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Universal Quantum Simulators
Seth Lloyd

Feynman's 1982 conjecture, that quantum computers can be programmed to simulate
any local quantum system, is shown to be correct.

Over the past half century, the logical
devices by which computers store and pro-
cess information have shrunk by a factor of
2 every 2 years. A quantum computer is the
end point of this process of miniaturiza-
tion-when devices become sufficiently
small, their behavior is governed by quan-
tum mechanics. Information in conven-
tional digital computers is stored on capac-
itors. An uncharged capacitor registers a 0
and a charged capacitor registers a 1. Infor-
mation in a quantum computer is stored on
individual spins, photons, or atoms. An
atom can itself be thought of as a tiny ca-
pacitor. An atom in its ground state is anal-
ogous to an uncharged capacitor and can be
taken to register a 0, whereas an atom in an
excited state is analogous to a charged ca-
pacitor and can be taken to register a 1.

So far, quantum computers sound very
much like classical computers; the only use
of quantum mechanics has been to make a
correspondence between the discrete quan-
tum states of spins, photons, or atoms and
the discrete logical states of a digital com-
puter. Quantum systems, however, exhibit
behavior that has no classical analog. In
particular, unlike classical systems, quan-
tum systems can exist in superpositions of
different discrete states. An ordinary capac-
itor can be either charged or uncharged, but
not both: A classical bit is either 0 or 1. In
contrast, an atom in a quantum superposi-
tion of its ground and excited state is a
quantum bit that in some sense registers
both 0 and 1 at the same time. As a result,
quantum computers can do things that clas-
sical computers cannot.

Classical computers solve problems by
using nonlinear devices such as transistors
to perform elementary logical operations on

the bits stored on capacitors. Quantum
computers can also solve problems in a
similar fashion; nonlinear interactions be-
tween quantum variables can be exploited
to perform elementary quantum logical op-
erations. However, in addition to ordinary
classical logical operations such as AND,
NOT, and COPY, quantum logic includes
operations that put quantum bits in super-
positions of 0 and 1. Because quantum com-
puters can perform ordinary digital logic as
well as exotic quantum logic, they are in
principle at least as powerful as classical
computers. Just what problems quantum
computers can solve more efficiently than
classical computers is an open question.

Since their introduction in 1980 (1)
quantum computers have been investigated
extensively (2-29). A comprehensive re-
view can be found in (15). The best known
problem that quantum computers can in
principle solve more efficiently than classi-
cal computers is factoring (14). In this ar-
ticle I present another type of problem that
in principle quantum computers could solve
more efficiently than a classical computer-
that of simulating other quantum systems. In
1982, Feynman conjectured that quantum
computers might be able to simulate other
quantum systems more efficiently than clas-
sical computers (2). Quantum simulation is
thus the first classically difficult problem
posed for quantum computers. Here I show
that a quantum computer can in fact simu-
late quantum systems efficiently as long as
they evolve according to local interactions.

Feynman noted that simulating quan-
tum systems on classical computers is hard.
Over the past 50 years, a considerable
amount of effort has been devoted to such
simulation. Much information about a quan-
tum system's dynamics can be extracted
from semiclassical approximations (when
classical solutions are known), and ground
state properties and correlation functions

can be extracted with Monte Carlo methods
(30-32). Such methods use amounts of
computer time and memory space that grow
as polynomial functions of the size of the
quantum system of interest (where size is
measured by the number of variables-par-
ticles or lattice sites, for example-required
to characterize the system). Problems that
can be solved by methods that use polyno-
mial amounts of computational resources are
commonly called tractable; problems that
can only be solved by methods that use
exponential amounts of resources are com-
monly called intractable. Feynman pointed
out that the problem of simulating the full
time evolution of arbitrary quantum systems
on a classical computer is intractable: The
states of a quantum system are wave func-
tions that lie in a vector space whose dimen-
sion grows exponentially with the size of the
system. As a result, it is an exponentially
difficult problem merely to record the state
of a quantum system, let alone integrate its
equations of motion. For example, to record
the state of 40 spin-/2 particles in a classical
computer's memory requires 240 1012
numbers, whereas to calculate their time
evolution requires the exponentiation of a
240 X 240 matrix with 1024 entries. Feyn-
man asked whether it might be possible to
bypass this exponential explosion by having
one quantum system simulate another di-
rectly, so that the states of the simulator
obey the same equations of motion as the
states of the simulated system. Feynman
gave simple examples of one quantum sys-
tem simulating another and conjectured
that there existed a class of universal quan-
tum simulators capable of simulating any
quantum system that evolved according to
local interactions.

