacting qubits on a line? This might have
experimental implications.

One of the major motivations for this direction of research is the possibility that
adiabatic computation, due to its inherent robustness to certain types of noise, might
be better suited for implementation than the standard circuit-based model. We believe
that whether this is really the case is still not clear, and depends in part on whether
fault tolerance can be achieved in this model, and on whether algorithms can be
efficiently implemented in this model.

A related interesting open problem is determining how large the spectral gap can
be in universal adiabatic systems. A large spectral gap is expected to improve the
robustness to thermal noise. It seems that the answer to this question might depend
on the geometry of the system. In [49], Osborne proved that adiabatic evolutions of
one-dimensional systems can be simulated efficiently for a short time if the Hamil-
tonian has a constant energy spectral gap (assuming that the spectral norm of the
Hamiltonian is also bounded above by a constant, as otherwise this statement is vacu-
ous). Using area law results, Hastings [29] improved these simulations to an arbitrary
amount of time. Thus, unless quantum computation can be efficiently simulated by
classical computation (which is considered unlikely), we cannot hope to prove uni-
versality of adiabatic evolution in one dimension using Hamiltonians with constant
spectral gap. It is an open question whether this can be achieved using particles on
a higher dimensional grid, or even using particles with no particular geometry (i.e.,
allowing interaction between any k particles). Such a result would imply an adiabatic
analogue of the threshold theorem for the standard model of quantum computation.
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This question seems closely related to the question of finding quantum analogues of
the celebrated PCP theorem (see [11]), one of the most important results in theoretical
computer science. This possibility is discussed further in [4].

Finally, one other motivation for this work is our hope that the adiabatic frame-
work might lead to the discovery of new quantum algorithms. As shown in this paper,
as well as in [7], tools from probability theory, mathematical physics, and spectral gap
analysis might turn out to be relevant and useful. In order to improve our under-
standing of the adiabatic paradigm, it might be insightful to see adiabatic versions
of known quantum algorithms, presented in a meaningful way (of course, by now we
know that adiabatic versions exist, but the question is whether the adiabatic point of
view can add any insight). It might be useful in this context to clarify the connection
between adiabatic algorithms and quantum walk algorithms which are also known
to be universal for quantum computation (see [16] and the references therein). The
two seem to be tightly related in the case of adiabatic computations resulting from
circuit-to-Hamiltonian constructions.

Organization. In section 2 we describe the model of adiabatic computation and
state some relevant facts about Markov chains. In section 3 we prove Theorem 1.1
by showing how adiabatic systems with 5-local Hamiltonians can efficiently simulate
standard quantum computations. Section 4 proves the global spectral gap and im-
proves the construction to one using only 3-local Hamiltonians. In section 5 we prove
Theorem 1.3 by showing how to adapt the construction to a two-dimensional grid.

2. Preliminaries.

2.1. Hamiltonians of n-Particle Systems. For background on n-qubit systems,
quantum circuits, and Hamiltonians, see [47]. A system consisting of n d-state par-
ticles is described by a state in Hilbert space of dimension dn, the tensor product
of n d-dimensional Hilbert spaces. For simplicity, we restrict our discussion in this
subsection to quantum systems composed of 2-state particles, i.e., qubits; a similar
discussion holds for higher dimensional particles (such as the 6-state particles we
consider later).

In the standard model of quantum computation, the state of n qubits evolves
in discrete time steps by unitary operations. In fact, the underlying physical de-
scription of this evolution is continuous, and is governed by Schrödinger’s equation:
−i ddt |ψ(t)〉 = H(t)|ψ(t)〉. Here |ψ(t)〉 is the state of the n qubits at time t, and H(t)
is a Hermitian 2n × 2n matrix operating on the space of n qubits. This H(t) is the
Hamiltonian operating on a system; it governs the dynamics of the system. Given
that the state of the system at time t = 0 is equal to |ψ(0)〉, one can in principle
solve Schrödinger’s equation with this initial condition to get |ψ(T )〉, the state of the
system at a later time t = T . The fact that the Hamiltonian is Hermitian corresponds
to the familiar fact that the discrete time evolution of the quantum state from time
t1 to a later time t2 is unitary.

We sometimes refer to eigenvalues of Hamiltonians as energies. The ground en-
ergy of a Hamiltonian is its lowest eigenvalue and the corresponding eigenvector(s)
are called ground state(s). We define ∆(H), the spectral gap of a Hamiltonian H, to
be the difference between the lowest eigenvalue of H and its second lowest eigenvalue.
(∆(H) = 0 if the lowest eigenvalue is degenerate, that is, has more than one eigenvec-
tor associated with it.) We define the restriction of H to some subspace S, denoted
HS , as ΠSHΠS , where ΠS is the orthogonal projection on S.

A Hamiltonian on an n-particle system represents a certain physical operation
that one can, in principle, apply to an n-particle system. However, it is clear that one
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cannot efficiently apply any arbitrary Hamiltonian (even describing a Hamiltonian on
n qubits requires exponential space in the worst case). We say that a Hamiltonian H
is k-local if H can be written as

∑
AHA, where A runs over all subsets of k particles,

and HA operates trivially on all but the particles in A (i.e., it is a tensor product of
a Hamiltonian on A with identity on the particles outside of A). Notice that for any
constant k, a k-local Hamiltonian on n-qubits can be described by 22knk = poly(n)
numbers. We say that H is local if H is k-local for some constant k.

In this paper we restrict our attention to k-local Hamiltonians. This requirement
corresponds to the fact that all known interactions in nature involve a constant number
of particles. We attempt to make k as small as possible to make the Hamiltonian
presumably easier to implement.

2.2. The Adiabatic Theorem. The cornerstone of the adiabatic model of com-
putation is the celebrated adiabatic theorem [35, 42]. Consider a time-dependent
Hamiltonian H(s), s ∈ [0, 1], and a system initialized at time t = 0 in the ground
state of H(0) (here and in the following we assume that for all s ∈ [0, 1], H(s) has
a unique ground state). Let the system evolve according to the Hamiltonian H(t/T )
from time t = 0 to time T . We refer to such a process as an adiabatic evolution
according to H for time T . The adiabatic theorem affirms that for large enough T
the final state of the system is very close to the ground state of H(1). Just how large
T should be for this to happen is determined by the spectral gap of the Hamiltonians
H(s) and their norm. Such an upper bound on T is given in the following theorem,
adapted from a paper by Jansen, Ruskai, and Seiler [31]. See also [8] for an elementary
proof of a slightly weaker version.

Theorem 2.1 (the adiabatic theorem, adapted from [31, Theorem 3]). Let Hinit
and Hfinal be two Hamiltonians acting on a quantum system and consider the time-
dependent Hamiltonian H(s) := (1 − s)Hinit + sHfinal. Assume that for all s, H(s)
has a unique ground state, and that

T ≥ Ω
(

‖Hfinal −Hinit‖2
εmins∈[0,1]{∆3(H(s))}

)
(2)

for some ε > 0. Let |ψ(T )〉 be the solution at time t = T for Schrödinger’s equa-
tion −i ddt |ψ(t)〉 = H(t/T )|ψ(t)〉 with the initial state |ψ(0)〉 being the ground state
of Hinit. Then |ψ(T )〉 is ε-close in �2-norm to the ground state of Hfinal (with an
appropriate setting of global phase). The matrix norm is the spectral norm ‖H‖ :=
maxw 
=0 ‖Hw‖2/‖w‖2.

There have been several claims in the literature that the above dependence on the
spectral gap ∆ can be improved to quadratic instead of cubic (and in earlier versions
of our paper we used such a statement). Unfortunately, it seems that none of these
claims is backed by a rigorous proof (and in some cases mistakes were found in such
purported proofs). For more details, we refer the reader to the discussion in [31].

Still, in many cases, the bound on T in the above theorem can be significantly
improved. This is the case when the spectral gap is close to its minimum only for
a very short interval of s, outside of which the spectral gap is much larger. In such
cases, one can apply Theorem 3 of [31] in its original and more precise form in order
to obtain better bounds on T . An example of this is shown in section VI of [31]. In
this paper we make no such attempts to optimize our bounds on T .

2.3. The Model of Adiabatic Computation. Let us now describe the model of
adiabatic computation. In this paper we use the following definition of adiabatic com-
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putation that slightly generalizes that of Farhi et al. [25]. An adiabatic computation
is specified by Hinit and Hfinal. Its output is (close to) the ground state of Hfinal.

Definition 2.2. A k-local adiabatic computation AC(n, d,Hinit, Hfinal, ε) is spec-
ified by two k-local Hamiltonians, Hinit and Hfinal, acting on n d-state particles, such
that both Hamiltonians have unique ground states. The ground state of Hinit is a
tensor product state. The output is a state that is ε-close in �2-norm to the ground
state of Hfinal. Let T be the smallest time such that the final state of an adiabatic
evolution according to H(s) := (1− s)Hinit + sHfinal for time T is ε-close in �2-norm
to the ground state of Hfinal. The running time of the adiabatic algorithm is defined
to be T ·maxs ‖H(s)‖.

Observe that we have chosen our definition of running time to be T ·maxs ‖H(s)‖
and not T . To see why, notice that according to Schrödinger’s equation, for any c > 0,
the final state of a system that evolves according to some Hamiltonian H(s) for time
T is identical to that of a system that evolves according to cH(s) for time T/c. In
fact, this is a basic physical trade-off between energy and time. This trade-off can also
be seen in Theorem 2.1: if both Hinit and Hfinal are multiplied by some factor c > 0,
the resulting bound on T gets divided by the same factor. Hence, one can achieve
an arbitrarily small value of T by multiplying the Hamiltonians by some large factor.
This clearly shows that T is not a meaningful notion of running time. On the other
hand, our notion of running time is invariant under scaling.

The right-hand side of (2) can be used to provide an upper bound on the running
time of an adiabatic computation. Hence, in order to show that an adiabatic algorithm
is efficient, it is enough to use Hamiltonians of at most poly(n) norm, and show that
for all s ∈ [0, 1] the spectral gap ∆(H(s)) is at least inverse polynomial in n.

We note that in certain cases, it is possible to obtain a stronger upper bound on
the running time. Indeed, assume there exists a subspace S such that for all s ∈ [0, 1],
H(s) leaves S invariant, i.e., H(s)(S) ⊆ S. Equivalently, H(s) is block diagonal in
S and its orthogonal space S⊥. Consider HS(s), the restriction of H(s) to S. Then,
starting from a state inside S, an adiabatic evolution according to H is identical to
an adiabatic evolution according to HS (this follows from Schrödinger’s equation).
Hence, we can potentially obtain a stronger upper bound by replacing ∆(H(s)) with
∆(HS(s)) in (2). This observation will be used in section 3.

Finally, as mentioned in subsection 1.2, there are other, more general definitions
of adiabatic computation (allowing for more general Hamiltonians, or general paths).
By considering a restricted model (of local Hamiltonians with a straight path) we are
obviously only making our result stronger.

2.4. Markov Chains and Hermitian Matrices. Under certain conditions, there
exists a standard mapping of Hamiltonians to Markov chains (for background on
Markov chains, see [41]). The following fact is useful to show that this mapping
applies in the case we analyze.

Fact 2.3 (adapted from Perron’s theorem, Theorem 8.2.11 in [30]). Let G be
a Hermitian matrix with real nonnegative entries. If there exists a finite k such
that all entries of Gk are positive, then G’s largest eigenvalue is positive, and all
other eigenvalues are strictly smaller in absolute value. Moreover, the corresponding
eigenvector is unique, and all its entries are positive.

We define the mapping for G, a Hermitian matrix operating on an L + 1-dimen-
sional Hilbert space. Suppose that all the entries of G are real and nonnegative, that
its eigenvector (α0, . . . , αL) with largest eigenvalue µ satisfies αi > 0 for all 0 ≤ i ≤ L,
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and that µ > 0. Define P by

Pij :=
αj
µαi

Gij .(3)

The matrix P is well defined, and it is stochastic because all its entries are nonnegative
and each of its rows sums up to one. It is easy to verify the following fact.

Fact 2.4. The vector (v0, . . . , vL) is an eigenvector of G with eigenvalue δ if and
only if (α0v0, . . . , αLvL) is a left eigenvector of P with eigenvalue δ/µ.

We will consider G of the form G = I −H for some Hamiltonian H. The above
fact implies that if (α0, . . . , αL) is the ground state of H with eigenvalue λ, then
(α2

0, . . . , α
2
L) is a left eigenvector of P with maximal eigenvalue 1. By normalizing, we

obtain that π := (α2
0/Z, . . . , α2

L/Z) is the limiting distribution of P , where Z =
∑

α2
i .

Moreover, the gap between P ’s largest and second largest eigenvalues is equal to
∆(H)/(1− λ).

2.5. Spectral Gaps ofMarkovChains. Given a stochastic matrix P with limiting
distribution π, and a subset B ⊆ {0, . . . , L}, the flow from B is given by F (B) :=∑
i∈B,j /∈B πiPij . Define the π-weight of B as π(B) :=

∑
i∈B πi. The conductance of

P is defined by ϕ(P ) := minB F (B)/π(B), where we minimize over all nonempty
subsets B ⊆ {0, . . . , L} with π(B) ≤ 1

2 .
Theorem 2.5 (the conductance bound [60]). The eigenvalue gap of P is at least

1
2ϕ(P )2.

3. Equivalence of Adiabatic and Quantum Computation. Here we prove The-
orem 1.1 by showing how to simulate a quantum circuit consisting of L 2-qubit gates
on n qubits by an adiabatic computation on n + L qubits (the other direction was
shown in [18, 25]). We allow 5-qubit interactions; this will be improved to 3-qubit
interactions in the next section. Theorem 1.1 thus follows as a corollary from the
following theorem.

Theorem 3.1. Given a quantum circuit on n qubits with L 2-qubit gates im-
plementing a unitary U , and ε > 0, there exists a 5-local adiabatic computation
AC(n+L, 2, Hinit, Hfinal, ε) whose running time is poly(L, 1

ε ) and whose output (after
tracing out some ancilla qubits) is ε-close (in trace distance) to U |0n〉. Moreover,
Hinit and Hfinal can be computed by a polynomial time Turing machine.

The running time we obtain here is O(ε−8L7).

3.1. The Hamiltonian. For our construction we use the Hamiltonian defined
in [38]. Denote |γ�〉 := |α(�)〉⊗ |1�0L−�〉c, where |α(�)〉 denotes the state of the circuit
after the �th gate and the superscript c denotes the clock qubits. We would like to
define a local Hamiltonian Hinit with ground state |γ0〉 = |0n〉 ⊗ |0L〉c, and a local
Hamiltonian Hfinal with ground state |η〉 = 1√

L+1

∑L
�=0 |γ�〉 as in (1). To do this, we

write Hinit and Hfinal as a sum of terms:

Hinit := Hclockinit + Hinput + Hclock,

Hfinal :=
1
2

L∑
�=1

H� + Hinput + Hclock.

The terms in Hfinal (and likewise in Hinit) are defined such that the only state whose
energy (i.e., eigenvalue) is 0 is the desired ground state. This is done by assigning
an energy penalty to any state that does not satisfy the required properties of the
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ground state. The different terms, which correspond to different properties of the
ground states, are described in the following paragraphs. The adiabatic evolution
then follows the time-dependent Hamiltonian

H(s) = (1− s)Hinit + sHfinal.(4)

Notice that as s goes from 0 to 1, Hclockinit is slowly replaced by 1
2

∑L
�=1 H�, while

Hinput and Hclock are held constant.
We now describe each of the terms. First, Hclock checks that the clock’s state is

of the form |1�0L−�〉c for some 0 ≤ � ≤ L. This is achieved by assigning an energy
penalty to any basis state on the clock qubits that contains the sequence 01,

Hclock :=
L−1∑
�=1

|01〉〈01|c�,�+1,

where the subscript indicates which clock qubits the projection operates on. Note
that illegal clock states are eigenstates of Hclock with an eigenvalue of at least 1; legal
clock states have an eigenvalue of 0.

Next, Hinput checks that if the clock is |0L〉c, the computation qubits must be in
the state |0n〉,

Hinput :=
n∑
i=1

|1〉〈1|i ⊗ |0〉〈0|c1.

We complete the description of Hinit with Hclockinit, whose goal is to check that
the clock’s state is |0L〉c,

Hclockinit := |1〉〈1|c1.
Claim 3.2. The state |γ0〉 is a ground state of Hinit with an eigenvalue of 0.7

Proof. It is easy to verify that Hinit|γ0〉 = 0. As a sum of projectors, Hinit is
positive semidefinite and hence |γ0〉 is a ground state of Hinit.

We now proceed to the first term in Hfinal. The Hamiltonian H� checks that the
propagation from step �− 1 to � is correct, i.e., that it corresponds to the application
of the gate U�. For 1 < � < L, it is defined as

H� := I ⊗ |100〉〈100|c�−1,�,�+1 − U� ⊗ |110〉〈100|c�−1,�,�+1

− U†� ⊗ |100〉〈110|c�−1,�,�+1 + I ⊗ |110〉〈110|c�−1,�,�+1.(5)

Intuitively, the 3-qubit terms above move the state of the clock one step forward, one
step backward, or leave it unchanged. The accompanying matrices U�, U

†
� describe

the associated time evolution. For the boundary cases � = 1, L, we omit one clock
qubit from these terms and define

H1 := I ⊗ |00〉〈00|1,2 − U1 ⊗ |10〉〈00|1,2 − U†1 ⊗ |00〉〈10|1,2 + I ⊗ |10〉〈10|1,2,
HL := I ⊗ |10〉〈10|L−1,L − UL ⊗ |11〉〈10|L−1,L − U†L ⊗ |10〉〈11|L−1,L + I ⊗ |11〉〈11|L−1,L.