The answer to Feynman's question is,
yes. I will show that a variety of quantum
systems, including quantum computers, can
be "programmed" to simulate the behavior
of arbitrary quantum systems whose dynam-
ics are determined by local interactions.
The programming is accomplished by in-
ducing interactions between the variables
of the simulator that imitate the interac-
tions between the variables of the system to
be simulated. In effect, the dynamics of the
properly programmed simulator and the dy-
namics of the system to be simulated are
one and the same to within any desired
accuracy. So, to simulate the time evolution
of 40 spin-l/2 particles over time t requires a
simulator with 40 quantum bits evolving
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over a period of time proportional to t (Fig.
1). Quantum computers are Feynman's uni-
versal quantum simulators.

To factor a 100-digit number using Shor's
algorithm, a quantum computer would have
to perform millions of quantum logic opera-
tions coherently and without errors. As a
result, despite the recent invention of quan-
tum error-correcting routines (29), con-
structing a quantum computer that can fac-
tor large numbers is likely to prove difficult
(I 1, 19, 25-28). With the methods detailed
here, in contrast, a quantum computer need
only perform a few tens or hundreds of op-
erations to simulate a quantum system, such
as the set of spins described above, that
would take a classical computer Avogadro's
number of operations to simulate. Nor do the
quantum operations need to be performed
entirely coherently or without errors. In fact,
decoherence and thermal effects in the
quantum computer can be exploited to mim-
ic decoherence and thermal effects in the
system to be simulated. Consequently, the
set of quantum effects that might be exploit-
ed to construct a quantum computer capable
of simulating other quantum systems is larger
than the set appropriate for performing
Shor's algorithm: Essentially any nonlinear
interaction between quantum systems that
an experimentalist can modulate in a con-
trolled fashion could be used for quantum
simulation.

Simulation

Simulation is a process by which one system
is made to mimic another. To simulate an
engine on a classical analog computer, for
example, one patches up an electrical cir-
cuit whose dynamics mimic the engine's
dynamics. To simulate one quantum system
using another, one needs methods for con-
trolling precisely the dynamics of quantum
systems, so that the dynamics of the simu-
lator can be made to mimic the dynamics of
the system to be simulated.

Atomic physics, quantum optics, solid-
state physics, and quantum chemistry all
supply methods for controlling the behavior
of quantum systems. Each operation that an
experimenter can perform on a quantum
system-for example, the turning on and off
of a laser pulse or the modulation of a
magnetic field-is in effect a "tool" that
can be applied to the system. Formally,
experimental operations can be divided
into two categories: those that approxi-
mately preserve quantum coherence, corre-
sponding to Hamiltonian time evolution,
and those that do not, corresponding to
time evolution governed by a superscatter-
ing operator or master equation. Practically,
of course, no operation entirely preserves
quantum coherence, and operations vary
considerably in the amount of decoherence
they cause. Simulation of a closed system
that evolves according to the Schrodinger
equation requires operations that approxi-
mately preserve coherence. (The more gen-
eral case of simulating open systems with
both coherence-preserving and coherence-
destroying operations will be addressed be-
low). An experimenter who applies such
operations can be thought of as turning on
and turning off Hamiltonians from a set
{H1, H2 . . . Hd. Essentially, each experi-
mental operation moves the system a con-
trolled distance along one out of a set of
predetermined directions in Hilbert space.
The experimenter moves the system first
one way, then another, like a driver parking
a car. A familiar example of this technique
is the use of extended sequences of pulses in
nuclear magnetic resonance to drive a set of
spins to a desired state (33).