(6)

Claim 3.3. The history state |η〉 is a ground state of Hfinal with an eigenvalue
of 0.

Proof. It is easy to verify that Hfinal|η〉 = 0. It remains to be noticed that for all
1 ≤ � ≤ L, H� is positive semidefinite and hence so is Hfinal.

7The state |γ0〉 is in fact the unique ground state of Hinit, as will become apparent from the
proof of the global spectral gap. A similar statement holds for Claim 3.3.
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3.2. Spectral Gap in a Subspace. Let S0 be the L + 1-dimensional subspace
spanned by |γ0〉, . . . , |γL〉. It is easy to verify the following claim.

Claim 3.4. The subspace S0 is invariant under H(s), i.e., H(s)(S0) ⊆ S0.
In this subsection, we show that the spectral gap of HS0(s), the restriction of

H to S0, is inverse polynomial in L. As mentioned in subsection 2.3, this, together
with Claim 3.4, is enough to obtain a bound on the running time of the adiabatic
algorithm.

Remark. Notice that both Hclock and Hinput are 0 on the invariant subspace S0.
This means that Theorem 3.1 holds even if we remove the terms Hclock and Hinput
from both Hinit and Hfinal. We include these terms in the Hamiltonian in order to
achieve a global spectral gap (as we will see in subsection 4.1), and also for consistency
with the rest of the paper.

We next lower bound the spectral gap inside S0, using the notion of conductance.
We note that, in general, applying the conductance bound requires knowing the limit-
ing distribution of the chain, which in our case is hard since it corresponds to knowing
the coefficients of the ground state for the Hamiltonians H(s). We circumvent this
problem by noticing that it is actually sufficient in our case to know very little about
the limiting distribution of the Markov chain, namely, that it is monotone (in a certain
sense to be defined).

Lemma 3.5. The spectral gap of the restriction of H(s) to S0 satisfies ∆(HS0(s)) =
Ω(L−2) for all s ∈ [0, 1].

Proof. Let us write the Hamiltonians HS0,init and HS0,final in the basis |γ0〉, . . . , |γL〉
of S0. Both Hclock and Hinput are 0 on S0 and can thus be ignored. We have the
following (L + 1)× (L + 1) matrices:

HS0,init =




0 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 ,(7)

HS0,final = 1
2 |γ0〉〈γ0| − 1

2 |γ0〉〈γ1| − 1
2 |γL〉〈γL-1|+

1
2 |γL〉〈γL|

+
L−1∑
�=1

(− 1
2 |γ�〉〈γ�−1|+ |γ�〉〈γ�| − 1

2 |γ�〉〈γ�+1|)

=




1
2 − 1

2 0 · · · 0

− 1
2 1 − 1

2 0
. . .

...

0 − 1
2 1 − 1

2 0
. . .

...
. . . . . . . . . . . . . . .

... 0 − 1
2 1 − 1

2 0

0 − 1
2 1 − 1

2

0 · · · 0 − 1
2

1
2




.(8)

We now lower bound ∆(HS0(s)). We consider two cases.
• The case s < 1/3. Here, HS0(s) is sufficiently close to HS0,init (whose spectral

gap is 1) so we can apply the following standard lemma (see, e.g., [14, p. 244]).
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Lemma 3.6 (Gerschgorin’s circle theorem). Let A be any matrix with entries aij.
Consider the discs in the complex plane given by

Di =
{
z | |z − aii| ≤

∑
j 
=i
|aij |

}
, 1 ≤ i ≤ n.

Then the eigenvalues of A are contained in ∪Di and any connected component of ∪Di

contains as many eigenvalues of A as the number of discs that form this component.
For s < 1/3, we have that HS0(s)1,1 < 1/6 and

∑
j 
=1 HS0(s)1,j < 1/6. Moreover,

for any i �= 1, we have that HS0(s)i,i > 5/6 and
∑
j 
=iHS0(s)i,j < 1/3. By the

above lemma, we obtain that there is one eigenvalue smaller than 1/3, while all other
eigenvalues are larger than 1/2. Hence, the spectral gap is at least 1/6.
• The case s ≥ 1/3. We note that HS0,final is the Laplacian of the simple random

walk [41] of a particle on a line of length L + 1. A standard result in Markov chain
theory implies ∆(HS0,final) = Ω(1/L2) [41]. For s ≥ 1/3, HS0(s) is sufficiently close
to HS0,final to apply Markov chain techniques, as we show next.

Let (α0, . . . , αL)† be the ground state of HS0(s) with eigenvalue λ. Define the
Hermitian matrix G(s) = I−HS0(s). It is easy to see that G(s) satisfies the conditions
of Fact 2.3 for all s > 0. We obtain that the largest eigenvalue µ = 1 − λ of G(s)
is positive and nondegenerate and the corresponding eigenvector (α0, . . . , αL)† has
positive entries. We can now map the matrix G(s) to a stochastic matrix P (s) as
described in subsection 2.4. The transition matrix P (s) describes a random walk on
the line of L + 1 sites (see Figure 1). Fact 2.4 implies that the limiting distribution
of P (s) is given by π = (α2

0/Z, . . . , α2
L/Z), where Z =

∑
i α

2
i .

Pk,k−1

k − 1 k + 1k

Pk,k+1

. . .10 L. . .

Fig. 1 The random walk of P (s).

We bound the spectral gap of P (s) using the conductance bound (see subsection
2.5). To do this we need to know that π is monotone. We first show the following
claim.

Claim 3.7. For all 0 ≤ s ≤ 1, the ground state of HS0(s) is monotone, namely,
α0 ≥ α1 ≥ · · · ≥ αL ≥ 0.

Proof. The case s = 0 is obvious, so assume s > 0. We first claim that the ground
state (α0, . . . , αL)† of HS0(s) = I −G(s) can be written as the limit

1
c0

lim
�→∞

(G(s)/µ)�(1, . . . , 1)†

for some constant c0 > 0. To see this, let |v0〉, . . . , |vL〉 be an orthonormal set of
eigenvectors of G(s), with corresponding eigenvalues µ0 ≥ µ1 ≥ · · · ≥ µL. By Fact
2.3, the largest eigenvalue corresponds to a unique eigenvector, and hence we have
|v0〉 = (α0, . . . , αL)†, and µ0 = µ.

The set of eigenvectors |vi〉 forms an orthonormal basis, and we can write (1, . . . , 1)†

in terms of this basis: (1, . . . , 1)† =
∑
i ci|vi〉. Now, we have that (G(s)/µ)�(1, . . . , 1)† =∑

i ci(
µi
µ )�|vi〉. By Fact 2.3 we have |µi| < µ for all i �= 0, and µ > 0. We thus have

that lim�→∞(G(s)/µ)�(1, . . . , 1)† = c0|v0〉.
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It is easy to check that G(s) preserves monotonicity, namely, if G(s) is applied to
a monotone vector, the result is a monotone vector. Hence, when G(s)/µ is applied
to the monotone vector (1, . . . , 1)†, the result is a monotone vector. Thus, c0|v0〉 is
monotone. Finally, we observe that c0 > 0. This is because c0 is the inner product
between the all 1 vector and |v0〉, whose entries are all positive by Fact 2.3. This
implies that |v0〉 is also monotone, as desired.

It follows that π is also monotone. We use this and simple combinatorial argu-
ments to prove the following claim.

Claim 3.8. For all 1/3 ≤ s ≤ 1, ϕ(P (s)) ≥ 1
6L .

Proof. We show that for any nonempty B ⊆ {0, . . . , L}, F (B)/π(B) ≥ 1
6L . We

consider two cases. First, assume that 0 ∈ B. Let k be the smallest such that k ∈ B
but k + 1 /∈ B. Then

F (B) ≥ πkP (s)k,k+1 = πk·
√
πk+1

µ
√
πk

G(s)k,k+1 =
√
πkπk+1

1− λ
G(s)k,k+1 ≥

πk+1

1− λ
G(s)k,k+1,

where the last inequality follows from the monotonicity of π. Using the definition
of G and the assumption that s ≥ 1/3 we get that G(s)k,k+1 ≥ 1/6. We also have
0 < 1−λ ≤ 1, where the second inequality follows from the fact that HS0(s) is positive
semidefinite, and the first follows from µ > 0, which we previously deduced from Fact
2.3. Hence,

F (B)
π(B)

≥ πk+1

6π(B)
.(9)

By π(B) ≤ 1/2, we have π({k + 1, . . . , L}) ≥ 1/2. Together with π({k + 1, . . . , L}) ≤
Lπk+1 we obtain πk+1 ≥ 1/(2L). This yields the desired bound F (B)/π(B) ≥ 1/(6L).

Now assume that 0 /∈ B and let k be the smallest such that k /∈ B and k+1 ∈ B.
It is easy to see that πkP (s)k,k+1 = πk+1P (s)k+1,k. Hence, using the same argument
as before we can see that (9) holds in this case too. Since B ⊆ {k + 1, . . . , L}, we
have π({k+1, . . . , L}) ≥ π(B). Hence, πk+1 ≥ π(B)/L. Again, this yields the bound
F (B)/π(B) ≥ 1/(6L).