All techniques that involve the repeated
application of coherence-preserving opera-
tions possess a common algebraic structure
that allows the specification at an abstract
level of where the system of interest can be
driven by using such operations. The fol-
lowing result, derived independently in the
context of quantum control theory and of

it,

quantum computation, determines just
what quantum systems can be simulated by
the repeated application of such operations.
The straightforward application of the
Campbell-Baker-Hausdorff formula shows
that by judiciously turning on and off Ham-
iltonians, the experimenter can drive the
system along any time evolution corre-
sponding to a unitary operator U = eAt,
where A lies in the algebra A generated
from the set {H1, . . . Hd by commutation
(20, 21, 34). The number of operations
required to generate an arbitrary m X m U
is on the order of m2-the number of pa-
rameters required to specify U in the first
place. The number of operations that need
to be applied to construct a desired U can
be thought of as the quantum computation-
al complexity of the construction.
A particularly useful case occurs when

the experimenter can make different quan-
tum variables interact according to a par-
ticular Hamiltonian. Such an interaction
realizes a quantum logic gate (8, 16-21, 23,
24, 26, 35). In this case it can be seen that
almost any nonlinear interaction allows the
construction of arbitrary unitary transfor-
mations on the 2N-dimensional Hilbert
space (20, 21). For example, Kimble et al.
have suggested that nonlinear interactions
between photons and atoms in small-cavity
quantum electrodynamics could be used to
"dial up" arbitrary unitary transformations
of the photons (23, 36). The results above
imply that a variety of quantum systems to
which a set of simple experimental opera-
tions can be applied can simulate other
quantum systems. For example, the quan-
tum variables in the simulator could be
photons, as described above, or spins that
are made to interact by means of double
resonance methods, or quantum dots that
interact by dipole or exchange forces. In
particular, to the extent that they can be
expanded to include more quantum bits,
ion-trap quantum logic devices of the sort
that are currently being constructed by
Monroe et al. could act as universal quan-
tum simulators (24).

Simulation Efficiency

Fig. 1. Electrons in quantum dots simulating a set of quantum spins such as protons. The upper line
shows the spins. An arrow pointing down represents a proton spinning clockwise, and an arrow pointing
up represents a proton spinning counterclockwise. The lower line shows the states of electrons in
quantum dots. The longer wavelengths correspond to electrons in the ground, or lowest energy, state,
and shorter wavelengths correspond to higher energy states. The simulation is set up so that spin-down
corresponds to a dot in its ground state, and spin-up corresponds to a dot in its first excited state.
"Spin-sideways," a superposition of spin-up and spin-down, corresponds to a superposition of ground
and excited states, a state with no classical analog. By modulating the interactions between the dots,
one can make their dynamics mimic the dynamics of the spin system.

As noted above, the efficiency of a simula-
tion depends on how hard it is to set up the
simulator-system correspondence, to con-
trol the simulator to perform the simula-
tion, and to extract its results. A simulation
on a classical digital computer of an arbi-
trary unitary transformation of N quantum
variables (for example, spin-1/2 particles)
involves the multiplication of a 2N-dimen-
sional state vector by a 2N X 2N matrix and
requires memory space and computational
time on the order of 22N. As noted by
Deutsch (6), to perform the same simula-
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tion on a quantum computer requires only
N quantum bits. But the results above imply
that 22N applications of the elementary
tools are required to construct an arbitrary
2N X 2N unitary U. That is, although a
quantum computer gives an exponential
compression of the amount of memory
space required to construct an arbitrary U,
the number of elementary logic steps or
applications of quantum logic gates required
to construct U on a quantum computer is of
the same order as the number of elementary
logic steps required to compute the action
of U on a classical digital computer. For the
case ofN spin-l/2 particles, both simulations
require the solution of 2N X 2N matrix
equations, a difficult task for N - 40.

The result just presented might seem at
first glance to contradict the claim that
quantum analog computers can simulate
quantum systems much more efficiently
than can classical computers. For arbitrary
unitary operators U, quantum and classical
simulations both require m2 operations sim-
ply because m2 numbers are required to
characterize an arbitrary m x m U. The
time evolution of real quantum systems is
not arbitrary, however. Feynman's conjec-
ture was that quantum computers could
provide efficient simulations not of arbi-
trary quantum systems but of systems that
evolve according to local interactions. Ex-
amples of local systems include hard-sphere
and van der Waals gases, Ising and Heisen-
berg spin systems, strong and weak interac-
tions, and lattice gauge theories. In fact, any
system that is consistent with special and
general relativity evolves according to local
interactions. As will now be demonstrated,
quantum simulation is potentially much
more efficient than classical digital simula-
tion for local quantum systems.