By Theorem 2.5, we have that the spectral gap of P (s) is larger than 1/(2·(6)2·L2).
By subsection 2.4, we have that ∆(HS0) ≥ µ/(2 · (6)2L2). Finally, notice that µ =
1− λ ≥ 1

2 , because λ ≤ 〈γ0|HS0(s)|γ0〉 = s
2 ≤

1
2 .

3.3. Running Time. We now complete the proof of Theorem 3.1. Note that we
have already proved something which is very close to Theorem 3.1.

Claim 3.9. Given a quantum circuit on n qubits with L gates, the adiabatic
algorithm with Hinit and Hfinal as defined in the previous section, with T = O(L6/ε),
outputs a final state that is within �2-distance ε of the history state of the circuit, |η〉.
The running time of the algorithm is O(T · L).

Proof. Claim 3.4 shows that S0 is invariant under H. Hence, as mentioned in sub-
section 2.3, an adiabatic evolution according to H is identical to an adiabatic evolution
according to HS0 . Using Lemma 3.5 and Theorem 2.1 (with ‖Hinit−Hfinal‖ = O(1)),
we obtain that for T as above the final state (with global phase adjusted appropriately)
is indeed ε-close in �2-norm to |η〉. By our definition, the running time of the adiabatic
algorithm is O(T · L) since ‖H(s)‖ ≤ (1− s)‖Hinit‖+ s‖Hfinal‖ = O(L + n) = O(L).
The last equality follows from n = O(L), because each qubit is assumed to participate
in the computation (otherwise we can omit it).

In fact, one might be satisfied with this claim, which enables generating adiabat-
ically a state which is very close to |η〉, instead of our desired |α(L)〉. To see why
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this might be sufficient to simulate quantum circuits, suppose for a moment that ε
is 0, and the final state is exactly |η〉. As mentioned in the introduction, we can
now measure the clock qubits of the history state, and with probability 1/L the out-
come is � = L, which means that the state of the first register is the desired state
|α(L)〉. If the measurement yields another value, we repeat the adiabatic algorithm
from scratch. To get � = L with sufficiently high probability, we repeat the process
O(L) times, which introduces an overhead factor of L. The above discussion is also
true with ε > 0, as long as it is much smaller than 1/L, the weight of |α(L)〉 in |η〉.

However, strictly speaking, this is not sufficient to complete the proof of Theo-
rem 3.1. Indeed, the theorem as stated follows our definition of the model of adiabatic
computation, which allows one to perform one adiabatic evolution and then measure
(and possibly trace out some qubits). Classical postprocessing such as conditioning
on � being equal to L, and repeating the computation if it is not, are not allowed.
Hence, we need to adiabatically generate a state that is close to the final state of the
circuit, |α(L)〉.

This technical issue can be resolved with the following simple trick, which at
the same time allows us to avoid the overhead factor of L introduced before. We
simply add another O(1

εL) identity gates to the original quantum circuit at the end
of its computation. This modification ensures that the history state (after tracing out
the clock qubits) is close to |α(L)〉. We then apply the adiabatic simulation to this
modified circuit. The following easy lemma makes this precise.

Lemma 3.10. Assume we can transform any given quantum circuit with L 2-
qubit gates on n qubits into a k-local adiabatic computation on n+L d-state particles
whose output is ε close in �2-norm to the history state of the quantum circuit and
whose running time is f(L, ε) for some function f . Then we can transform any given
quantum circuit with L 2-qubit gates on n qubits into a k-local adiabatic computation
on n + 2L/ε d-state particles whose output (after tracing out some ancilla qubits) is
ε close in trace distance to the final state of the circuit and whose running time is
f(2L/ε, ε/2).

Proof. Given a quantum circuit on n qubits with L gates, consider the circuit
obtained by appending to it (2

ε − 1)L identity gates. Let L′ = 2L/ε be the number of
gates in the modified circuit and let |η〉 denote its history state. By our assumption, we
can transform this modified circuit into an adiabatic computation whose output is ε/2
close in �2-norm to |η〉 and whose running time is f(L′, ε/2). Since the trace distance
between two pure states is bounded from above by the �2-distance (see, e.g., [5]), we
obtain that the output of the adiabatic computation is also ε/2 close in trace distance
to |η〉〈η|. In addition, it is easy to check that after we trace out the clock qubits from
|η〉, we are left with a state that is ε/2 close in trace distance to the final state of the
circuit. We complete the proof by applying the triangle inequality.

We can now apply this lemma on the result of Claim 3.9. This completes the
proof of Theorem 3.1, with the running time being O(L7/ε8).

4. Improvements and Extensions. In this section we present two extensions of
the result of the previous section. We note that the techniques developed here will be
used again in section 5, where we impose additional geometrical constraints on the
system.

The first result is presented in subsection 4.1. It shows that the spectral gap
of H(s) in the entire Hilbert space (i.e., the global spectral gap) is nonnegligible.
This shows that the adiabatic computation used in the proof of Theorem 1.1 is non-
degenerate.
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The second result is given in subsection 4.2. There, we show that Theorem
1.1 holds with 3-local Hamiltonians (rather than 5). The proof of this result uses
techniques developed in the above spectral gap proof together with some new tools.

4.1. Global Spectral Gap.
Lemma 4.1. For all 0 ≤ s ≤ 1, ∆(H(s)) = Ω(L−3).
Proof. Let S be the subspace of dimension (L+ 1) · 2n spanned by all legal clock

states. Observe that S is preserved by H(s), i.e., H(s)(S) ⊆ S. Hence, the eigenstates
of H(s) belong either to S or to its orthogonal subspace S⊥. We can therefore analyze
the spectrum of HS(s) and of HS⊥(s) separately.

First, due to the term Hclock and the fact that all other terms are positive semidef-
inite, the ground energy of HS⊥(s) is at least 1. Second, as we will show next using
Lemma 4.2, the spectral gap of HS(s) is Ω(L−3). To establish the same lower bound
on the spectral gap for H(s), it is enough to show that the ground energy of HS(s) is
smaller than 1

2 . Indeed, observe that

〈γ0|HS(s)|γ0〉 = 〈γ0|HS0(s)|γ0〉 = s/2 ≤ 1/2,

where the first equality holds because |γ0〉 ∈ S0 and the second follows from (7) and
(8). Therefore, the smallest eigenvalue of HS(s) is bounded from above by 1/2.

Lemma 4.2. Let S denote the subspace spanned by all legal clock states. Then the
ground state of HS(0) is |γ0〉, and that of HS(1) is |η〉. Moreover, for all 0 ≤ s ≤ 1,
∆(HS(s)) = Ω(L−3).

Proof. We can write S as the direct sum of 2n orthogonal subspaces S0,S1, . . . ,
S2n−1, defined as follows. For 0 ≤ j ≤ 2n − 1 and 0 ≤ � ≤ L, define |γj� 〉 :=
|αj(�)〉 ⊗ |1�0L−�〉, where |αj(�)〉 is the state of the quantum circuit at time � if the
input state corresponds to the binary representation j. Note that |γ0

� 〉 = |γ�〉. The
space Sj is spanned by {|γj0〉, . . . , |γ

j
L〉}. It is easy to check the following claim (see

Figure 2).
Claim 4.3. The Hamiltonian HS(s) is block diagonal in the Sj’s.

HS0

HS1

HS2n−1

0

0

Fig. 2 HS(s) is block diagonal.

By Claims 3.2, 3.3, and 4.3 and Lemma 3.5, it suffices to argue that the ground
energy of HSj (s) for any j �= 0 is larger than the ground energy of HS0(s) by at
least Ω(1/L3). Essentially, this follows from the penalty given by the term Hinput
to nonzero input states. The proof, however, is slightly subtle since Hinput assigns a
penalty only to states |γj� 〉 with � = 0.
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Notice that

HSj (s) = HS0(s) + HSj ,input.

Moreover, for 1 ≤ j ≤ 2n − 1, HSj ,input is diagonal, with its top-left element at least
1 (it actually equals the number of 1’s in the binary representation of j) and all other
diagonal elements zero. Hence, if we define M as

M :=




1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 ,

then HSj ,input −M is positive definite and therefore we can lower bound the ground
energy of HSj (s) with the ground energy of HS0(s) + M . For this, we apply the
following geometrical lemma by Kitaev (Lemma 14.4 in [38]).

Lemma 4.4. Let H1, H2 be two Hamiltonians with ground energies a1, a2, respec-
tively. Suppose that for both Hamiltonians the difference between the energy of the
(possibly degenerate) ground space and the next highest eigenvalue is larger than Λ,
and that the angle between the two ground spaces is θ. Then the ground energy of
H1 + H2 is at least a1 + a2 + 2Λ sin2(θ/2).