The method for performing the simula-
tion is conceptually straightforward, if
mathematically involved. The goal is to get
the simulator from point A to point B along
a particular route. But the simulator can
only be driven in certain directions-the
operations that can be applied experimen-
tally are limited-so it is usually not possi-
ble to go from point A to point B directly.
But by moving the simulator first a little bit
in one direction, then a little bit in another,
then a little bit in another, and so on, it is
possible to move from A to B. A car can
only be driven forward and backward-it
cannot be driven sideways. But it is still
possible to parallel park. The following con-
struction demonstrates a quantum analog of
a familiar classical fact: By going forward
and backing up a sufficiently small distance
a large enough number of times, it is possi-
ble to parallel park in a space only £ longer
than the length of the car.

More precisely, consider a quantum sys-

tem composed of N variables with Hamil-
tonian H I= 1 Hi, where each Hi acts on
a space of dimension mi encompassing at
most k of the variables. H can depend on
time. Any Hamiltonian system with local
interactions can be written in this form.
Many nonlocal systems such as nonlocal
spin glasses also have Hamiltonians of this
form and can be efficiently simulated. As
with simulations on classical computers
(30-32), the quantum simulation works by
evolving the system forward locally over
small, discrete time slices. Because e'Ht
(eiHt/n.. eiHrIn )n eHI can be simulated by
simulating the local time evolution opera-
tors eiH t/n, eiH2t/n, and so on, up to eiHtt/n
and repeating n times.

To ensure that the simulation takes
place to within some desired accuracy, one
needs to regulate the time-slicing as in (30-
32)

= (eHIt/n . .eH/n)n

+ > [Hi, Hj]t2/2n + > E(k) (1)
1>) k 3

where the higher order error terms E(k) are
bounded by IIE(k)IISUP . nllHt/nII'kp /k!
(where IIAIIs,,p is the supremum, or maxi-
mum expectation value, of the operator A
over the states of interest), and the total
error in approximating eiHt (eIHitin
elHjt/n)n is less than ln(e'Ht/n - 1 - iHt/
n) Isup) which can be made as small as de-
sired by taking n sufficiently large. As a
result, for any £ > 0, n can always be picked
sufficiently large to ensure that the simula-
tor always tracks the correct time evolution
eiHt to within £.

Once the accuracy to within which the
simulation is to take place is fixed, the
quantum computational complexity of per-
forming the simulation can be estimated.
As noted above and in (20, 21), because
each HJ acts on a local Hilbert space of only
mj dimensions, the number of operations
needed to simulate eiHit/n is -mJ (37). Be-
cause each local operator is simulated n
times, the total number of operations need-
ed to simulate the time evolution e Ht to an
accuracy £ is -n(W= 1m2)2 nfm2 where
m = maximi . In order for the overall error
in building up the product of exponentials
to be less then £, the actual experimental
error in implementing each of the elemen-
tary operations must be less than £/nCm2, so
that the cumulative experimental error is
less than c. In conventional computational
complexity, a simulation is said to be effi-
cient if to simulate a system with N variables
takes computer time that is polynomial in N
(that is, if the simulation is a tractable prob-
lem). Here, the quantum simulation is effi-
cient as long as ( = t(N) is a polynomial
function of N. For typical local interactions

such as nearest neighbor or next-nearest
neighbor, t is proportional to N.

Equation 1 implies that the minimum
number of steps n required to simulate the
system to accuracy £ over time t is propor-
tional to t2/E. However, the duration of
each coherent operation required to pro-
duce the local Hamiltonian evolutions
eiHji/n is proportional to t/n, that is, to l/t. As
a result, the total duration of time required
to simulate the system over time t is just
proportional to t. In other words, just as
with a classical analog computer, the quan-
tum simulation takes an amount of time
proportional to the time over which the
system to be simulated evolves.

As an example, consider a lattice of N
spin-½/2 particles with pairwise interactions
between neighboring particles. H = J!)N12
Hi, where p is the number of neighbors per
particle and each H acts on a local two-
particle Hilbert space of dimension 22 = 4.
Determination of the correct set of opera-
tions to apply to simulate the local Hi re-
quires the solution of a 4 x 4 matrix equa-
tion in 16 variables. (A simulation of a
lattice Hubbard model, in contrast, requires
two qubits per site to indicate the number
and spin of fermions present; a 16 x 16
matrix equation must be solved to deter-
mine the proper sequence of operations.)
The total number of operations needed to
simulate the spins to an accuracy £ requires
-2pN/£ steps [if the spins' spatial wave
functions overlap, an extra factor of at most
N is required to keep track of Fermi statis-
tics (38)].