We now apply this lemma to HS0(s) and M . By Lemma 3.5, the spectral gap of
HS0(s) is Ω(1/L2). The spectral gap of M is clearly 1. Moreover, using Claim 3.7, we
obtain that the angle between the two ground spaces satisfies cos(θ) ≤ 1−1/L by the
monotonicity property of the ground state of HS0(s) (see Claim 3.7). It follows that
the ground energy of HSj (s) is higher by at least Ω(1/L3) than that of HS0(s).

Remark. Notice that we only used the following properties of Hinput: its restriction
to S0 is 0 and its restriction to Sj for any j �= 0 is a diagonal matrix in the basis
|γj0〉, . . . , |γ

j
L〉 whose top-left entry is at least 1 and all other entries are nonnegative.

This observation will be useful in section 5.

4.2. Three-Local Hamiltonian. We now show that adiabatic computation with
3-local Hamiltonians is sufficient to simulate standard quantum computations.

Theorem 4.5. Given a quantum circuit on n qubits with L 2-qubit gates im-
plementing a unitary U , and ε > 0, there exists a 3-local adiabatic computation
AC(n+L, 2, Hinit, Hfinal, ε) whose running time is poly(L, 1

ε ) and whose output state
is ε-close (in trace distance) to U |0n〉. Moreover, Hinit and Hfinal can be computed by
a polynomial time Turing machine.

The proof of this theorem builds on techniques developed in previous subsections.

4.2.1. The Hamiltonian. Consider the Hamiltonian constructed in subsection
3.1. Notice that all terms except H� are already 3-local (some are even 2-local or 1-
local). In order to obtain a 3-local Hamiltonian, we remove two clock qubits from the
5-local terms in H� and leave only the �th clock qubit. More precisely, for 1 < � < L
define

H ′� := I ⊗ |100〉〈100|c�−1,�,�+1 − U� ⊗ |1〉〈0|c� − U†� ⊗ |0〉〈1|c� + I ⊗ |110〉〈110|c�−1,�,�+1.

For the boundary cases l = 1, L we define

H ′1 := I ⊗ |00〉〈00|c1,2 − U1 ⊗ |1〉〈0|c1 − U†1 ⊗ |0〉〈1|c1 + I ⊗ |10〉〈10|c1,2,
H ′L := I ⊗ |10〉〈10|cL−1,L − U� ⊗ |1〉〈0|cL − U†L ⊗ |0〉〈1|cL + I ⊗ |11〉〈11|cL−1,L.
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Note that because of the terms |1〉〈0|c and |0〉〈1|c, these Hamiltonians no longer
leave the subspace S invariant. To mend this, we assign a much larger energy penalty
to illegal clock states. As we will see soon, this makes the lower part of the spectrum
of our Hamiltonians behave essentially like in their restriction to S. Set J = ε−2L6

and define

H ′init := Hclockinit + Hinput + J ·Hclock,

H ′final :=
1
2

L∑
�=1

H ′� + Hinput + J ·Hclock.

The Hamiltonian we use here is thus

H ′(s) = (1− s)H ′init + sH ′final.

Essentially the same proof as that of Claim 3.2 shows that |γ0〉 is a ground state of
H ′init. However, it turns out that |η〉 is no longer a ground state of H ′final (the proof
of Claim 3.3 does not apply since H ′� is no longer positive semidefinite). However, as
we shall see later, |η〉 is very close to the ground state of H ′final.

4.2.2. The Spectral Gap. Our first claim is that, when restricted to S, H ′ and
H are identical.

Claim 4.6. For any 0 ≤ s ≤ 1, HS(s) = H ′S(s).
Proof. Let ΠS be the orthogonal projection on S. Then our goal is to show that

ΠSH(s)ΠS = ΠSH ′(s)ΠS . The only difference between H(s) and H ′(s) is the factor
of J in Hclock, and that the H� terms are replaced by H ′�. We note that HS,clock is
zero. Hence, it suffices to show that for all 1 ≤ � ≤ L,

ΠSH�ΠS = ΠSH ′�ΠS .

For this, observe that for any 1 < � < L,

ΠS |1〉〈0|c�ΠS = |1�0L−�〉〈1�−10L−(�−1)|c = ΠS |110〉〈100|c�−1,�,�+1ΠS

and similarly for |0〉〈1|c�. A similar statement holds for � = 1, L with the right-hand
term modified appropriately.

Lemma 4.2 and Claim 4.6 imply that ∆(H ′S(s)) = Ω(L−3). We now want to de-
duce from this a lower bound on ∆(H ′(s)), without the restriction to S. For this we
use the following claim. Essentially, it says that if J is large enough, then the lower
part of the spectrum of H ′(s) is similar to that of H ′S(s). More precisely, it shows that
the lowest eigenvalues, the second lowest eigenvalues, and the ground states of the
two Hamiltonians are close. Intuitively, this holds since the energy penalty given to
states in S⊥, the orthogonal space to S, is very high and hence any eigenvector with
low eigenvalue must be almost orthogonal to S⊥ (and hence almost inside S). We
note that a similar lemma was used in [36] in the context of QMA-complete problems.

Lemma 4.7. Let H = H1 + H2 be the sum of two Hamiltonians operating on
some Hilbert space H = S + S⊥. The Hamiltonian H2 is such that S is a zero
eigenspace and the eigenvectors in S⊥ have an eigenvalue of at least J > 2K, where
K = ‖H1‖. Let a and b be the lowest and second lowest eigenvalues of HS , and let a′

and b′ be the corresponding quantities for H. Then the lowest eigenvalue of H satisfies
a− K2

J−2K ≤ a′ ≤ a and the second lowest eigenvalue of H satisfies b′ ≥ b− K2

J−2K . If,
moreover, b > a, then the ground states |ξ〉, |ξ′〉 of HS , H, respectively, satisfy

|〈ξ|ξ′〉|2 ≥ 1− K2

(b− a)(J − 2K)
.
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Proof. First, we show that a′ ≤ a. Using H2|ξ〉 = 0,

〈ξ|H|ξ〉 = 〈ξ|H1|ξ〉+ 〈ξ|H2|ξ〉 = a,

and hence H must have an eigenvector of eigenvalue at most a.
We now show the lower bound on a′. We can write any unit vector |v〉 ∈ H as

|v〉 = α1|v1〉 + α2|v2〉, where |v1〉 ∈ S and |v2〉 ∈ S⊥ are two unit vectors and α1, α2
are two nonnegative reals satisfying α2

1 + α2
2 = 1. Then we have

〈v|H|v〉 ≥ 〈v|H1|v〉+ Jα2
2

= (1− α2
2)〈v1|H1|v1〉+ 2α1α2Re〈v1|H1|v2〉+ α2

2〈v2|H1|v2〉+ Jα2
2

≥ 〈v1|H1|v1〉 −Kα2
2 − 2Kα2 −Kα2

2 + Jα2
2

= 〈v1|H1|v1〉+ (J − 2K)α2
2 − 2Kα2,

where we used α2
1 = 1− α2

2 and α1 ≤ 1. Since (J − 2K)α2
2 − 2Kα2 is minimized for

α2 = K/(J − 2K), we have

〈v|H|v〉 ≥ 〈v1|H1|v1〉 −
K2

J − 2K
.(10)

We obtain the required lower bound by noting that 〈v1|H1|v1〉 ≥ a.
Consider now the two-dimensional space L spanned by the two eigenvectors of H

corresponding to a′ and b′. For any unit vector |v〉 ∈ L we have 〈v|H|v〉 ≤ b′. Hence, if
L contains a vector |v〉 orthogonal to S, then we have b′ ≥ 〈v|H|v〉 ≥ J −K > K ≥ b
and we are done. Otherwise, the projection of L on S must be a two-dimensional
space. Being two-dimensional, this space must contain a vector orthogonal to |ξ〉.
Let |v〉 be a vector in L whose projection on S is orthogonal to |ξ〉. By (10), b′ ≥
〈v|H|v〉 ≥ b− K2

J−2K , as required.
Finally, let β = |〈ξ|ξ′〉|2. Then we can write |ξ〉 =

√
β|ξ′〉+

√
1− β|ξ′⊥〉 for some

unit vector |ξ′⊥〉 orthogonal to |ξ′〉. Since |ξ′〉 is an eigenvector of H,

a = 〈ξ|H|ξ〉 = β〈ξ′|H|ξ′〉+ (1− β)〈ξ′⊥|H|ξ′⊥〉
≥ βa′ + (1− β)b′

≥ β
(
a− K2

J − 2K

)
+ (1− β)

(
b− K2

J − 2K

)

= a + (1− β)(b− a)− K2

J − 2K
.

Rearranging, we obtain the required bound.
We can now bound the spectral gap of H ′(s).
Lemma 4.8. For all 0 ≤ s ≤ 1, ∆(H ′(s)) = Ω(L−3).
Proof. We apply Lemma 4.7 by setting H2 = J ·Hclock and H1 to be the remaining

terms such that H ′(s) = H1 +H2. Note that Lemma 4.7 implies that the spectral gap
of H ′(s) is smaller than that of H ′S(s) (which is Ω(1/L3) by Lemma 4.2) by at most
K2/(J − 2K). But it is easy to see that K = O(L), due to the fact that H1 consists
of O(L) terms, each of constant norm. The result follows since J = ε−2L6.

This shows the desired bound on the spectral gap. Before we complete the proof,
we must show that the final ground state is close to the history state.

Lemma 4.9. The ground state of H ′(1) is ε-close to |η〉.
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Proof. Apply Lemma 4.7 as in the proof of Lemma 4.8, for the case s = 1. We
obtain that the inner product squared between the ground state of H ′(1) and |η〉 is
at least 1 − δ, with δ = K2

(b−a)(J−2K) = O(L−1ε2), where we have used K = O(L),
J = ε−2L6, and b − a = Ω(1/L3) by Lemma 4.2. This implies that the �2-distance
between the ground state of H ′(1) and |η〉 is O(ε/

√
L) ≤ ε.

We now complete the proof of Theorem 4.5. The adiabatic algorithm starts with
|γ0〉 and evolves according to H ′(s) for T = Θ(L10/ε). Such a T satisfies the adiabatic
condition (see (2)), using ‖H ′final −H ′init‖ = O(L). By Theorem 2.1 the final state is
ε-close in �2-distance to the ground state of H ′final. Lemma 4.9 implies that this state
is ε-close in �2-distance to |η〉. Using the triangle inequality we note that the output
of the adiabatic computation is 2ε-close to |η〉. The running time of this algorithm is
O(T · J · L) = O(T · ε−2L7) = O(L17/ε3).

We can now apply Lemma 3.10 to obtain a modified adiabatic computation whose
output state after tracing out the clock qubits is ε-close in trace distance to U |0n〉.
The running time is O(L17/ε20).

5. Two-Local Hamiltonians on a Two-Dimensional Lattice. In this section we
prove Theorem 1.3. We simulate a given quantum circuit by an adiabatic evolution
of a system of 6-state quantum particles arranged on a two-dimensional grid. More
precisely, we prove the following theorem.

Theorem 5.1. Given a quantum circuit on n qubits with L 2-qubit gates im-
plementing a unitary U , and ε > 0, there exists a 2-local adiabatic computation
AC(poly(n,L), 6, Hinit, Hfinal, ε) such that Hinit and Hfinal involve only nearest neigh-
bors on a two-dimensional grid. Moreover, the running time of this algorithm is
poly(L, 1

ε ), and its output (after performing a partial measurement on each particle)
is ε-close (in trace distance) to U |0n〉. Finally, Hinit and Hfinal can be computed by a
polynomial time Turing machine.

As mentioned in the introduction, the main problem in moving to a two-dimen-
sional grid is the notion of a clock. In the constructions of the previous section, the
clock is represented by an additional register that counts the clock steps in unary
representation. The terms H�, which check the correct propagation in the �th time
step, interact between the �th qubit of the clock and the corresponding qubits on
which U� operates. If we want to restrict the interaction to nearest neighbors in two
dimensions using this idea, then no matter how the clock qubits are arranged on the
grid, we run into problems interacting the qubits with the corresponding clock qubits
in a local way. The solution to this problem lies in the way we represent the clock.
Instead of using an extra register, we embed the clock into the same particles that
perform the computation by defining the notion of a shape of a state, to be defined
later. We then create a sequence of legal shapes and show how states can evolve from
one legal shape to another.

Although the construction of this section is more involved than the ones of the
previous section, its analysis follows almost immediately from the analysis carried
out in Theorem 4.5. To achieve this, we make sure that the Hamiltonians and some
relevant subspaces are as similar as possible to those in the previous section.

5.1. Assumptions on the Input Circuit. To simplify the construction of our
adiabatic evolution, we first assume without loss of generality that the quantum circuit
we wish to simulate has a particular layout of its gates. Namely, it consists of R
rounds, where each round is composed of n nearest neighbor gates (some can be the
identity gate), followed by n identity gates, as in Figure 3. More specifically, the first
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gate in each round is a 1-qubit gate applied to the first qubit. For i = 2, . . . , n, the
ith gate is a 2-qubit gate applied to qubits i− 1 and i. For i = n + 1, . . . , 2n the ith
gate is an identity gate applied to the (2n + 1− i)th qubit. These identity gates are
included for convenience of notation. Any circuit can be transformed to such a form
by introducing extra identity and swap gates. Let L = 2nR be the total number of
gates in the circuit so obtained. Clearly, L is at most polynomially larger than the
number of gates in the original circuit.

|0〉
|0〉
|0〉
|0〉 I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Fig. 3 The modified circuit with R = 3.

5.2. The Particles of the Adiabatic Quantum System. The adiabatic compu-
tation is performed on 6-state particles, arranged on a two-dimensional square lattice
with n rows and R+1 columns. We number the rows from 1 (top) to n (bottom) and
the columns from 0 (left) to R (right). Columns number 0 and 1 are used to simu-
late the first round of the circuit. Column numbers 1 and 2 are used for the second
round of computation, and so on. We denote the six internal states of a particle by
| 〉, | 〉, | 〉, | 〉, | 〉, and | 〉. These six states are divided into four phases: the
unborn phase | 〉, the first phase | 〉, | 〉, the second phase | 〉, | 〉, and the dead
phase | 〉. The two states in the first phase and the two states in the second phase
correspond to computational degrees of freedom, namely, to the |0〉 and |1〉 states of
a qubit. We write | 〉 to denote an arbitrary state in the subspace spanned by | 〉
and | 〉. Similarly, | 〉 denotes a state in the space spanned by | 〉 and | 〉. The
phases are used to define the shape of the basis states. A shape of a basis state is
simply an assignment of one of the four phases to each particle, ignoring the compu-
tational degrees of freedom inside the first and second phases. These shapes will be
used instead of the clock states of the previous section.

5.3. Geometrical Clock. We now describe the way we represent a clock using
shapes. In the previous constructions, the space S of dimension 2n(L + 1) was the
ground space of the clock, i.e., the space spanned by legal clock states. Inside the
clock register there were L+1 legal clock states. Note that each such clock state can
be described, essentially, in a geometric way by the “shape” of the clock particles:
how many 1’s precede how many 0’s.

We now describe the corresponding subspaces involved in our construction for
the two-dimensional case. For each 0 ≤ � ≤ L, we have a 2n-dimensional subspace
corresponding to that clock state. Each of these L+1 subspaces can be described by
its shape, that is, a setting of one of the four phases to each particle. See Figure 4 for
an illustration with n = 6, R = 6. The six shapes shown correspond to clock states
� = 0, � = 4n, � = 4n + 3, � = 5n + 2, � = 6n, and � = 2nR, respectively. Notice that
each shape has exactly n particles in the first or second phase. Hence, the dimension
of the subspace induced by each shape is 2n. As � goes from 0 to L, the shape changes
from that shown in Figure 4a to that shown in Figure 4f. The locations at which the
changes occur form a snake-like pattern winding down and up the lattice, following
the layout of the gates in the input circuit (see Figure 3 for an example with R = 3).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Legal shapes of clock states for n = 6, R = 6 at different stages of the computation (see
subsection 5.3).

We now describe the legal shapes more formally.
1. The shape corresponding to clock state � = 2nr + k for 0 ≤ k ≤ n has its

r leftmost columns in the dead phase. The top k particles in the r + 1st
column are in their second phase while the bottom n − k are in the first
phase. Particles in the remaining R− r columns are all in the unborn phase.

2. The shape corresponding to clock state � = 2nr+n+k for 1 ≤ k ≤ n−1 has,
as before, its r leftmost columns in the dead phase. The r + 1st column has
its n− k topmost particles in the second phase, and its remaining k particles
in the dead phase. The r+2nd column has its n− k topmost particles in the
unborn phase and its remaining k particles in the first phase. All remaining
particles are in the unborn phase.

The subspace S is defined as the (L+1)2n-dimensional space spanned by all legal
shapes. As in previous sections we partition S into 2n subspaces Sj . Each subspace
Sj is spanned by L + 1 orthogonal states |γj0〉, . . . , |γ

j
L〉, defined as follows. For each

0 ≤ � ≤ L and 0 ≤ j ≤ 2n − 1, the shape of |γj� 〉 corresponds to �. The state of the
n active particles (i.e., those in either the first or second phase), when read from top
to bottom, corresponds to the state of the circuit after the first � gates are applied
to an initial state corresponding to the binary representation of j; i.e., it corresponds
to the state U� · U�−1 · · ·U1|j〉. More precisely, these particles are in a superposition
obtained by mapping this state to the state of the n active particles in the following
way: |0〉 to (or for a second phase particle) and |1〉 to (or for a second
phase particle). We often denote |γ0

� 〉, which corresponds to the all 0 input, by |γ�〉.
For example, |γ0〉 is shown in Figure 5.
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Fig. 5 The initial state.