Next consider simulation of the same
system on a classical computer. Monte
Carlo techniques, which are polynomial in
N, can extract some information about the
ground state of such a local system by ap-
plying relaxational techniques, or estimate
the time evolution of such a system by
Green's function techniques, but they typ-
ically do so by dealing with a restricted class
of wave functions (fermions are also prob-
lematic in more than one dimension) (30-
32). In general, merely to specify an arbi-
trary wave function for the particles re-
quires 2N memory sites on a classical com-
puter, and to compute its time evolution
requires the exponentiation of 2N x 2N
matrices. For directly simulating the time
evolution of an arbitrary state, the quantum
simulation is exponentially faster than sim-
ulation by the classical computer. This re-
sult holds in general. Simulation of a quan-
tum system with N variables that evolves
according to a local Hamiltonian on a
quantum computer requires a number of
steps proportional to N. Simulation of the
same system on a classical computer re-
quires a number of steps exponential in N.

The quantum simulation becomes even
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faster if the intrinsic parallelizability of the
simulation can be exploited, as in the quan-
tum cellular automata described in (13).
Terms in the sum 1i Hi that commute can
be enacted simultaneously by applying op-
erations to different variables in the simu-
lator at once. The terms in H can be divid-
ed up into groups such that within each
group, all terms commute. All terms within
a group can be enacted in parallel. But
because H is local, the number of groups is
independent of N. In this case, the time
required to perform the simulation is inde-
pendent of the size of the local system sim-
ulated. On a parallel classical computer it
still takes a number of steps exponential in
N merely to write out the matrix H, let
alone to exponentiate it.

In summary, a quantum computer can
simulate closed quantum systems with local
Hamiltonians efficiently. The simulation
operates by inducing interactions between
the quantum variables of the simulator that
mimic the interactions between the vari-
ables of the system to be simulated. The
simulator must use a number of quantum
variables such as spin-½/2 particles that is
proportional to the number of variables of
the system to be simulated. Several bits in
the simulator may be allocated to simulate a
given local variable; for example, two quan-
tum bits are required to specify the number
and type of fermions at a lattice site in the
Hubbard model. Although continuous vari-
ables complicate the computation, they can
still be approximated discretely: N quantum
bits are required to simulate a continuous
local variable such as the position of a
particle or the value of a field in a lattice
gauge theory to N bits of accuracy. The
simulation takes an amount of time propor-
tional to the time over which the system is
to be simulated. The number of basic ex-
perimental operations needed is proportion-
al to the number of variables of the system.
This scaling holds true for both time-inde-
pendent and time-dependent Hamiltoni-
ans. That is, the quantum simulation takes
resources of quantum computer time and
memory space directly proportional to the
time and space taken up by the system to be
simulated. This contrasts with simulation of
the system on a classical digital computer,
which requires exponential resources in
time and space.

Simulating Open Systems

All physical systems interact with their en-
vironment to a greater or lesser extent. Up to
this point, the systems to be simulated have
been assumed to undergo a Hamiltonian
time evolution. Such systems are either
closed and do not interact with their sur-
roundings, or their interaction with the en-

vironment is effectively classical and can be
described by a time-varying potential. How-
ever, preparing a system in a desired state
and making measurements on the system
necessarily subject the system to external
influences such as dissipation and decoher-
ence, effects that are conventionally treated
with master equations or superscattering op-
erators. As will now be demonstrated, prep-
aration and measurement as well as environ-
mental effects such as dissipation and deco-
herence can be easily included in a quantum
analog simulation.

Consider a quantum system interacting
with its environment. If the system has Hil-
bert space XCs and the environment has Hil-
bert space NE, then the Hilbert space for the
system and environment together is XCs 0
XE. The joint time evolution for the system
and environment is given by a unitary oper-
ator U(t) acting on XS 0 XE. The system
and environment together can be described
by a joint density matrix psE(t) =
U(t)psE(O)Ut(t) (the dagger indicates Her-
mitian conjugation), and the state of the
system on its own is given by the reduced
density matrix ps(t) = trEpSE(t) obtained by
taking the trace trE over the states of the
environment. If the system and environment
are initially uncorrelated, so that PSE(O) =
Ps(0) 0 PE(O)' then the time-evolved re-
duced density matrix can be written ps(t) =
SI(t)[pS(O)] where Y(t) is a trace-preserving
linear operator called a superscattering oper-
ator that depends only on U(t) and PE(O)

To simulate an open system it is not
necessary to simulate the entire behavior of
the environment, but only the aspects of
the environment's behavior that affect the
system. In general, the effect of the envi-
ronment can be mimicked by using at most
as many variables as are required for the
system. For some cases the effect of the
environment can be encompassed by using
a single quantum bit. (Below, it will be
shown that sometimes not even a single bit
is required; the effect of the environment
on the system can be mimicked by the
effect of the computer's environment on
the computer.) The reason is as follows: The
goal of the simulation is to make the vari-
ables in the simulator corresponding to the
system evolve according to some desired
superscattering operator S(t). Y(t) is a
strictly positive trace-preserving linear oper-
ator acting on an m X m Hermitian density
matrix and so requires m4 - m2 parameters
to define. It is straightforward to verify that

'(t)[ps~(Ol = trfU(t)p,(O) 0 pj(O)Ut(t)
(2)

for some unitary operator U(t) acting on an
m2-dimensional simulated system-environ-
ment Hilbert space ( CX0 E and for some

initial simulated environment state pE(O)
(39). Finding the m4 - m2 parameters that
define 0(t) and the m2 parameters that
define pE(O) requires the solution of an m2
X m2 matrix equation [U(t) is unique only
up to arbitrary unitary transformations on
WIE]. Once the proper U(t) has been deter-
mined, the simulation proceeds. as in the
Hamiltonian case above.

For example, consider a spin-½/2 particle
evolving under an applied magnetic field
and interacting with its environment ac-
cording to the Bloch equation. Simulation
of the time evolution of such a particle on a
quantum analog computer requires two
qubits. Approximately 24 - 22 = 12 oper-
ations are required to take the particle from
an initial state to a state to which it evolves
under the Bloch equation.

System Preparation and
Measurement

Consider an open-system operation that
puts one of the simulator variables in a
known state, such as cooling an ion in an
ion-trap computer, or measuring the polar-
ization of a photon in quantum optical logic
device. Such an operation is either dissipa-
tive (as in cooling) or decohering (as in
measurement). This operation can be com-
bined with the sort of coherent operations
used above to simulate Hamiltonian sys-
tems to prepare the remaining variables in
any desired state. First, the variable is spec-
ified in a known state, then a unitary oper-
ation is effected that "pumps" entropy to
the variable from the remaining variables,
and then this procedure is repeated. If the
variable is a quantum bit, then with each
cycle of the pump the entropy of the re-
maining variables is decreased by one bit.
Repeated pumping reduces their entropy to
any desired value. By adjusting the unitary
"pumping" operation, the remaining vari-
ables can be prepared in any desired state.
A closely analogous technique can be

used to make arbitrary measurements on
the simulator. Consider an operation that
extracts some information from one of the
simulator variables (the "read-out vari-
able") while leaving the other variables
unaffected. For example, photon polariza-
tions can be detected with beam splitters
and photodetectors, and the states of ions
can be read by using fluorescence. The
read-out operation need not be perfectly
accurate, nor need it leave the read-out
variable undisturbed.
An arbitrary measurement on the state

of the simulator using this read-out opera-
tion is made by labeling with binary num-
bers the set of orthogonal states between
which the measurement is to distinguish. A
unitary transformation on the simulator is
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then effected that correlates the states of
the read-out variable with the value of the
first bit of the number labeling the states;
next, the read-out operation is performed
and these steps are repeated until the first
bit has been identified to the desired degree
of certainty. At this point the same read-out
process is performed on the second bit, and
so on, until all bits required to identify the
state have been determined. For example,
the Kimble quantum logic gate could be
used to correlate arbitrary polarization
states of a single photon with the left- and
right-circular polarization states of a se-
quence of read-out photons. By increasing
the number of read-out photons, one can
accurately measure the polarization of the
photon despite the finite efficiency of pho-
todetectors and the destruction of the read-
out photons. This method provides accurate
nondemolition measurements of arbitrary
sets of states even when the only available
read-out operation is noisy, inaccurate, and
destructive.