At the risk of being somewhat redundant, let us now give an alternative descrip-
tion of the states |γj0〉, . . . , |γ

j
L〉. This description is more helpful in understanding the

Hamiltonians H ′′� which we will define shortly. Consider a state |γj� 〉 for some � = 2rn.
The n particles in the rth column are in their first phase and their computational de-
grees of freedom correspond to the state of the circuit’s qubits at the beginning of
the rth round. Particles to the left of this column are dead, those to the right of this
column are unborn. The state |γj�+1〉 is obtained from |γj� 〉 by changing the topmost
particle in the rth column to a second phase particle and applying the first gate in the
rth round (a 1-qubit gate) to its computational degrees of freedom. Next, the state
|γj�+2〉 is obtained from |γj�+1〉 by changing the second particle from above in the rth
column to a second phase particle and applying the second gate in the rth round (a
2-qubit gate) to both this particle and the one on top of it. We continue in a similar
fashion until we reach |γj�+n〉, in which the entire rth column is in the second phase.
We refer to these steps as the downward stage.

Next, let us describe the upward stage. The state |γj�+n+1〉 is obtained from
|γj�+n〉 by “moving” the bottommost particle in the rth column one location to the
right. More precisely, the bottommost particle changes to the dead phase and the one
to the right of it changes to the first phase. The computational degrees of freedom
are the same in both states. This corresponds to the fact that the n + 1st gate in a
round of the circuit is the identity gate.8 Continuing in a similar fashion, we see that
the upwards stage ends in the state |γj�+n+n〉 = |γ

j
2(r+1)n〉, which matches the above

description of the first state in a round.

5.4. The Hamiltonian. We now construct a 2-local Hamiltonian that guarantees
correct propagation from one γ state to the next. In other words, the Hamiltonian has
the history state, namely, the superposition over all the γ states, as its ground state.
The construction of this Hamiltonian should be more or less clear by now, where the
only subtleties are due to edge cases.

The initial and final Hamiltonians are defined as

H ′′init := H ′′clockinit + H ′′input + J ·H ′′clock,

H ′′final :=
1
2

L∑
�=1

H ′′� + H ′′input + J ·H ′′clock,

where J = ε−2 · L6. These Hamiltonians are chosen to be as similar as possible to
the corresponding Hamiltonians in previous sections. For example, H ′′clock has as its

8We could allow arbitrary 1-qubit gates here instead of identity gates. This leads to a slightly
more efficient construction but also to more cumbersome Hamiltonians.

D
ow

nl
oa

de
d 

01
/2

9/
16

 to
 1

8.
85

.8
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADIABATIC COMPUTATION IS EQUIVALENT TO QUANTUM 781

ground space the space of legal clock states, S. As before, it allows us to essentially
project all other Hamiltonians on S by assigning a large energy penalty to states
with illegal shape. Also, the Hamiltonians H ′′� (once projected to S) check correct
propagation from one step to the next. Other terms also serve similar roles as before.

Let us start with the simplest terms. Define

H ′′input :=
n∑
i=1

(| 〉〈 |)i,1.

The indices indicate the row and column of the particle on which the Hamiltonian
operates. This Hamiltonian checks that none of the particles in the leftmost column
are in | 〉. Then, define

H ′′clockinit = (I − | 〉〈 | − | 〉〈 |)1,1.

This Hamiltonian checks that the top-left particle is in a | 〉 state. The remaining
terms are described in the following subsections.

5.4.1. The Clock Hamiltonian. The shapes we define satisfy the following im-
portant property: there exist 2-local conditions that guarantee that a shape is legal.
This allows us to define a 2-local clock Hamiltonian, H ′′clock, whose ground space is
exactly S, the (L + 1)2n-dimensional space spanned by all legal shapes.

Claim 5.2. A shape is legal if and only if it contains none of the forbidden
configurations of Table 1.

Proof. It is easy to check that any legal shape contains none of the forbidden
configurations. For the other direction, consider any shape that contains none of
these configurations. Observe that each row must be of the form

∗
[ , ]

∗
; that

is, it starts with a sequence of zero or more , it then contains either or , and
then ends with a sequence of zero or more . Columns can be of three different
forms. Read from top to bottom, it is either

∗ ∗
,
∗ ∗

, or
∗ ∗

. It is now easy
to verify that such a shape must be one of the legal shapes.

Using this claim, we can define a 2-local nearest-neighbor Hamiltonian that guar-
antees a legal shape. For example, if the rule forbids a particle at location (i, j) in
state to the left of a particle at location (i, j+1) in state , then the corresponding

Table 1 Local rules for basis state to be in S.

Forbidden Guarantees that

, , is to the right of all other qubits
, , is to the left of all other qubits
, and are not horizontally adjacent
, ,
, only one of , per row

, , only above

, , only below

, and are not vertically adjacent

, no below and no below
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term in the Hamiltonian is (| , 〉〈 , |)(i,j),(i,j+1). Summing over all the forbidden
configurations of Table 1 and over all relevant pairs of particles, we have

H ′′clock :=
∑

r∈rules

Hr.

Note that the ground space of H ′′clock is the (L + 1)2n-dimensional space S.
5.4.2. The Propagation Hamiltonian. The choice of legal shapes has the fol-

lowing important property: the shape of � and that of � + 1 differ in at most two
locations. This means that for any � and j, the shape of |γj�−1〉 and that of |γj� 〉 differ
in at most two locations. Moreover, if we consider the state of the n active particles in
both states, we see that these differ on at most two particles, namely, those on which
the �th gate in the circuit acts. Crucially—and this is where we use our assumption
on the form of the circuit (Figure 3)—the particle(s) on which the �th gate acts are
at the same location as the particle(s) whose phase changes. It is this structure that
allows us to define the Hamiltonians H ′′� . These Hamiltonians act on two particles
and “simultaneously” advance the clock (by changing the shape) and advance the
computational state (by modifying the state of the active particles). Since |γ�〉 differs
from |γ�−1〉 in at most two adjacent lattice sites, this can be done using a two-body
nearest neighbor Hamiltonian.

The definition of H ′′� depends on whether � is in the downward phase (i.e., is of
the form 2rn+k for 1 ≤ k ≤ n) or in the upward phase (i.e., is of the form 2rn+n+k
for 1 ≤ k ≤ n). We first define H ′′� for the upward phase. Assume � = 2rn+n+ k for
some 0 ≤ r < R, 1 < k < n and let i = n− k + 1 be the row in which |γ�−1〉 and |γ�〉
differ. Then

H ′′� :=
∣∣∣ 〉〈 ∣∣∣i,r

i+1,r
+
∣∣∣ 〉〈 ∣∣∣i−1,r+1

i,r+1
−
(
| , 〉〈 , |+ | , 〉〈 , |

)
(i,r)(i,r+1)

+
∣∣∣ 〉〈 ∣∣∣i,r

i+1,r
+
∣∣∣ 〉〈 ∣∣∣i−1,r+1

i,r+1
−
(
| , 〉〈 , |+ | , 〉〈 , |

)
(i,r)(i,r+1) .

The first line corresponds to changing the state | , 〉 into | , 〉. The second
line is similar for | , 〉 and | , 〉. The purpose of the first two terms in each
line is the same as that of |100〉〈100|c and |110〉〈110|c in H� from previous sections.9

The difference is that here, to uniquely identify the current clock state, we need to
consider particles on top of each other. The remaining terms in each line correspond
to |100〉〈110|c and |100〉〈110|c in H�.

For the case k = 1, n, the definition is

H ′′2rn+n+1 := | 〉〈 |n,r +
∣∣∣ 〉〈 ∣∣∣n−1,r+1

n,r+1
−
(
| , 〉〈 , |+| , 〉〈 , |

)
(n,r)(n,r+1)

+ | 〉〈 |n,r +
∣∣∣ 〉〈 ∣∣∣n−1,r+1

n,r+1
−
(
| , 〉〈 , |+| , 〉〈 , |

)
(n,r)(n,r+1) ,

H ′′2rn+2n :=
∣∣∣ 〉〈 ∣∣∣1,r

2,r
+ | 〉〈 |1,r+1 −

(
| , 〉〈 , |+ | , 〉〈 , |

)
(1,r)(1,r+1)

+
∣∣∣ 〉〈 ∣∣∣1,r

2,r
+ | 〉〈 |1,r+1 −

(
| , 〉〈 , |+ | , 〉〈 , |

)
(1,r)(1,r+1) .

9There are other (equally good) ways to define these terms. For example, it is possible to define
them so that they both act on the rth column.
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For the downward stage, H ′′� checks that a gate is applied correctly. For � = 2nr+k
and 1 < k < n we define

H ′′� :=
(

0 −U�
−U†� 0

)
+
(∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣

)
k−1,r

k,r

+
(∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣

)
k,r

k+1,r.