System preparation and measurement
are quantum computations in their own
right. The preparations and measurements
that can practically be performed are those
that can be done efficiently, in a relatively
small number of steps. Fortunately, in a
quantum simulation, many desired quanti-
ties can be read out directly. For example,
measurement of the correlation function
(M(O)M(t)) in a simulated spin glass only
requries making repeated measurements in
which one has prepared the simulator vari-
able corresponding to a spin in states of
different initial magnetization M(O), simu-
lated the time evolution of the spins over
time t, then measured the final magnetiza-
tion of the spin M(t). P repetitions are
required to build up the correlation func-
tion to an accuracy V.

Efficient Simulation of Local
Open Systems

For arbitrary open systems as for closed
systems, the difficulty of simulation rises
exponentially as the size of the system in-
creases. To simulate an arbitrary time evo-
lution of an open system of N spin-1/2 par-
ticles takes -24N steps. But physical systems
do not evolve arbitrarily. As with Hamilto-
nian systems, quantum simulation shows its
power when the open system to be simulat-
ed evolves according to local interactions
between its variables and between its vari-
ables and the environment. Consider as
above a system with N variables, each of
which interacts with at most k others, with
Hamiltonian H = Et Hi, where the H.
may be time-dependent as before. Now the
system is allowed to interact with its envi-
ronment with local interactions HE =

W'EHE where each term in the sum acts
on at most kE variables of the system and
environment. Because an open system is
being simulated by embedding it in a closed
system, Eqs. 1 and 2 hold as above for the
combined system-environment simulation:
Simulation of the time evolution of the
joined system-environment to an accuracy
E over time t then requires a number of steps
-(em2 + f EmE4)nt2/F, where m and mE are
the maximum dimensions of the local sys-
tem-environment Hilbert spaces acted on
by Hi, HEi, as above (40). The time over
which the simulation takes place is propor-
tional to t, as in the case of the closed
system. Just as for the case of closed systems,
the quantum simulation of open systems
uses a number of variables proportional to
the number of system variables and takes
time proportional to the time over which
the system evolves.

For example, consider the problem of
simulating the behavior of a set of spins that
interact with each other and with the en-
vironment. Suppose that the interaction of
each spin with its environment is Bloch-
like, so that in the absence of spin-spin
interactions, each spin would evolve ac-
cording to the Bloch equation, with longi-
tudinal relaxation time T1, transverse relax-
ational time T2, and natural frequency w. In
this situation, only one bit is required to
simulate the environment because the same
bit can be used to simulate first the envi-
ronment of one spin, then the environment
of another, and so on. Although the simu-
lation progresses by small perturbations as
in Eq. 1, it can still be used to extract
nonperturbative features. For example,
quantum computation could be used to sim-
ulate an annealing process to find the
ground state of the system.

Exploiting the Environment

So far, the quantum simulator has been
assumed to be itself a closed system, isolated
from its environment. However, no real
quantum computer is totally isolated; quan-
tum computers are open systems subject to
thermal fluctuations and decoherence. In
addition, the tools used to control the quan-
tum dynamics may themselves induce deco-
herence. For quantum computations such as
factoring decoherence is a liability, but for
quantum simulations of open systems deco-
herence can be an asset. Often, the inter-
action of the variables of the quantum com-
puter with their environment can be used
to mimic the interaction of the simulated
system variables with their environment.

For example, consider the use of an ion-
trap computer (22) to perform a quantum
simulation of the coupled Bloch spins above.
Suppose that each ion also has a Bloch-like

interaction with its environment character-
ized by parameters Tp, T2, and C,. These
parameters are determined by characteristics
of the computer's environment such as tem-
perature, pressure, density, viscosity, and
electric field strength and can be varied by
manipulating the environment. By tuning
the computer's Bloch parameters so that T1

tT1 ,T2T= °l 2Co = ot w(, the time over
which the computer interacts with its envi-
ronment can be adjusted so that the deco-
herence and noise induced in the qubits of
the computer by its environment simulate
the decoherence and noise induced in the
spins by their environment.

This method of simulating the system
environment by using the computer's envi-
ronment works as long as the operators that
determine the coupling of the computation-
al variables to their environment have the
same form as the operators that determine
the coupling of the system variables to their
environment. The temperature, pressure,
and density of the computer's environment
can then be tuned to make the effect of
both environments the same up to a time
scale. In the case of simulating spins with
ions, ions at room temperature could be
used to simulate spins occurring at mi-
crokelvin. The use of environments to sim-
ulate environments is more limited than
the method for simulating the environment
discussed in the previous section: The cou-
pling of the computer to its environment
must take the same functional form as the
coupling of the system to its environment.
Nonetheless, direct environmental simula-
tion has the advantage of exploiting inter-
actions that are present in any case and that
would otherwise constitute unwanted noise.