The last two terms are meant, as before, to replace the terms |110〉〈110|c and |100〉〈100|c.
Once again, to uniquely identify the current clock state, we need to consider parti-
cles on top of each other. The first term represents a Hamiltonian that acts on the
two particles in positions (k, r) and (k + 1, r). These particles span a 36-dimensional
space. The matrix shown above is in fact the restriction of this Hamiltonian to the
eight-dimensional space spanned by

∣∣∣ 〉 ∣∣∣ 〉 ∣∣∣ 〉 ∣∣∣ 〉 ∣∣∣ 〉 ∣∣∣ 〉 ∣∣∣ 〉 ∣∣∣ 〉

(recall that U� acts on two qubits and is therefore a 4 × 4 matrix). Everywhere else
in this 36-dimensional subspace, this Hamiltonian acts trivially, i.e., is 0.

For the case k = n we slightly modify the terms that identify the clock states

H ′′2nr+n :=
(

0 −U2nr+n

−U†2nr+n 0

)
+
(∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣

+
∣∣∣ 〉〈 ∣∣∣

)
n−1,r

n,r
+
(
| 〉〈 |+ | 〉〈 |

)
n,r

.

For the case k = 1 we have

H ′′2nr+1 :=
(

0 −U2nr+1

−U†2nr+1 0

)
+
(
| 〉〈 |+ | 〉〈 |

)
1,r

+
(∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣+ ∣∣∣ 〉〈 ∣∣∣

)
1,r

2,r,

where the first term shows the restriction an operator acting on the particle (1, r)
to the four-dimensional space spanned by | 〉, | 〉, | 〉, | 〉 (recall that U2nr+1 is a
1-qubit gate).

5.5. Spectral Gap. The analysis of the spectral gap follows almost immediately
from that in subsection 4.2.2. The main effort is in verifying that the restriction
of each of our Hamiltonians to S is identical to the restriction of the corresponding
Hamiltonian in previous sections to S, when both are constructed according to the
modified quantum circuit of subsection 5.1. This, in fact, does not hold for H ′′input,
whose projection is not quite the same as that of Hinput; still, it is similar enough for
the analysis in subsection 4.2.2 to hold.

Claim 5.3. H ′′S,clockinit = HS,clockinit.

Proof. Both Hamiltonians are diagonal in the basis |γj� 〉 with eigenvalue 0 for
� = 0 and eigenvalue 1 for any � > 0.

Claim 5.4. For any 1 ≤ � ≤ L, H ′′S,� = HS,�.
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Proof. It is straightforward to verify that both Hamiltonians, when restricted to
S, are equal to

2n−1∑
j=0

[|γj� 〉〈γ
j
� |+ |γ

j
�−1〉〈γ

j
�−1| − |γ

j
� 〉〈γ

j
�−1| − |γ

j
�−1〉〈γ

j
� |].

For H ′′input the situation is similar, although in this case the restriction to S is not
exactly the same. Still, the resemblance is enough for the same analysis to hold.

Claim 5.5. Both HS,input and H ′′S,input are diagonal in the basis |γj� 〉. Moreover,
the eigenvalue in both Hamiltonians corresponding to |γj� 〉 for � = 0 is exactly the
number of 1’s in the binary representation of j.

Proof. The claim is easy to verify.
The similarity between the two Hamiltonians breaks down as follows. While the

eigenvalues corresponding to |γj� 〉 for � > 0 are 0 in HS,input, those in H ′′S,input might
be positive (namely, for 0 ≤ � ≤ n, the eigenvalue of |γj� 〉 is the number of 1’s in the
last n− � digits in the binary representation of j). Nevertheless, due to the remark at
the end of subsection 4.1, Lemma 4.2 holds here as well. We then get the following
lemma.

Lemma 5.6. For any 0 ≤ s ≤ 1, H ′′S(s) has a spectral gap of Ω(L−3). Moreover,
the ground state of H ′′S,final is |η〉.

The rest of the proof of Theorem 1.3 is essentially the same as in subsection 4.2.2.
By applying Lemma 4.7, we obtain the following lemma.

Lemma 5.7. For all 0 ≤ s ≤ 1,∆(H ′′(s)) = Ω(L−3). Moreover, the ground state
of H ′′(1) is ε-close to |η〉.

The proof is similar to that of Lemmas 4.8 and 4.9. This enables us to adiabati-
cally generate the history state with exactly the same running time as in the 3-local
case (when the number of gates is that of the modified circuit of subsection 5.1).

Finally, we would like to apply Lemma 3.10 as before. However, we cannot quite
do this due to a technical issue: our Hilbert space is no longer a tensor product of
computation qubits and clock qubits, and tracing out the clock qubits is meaningless.
Nevertheless, a minor modification of that lemma still applies. We first add, say, L/ε
identity gates to the end of the (modified) circuit. Now, the adiabatic computation
produces a state close to the history state. We then measure the shape of the system
without measuring the inner computational degrees of freedom. Due to the additional
identity gates, with all but ε probability, the outcome of the measurement is a shape
� for � ≥ L. If this is the case, then the state of the system is such that the active
particles are in the final state of the circuit, as desired. This completes the proof of
Theorem 5.1.
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2 (Keszthely, 1993), Bolyai Soc. Math. Stud. 2, János Bolyai Math. Soc., Budapest, 1996,
pp. 353–397.

[42] A. Messiah, Quantum Mechanics, John Wiley and Sons, New York, 1958.
[43] A. Mizel, D. A. Lidar, and M. Mitchell, Simple proof of equivalence between adiabatic

quantum computation and the circuit model, Phys. Rev. Lett., 99 (2007), article 070502.
[44] D. Nagaj, Local Hamiltonians in Quantum Computation, Ph.D. thesis, MIT, 2008; available

online from http://eprintweb.org/S/article/arxiv/0808.2117.
[45] D. Nagaj and S. Mozes, A new construction for a QMA complete 3-local Hamiltonian, J.

Math. Phys., 48 (2007), article 072104.
[46] D. Nagaj and P. Wocjan, Hamiltonian quantum cellular automata in one dimension, Phys.

Rev. A, 78 (2008), article 032311.
[47] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge

University Press, Cambridge, UK, 2000.
[48] R. Oliveira and B. Terhal, The complexity of quantum spin systems on a two-dimensional

square lattice, Quantum Inform. Comput., to appear.
[49] T. J. Osborne, Simulating adiabatic evolution of gapped spin systems, Phys. Rev. A, 75 (2007),

article 032321.
[50] J. Pachos and P. Zanardi, Quantum holonomies for quantum computing, Internat. J. Modern

Phys. B, 15 (2001), pp. 1257–1286.
[51] X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du, A Quantum Adiabatic Al-

gorithm for Factorization and Its Experimental Implementation, preprint, 2008; available
online from http://arxiv.org/abs/0808.1935v1.

[52] B. Pepper, Adiabatic Computing Using 2-Local Hamiltonians on a Line, preprint.
[53] B. Reichardt, The quantum adiabatic optimization algorithm and local minima, in Proceed-

ings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, 2004,
pp. 502–510.

[54] J. Roland and N. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A, 65 (2002),
article 042308.

[55] J. Roland and N. Cerf, Noise resistance of adiabatic quantum computation using random
matrix theory, Phys. Rev. A, 71 (2004), article 032330.

[56] G. Santoro, R. Martonak, E. Tosatti, and R. Car, Theory of quantum annealing of an
Ising spin glass, Science, 295 (2002), pp. 2427–2430.

[57] M. S. Sarandy and D. Lidar, Adiabatic quantum computation in open systems, Phys. Rev.
Lett., 95 (2005), article 250503.

[58] N. Schuch, I. Cirac, and F. Verstraete, The computational difficulty of finding MPS ground
states, Phys. Rev. Lett., 100 (2008), article 250501.

[59] N. Schuch and F. Verstraete, Interacting Electrons, Density Functional Theory, and
Quantum Merlin Arthur, preprint, 2007; available online from http://arxiv.org/abs/
0712.0483v1.

D
ow

nl
oa

de
d 

01
/2

9/
16

 to
 1

8.
85

.8
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://arxiv.org/abs/0712.0483v1
http://arxiv.org/abs/0712.0483v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADIABATIC COMPUTATION IS EQUIVALENT TO QUANTUM 787

[60] A. Sinclair and M. Jerrum, Approximate counting, uniform generation, and rapidly mixing
Markov chains (extended abstract), in Graph-Theoretic Concepts in Computer Science
(Staffelstein, 1987), Lecture Notes in Comput. Sci. 314, Springer-Verlag, Berlin, 1988, pp.
134–148.

[61] M. S. Siu, From quantum circuits to adiabatic algorithms, Phys. Rev. A, 71 (2005), article
062314.

[62] W. Spitzer and S. Starr, Improved bounds on the spectral gap above frustration-free ground
states of quantum spin chains, Lett. Math. Phys., 63 (2003), pp. 165–177.

[63] M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang, Experimental implementa-
tion of an adiabatic quantum optimization algorithm, Phys. Rev. Lett., 90 (2003), article
067903.

D
ow

nl
oa

de
d 

01
/2

9/
16

 to
 1

8.
85

.8
.4

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