The use of noise and decoherence to
simulate noise and decoherence allows sys-
tems that are far too noisy and decoherent
to factor numbers to function as effective
simulators. Semiconductor quantum devic-
es such as quantum dots and wells typically
have decoherence time scales that are
shorter than or comparable with the time
required to flip them from one state to
another. As a result, they are not an appro-
priate technology for performing long, co-
herent quantum computations. But they
could prove suitable for simulating other
noisy and decoherent systems.

Conclusion

Feynman was correct that quantum com-
puters could provide efficient simulation of
other quantum systems. A quantum com-
puter with a few tens of quantum bits could
perform in a few tens of steps simulations
that would require Avogadro's number of
memory sites and operations on a classical
computer. A mere 30 or 40 quantum bits
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would suffice to perform quantum simula-
tions of multidimensional fermionic systems
such as the Hubbard model that have
proved resistant to conventional computa-
tional techniques. Hundreds to thousands
of bits may be required to simulate accurate-
ly systems with continuous variables such as
lattice gauge theories or models of quantum
gravity. Current quantum logic devices can
perform operations on two quantum bits
(23, 24, 26); however, ion-trap quantum
computers with a few tens of quantum bits
apparently require only minor modifica-
tions of current technology (24). Although
a quantum simulator with three or four
quantum bits would be too small to solve
classically intractable problems, it would
still be large enough to test many of the
ideas presented here. As suggested in (13),
such simulators would also be able to create
and test the properties of exotic quantum
states such as Greenberger-Horne-Zeilinger
states. Another possibility (13) is that by
modulating the interactions between spins,
atoms, or quantum dots in large arrays (41),
one could perform massively parallel quan-
tum simulations involving many quantum
systems at once. The wide variety of atomic,
molecular, and semiconductor quantum de-
vices available suggests that quantum sim-
ulation may soon be a reality.
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A Crosslinked Cofactor in Lysyl
Oxidase: Redox Function for
Amino Acid Side Chains

Sophie Xuefei Wang, Minae Mure,* Katalin F. Medzihradszky,
Alma L. Burlingame, Doreen E. Brown, David M. Dooley,
Alan J. Smith, Herbert M. Kagan, Judith P. Klinmant

A previously unknown redox cofactor has been identified in the active site of lysyl oxidase
from the bovine aorta. Edman sequencing, mass spectrometry, ultraviolet-visible spec-
tra, and resonance Raman studies showed that this cofactor is a quinone. Its structure
is derived from the crosslinking of the s-amino group of a peptidyl lysine with the modified
side chain of a tyrosyl residue, and it has been designated lysine tyrosylquinone. This
quinone appears to be the only example of a mammalian cofactor formed from the
crosslinking of two amino acid side chains. This discovery expands the range of known
quino-cofactor structures and has implications for the mechanism of their biogenesis.

Lysyl oxidase (LO, E.C. 1.4.3.13) is an
extracellular, matrix-embedded protein. It
has a central role in the biogenesis of con-
nective tissue by way of posttranslational
oxidative modification of the C-amino

group of lysine side chains in elastin and
collagen to form inter- and intrachain
crosslinks (1, 2). The physiologic impor-
tance of LO is well established. Decreased
LO activity is observed in diseases of im-

SCIENCE * VOL. 273 * 23 AUGUST 1996

mm R IwIll-I WE 14ml mmxw I "mum -M.l

1078

D
ow

nloaded from
 https://w

w
w

.science.org at M
assachusetts Institute of T

echnology on February 02, 2022



Use of think article is subject to the Terms of service

Science (ISSN 1095-9203) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science is a registered trademark of AAAS.
© 1996 American Association for the Advancement of Science

Universal Quantum Simulators
Seth Lloyd

Science, Science, 273 (5278), • DOI: 10.1126/science.273.5278.1073

View the article online
https://www.science.org/doi/10.1126/science.273.5278.1073
Permissions
https://www.science.org/help/reprints-and-permissions D

ow
nloaded from

 https://w
w

w
.science.org at M

assachusetts Institute of T
echnology on February 02, 2022

https://www.science.org/about/terms-service



