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MODELLING CELLULAR AUTOMATA WITH PARTIAL 
DIFFERENTIAL EQUATIONS 

Stephen OMOHUNDRO* 
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA 

A system of 10 coupled nonlinear partial differential equations is exhibited which simulates an arbitrary two-dimensional, 
nine-neighbor, square-lattice cellular automata. A number of theoretical implications of the result and the techniques used in 
its construction as well as possible practical consequences are discussed. 

1. Introduction 

Relatively recently there has been a flowering of 
powerful mathematical tools for analyzing systems 
of differential equations and iterated smooth maps 
[3]. Many of the elementary concepts of this 
smooth dynamical systems theory like the notions 
of orbits, fixed points, periodic orbits, basins of 
attraction, and reversibility have exact analogs in 
a discrete dynamical context. Analogs of more 
sophisticated notions are being discovered [4] but 
it is clear that it is useful to understand the 
relationship between continua and discretum bet- 
ter in this context. 

One of the original motivations for the computer 
and one of its major present uses is numerically 
modelling continuum systems that are too complex 
to deal with analytically. Various numerical ap- 
proximation schemes represent partial differential 
equations (P.D.E.'s) on a discrete spatial lattice 
with a discrete time step and with a finite precision 
at each lattice point, i.e. as a cellular automata. 
These approximations have done remarkably well, 
probably because the evolution of physical 
P.D.E.'s is very insensitive to small space and time 
scales (after all, the physical modelling which 
produces P.D.E.'s almost always breaks down at 
some scale). 

* Research partially carried out while visiting the Center for 
Nonlinear Studies, Los Alamos National Laboratory. 

Trying to understand the relation between dis- 
crete and continuum dynamics naturally leads one 
to the inverse question: Can one rigorously con- 
struct a cellular automata from a smooth under- 
lying dynamical system? In his studies yon Neu- 
mann posed but never answered this question. In 
his compilation of von Neumann's Theory of 
Self-Reproducing Automata [5], Burks explains: 
"The fourth model of self-reproduction which yon 
Neumann considered was a continuous model. He 
planned to base this on a system of nonlinear 
partial differential equations of the type which 
govern diffusion processes in a fluid . . . . .  Von 
Neumann recognized that a system of simulta- 
neous non-linear partial differential equations ade- 
quate to account for self-reproduction would be 
much more complex than the systems usually 
studied". 

The construction of such a system is actually 
much simpler than von Neumann envisaged. We 
will exhibit ten coupled, two space- and one time- 
dependent, nonlinear partial differential equations 
which reliably simulate any two-dimensional, nine- 
neighbor, square-lattice cellular automata. A cellu- 
lar automata state is represented by a smooth 
function with bumps at lattice sites whose heights 
are near integers which represent the cellular auto- 
mata state (fig. 2a). For theoretical and practical 
reasons we have added a number of "bells and 
whistles" to the basic cellular automata simulator. 
These make the dynamics insensitive to noise and 
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give a certain structural stability to the flow. In 
particular any state close enough to a canonical 
"bump" state quickly relaxes toward it and any 
value near enough to an integer is a valid repre- 
sentation of that integer. The spacetime de- 
i~endence may be eliminated by adding extra vari- 
ables, just as time-dependent Hamiltonian systems 
may be made time independent by going to ex- 
tended phase space. The time quantity would be a 
local oscillator and the space quantities would play 
the role of "morphogens" in determining position. 
Other dimensions, numbers of states, types of 
lattice, or neighborhoods are trivial extensions of 
the given construction. Because there is lots of 
unused space in representing a state, it appears that 
with a more complex design one could fit all the 
dynamics into a single P.D.E.. 

Before delving into the construction we will 
indicate some theoretical and practical reasons 
why it is of interest. It shows that relatively simple 
P.D.E.'s can be computation universal and support 
self-reproducing configurations, because there exist 
cellular automata with these properties (e.g. LIFE 
[1]). Ed Fredkin [2] has suggested that the un- 
solvability of the halting problem could be used to 
demonstrate that there does not exist a solution in 
closed form to these P.D.E.'s. The local dynamics 
is contracting in the regions of interest: two 
sufficiently close initial conditions contract to the 
same "bump" state. Thus the usual local measures 
of chaos like Liapunov exponents fail to detect the 
fact that solutions evolve with arbitrary unpredict- 
ability globally. For example we may construct an 
initial condition whose asymptotic state is zero 
everywhere if Fermat's last theorem is true and has 
a single bump if it is false. 

The construction itself gives us insight into the 
mechanisms for creating separation of levels. 
Firstly, reliability and insensitivity to noise require 
that the flow be attracted to legal states. This 
dissipative or irreversible aspect of the underlying 
dynamics is completely independent of the revers- 
ibility or irreversibility of the simulated automata. 
Secondly, insensitivity of the output to the exact 
input requires nonlinearity (weak dependence of 
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Fig. 1. The typical nonlinearity for an analog implementation 
of a digital design. 

output levels on input levels in some regions, 
strong in others, fig. 1.). This nonlinearity is used 
in several places in our construction and also 
occurs in any digital circuits made from analog 
components. Thirdly, we needed to employ multi- 
ple time scales. The relaxation mechanisms had to 
be fast compared to the state changing mech- 
anisms. This same point arose in Otto Rrssler's 
discussion of the evolution of a biochemical switch 
[6]. Lastly, these elements are combined to give 
pattern formation in a continuum system in the 
manner that catastrophe theory suggests discrete 
biological differentiation and pattern formation 
occur over an underlying cellular continua. 

There are also some potentially practical aspects 
to this construction. Toffoli [7] has given a nice 
discussion of the engineering and cost advantages 
of constructing computers as large arrays of iden- 
tical components, likening their construction to 
printing large sheets of postage stamps. There is no 
reason to stop there, one can build very inexpen- 
sive devices if one has no local structure at all. This 
structureless approach to circuits is actually being 
implemented currently to build inexpensive high- 
density silicon memories and displays [8], using the 
strong dopant dependence of the frequency of 
excitation of an electron to the conduction band in 
semiconductors. One utilizes continuous dopant 
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gradients and selects a particular region of a chip 
by the frequency of a signal instead of selecting 
particular access lines which have been defined via 
photolithography. Such an approach is very insen- 
sitive to nonuniformities in the dopant gradient 
and is inexpensive to implement. 

A similar philosophy could conceivably be used 
to construct a structureless computer based on 
these P.D.E.'s. If  one could find chemicals whose 
reaction-diffusion equations were these P.D.E.'s, 
or a set with the same capabilities, then pouring 
them together into a petri-dish would yield an 
"instant computer". 

We will now describe the P.D.E.'s, often leaving 
constants to be chosen large enough. Choosing 
explicit values for these and rigorously proving the 
stated properties is easily done but not very en- 
lightening. We define the 10P.D.E. variables 
N(x,  y, t), F(x, y, t), Sl(x, y, t) . . . . .  , Ss(x, y, t), 
the 8 bump functions used in the construction 
b~(x) . . . .  , bs(x), the 4 time steps and their effects, 
the hysteresis function H(x , c ) ,  the method of 
forcing relaxation to a bump, the transition function 

T(N, $1 . . . . .  $8), the method of shifting bumps 
around and finally exhibit the P.D.E. 

2. The variables 

The variable which holds the current state of the 
automata is N(x,  y, t) (for "Now").  As a function 
of x and y it is a bunch of C ~ bumps centered on 
the integer lattice Z x Z with approximately inte- 
gral height at the center which defines which of the 
finite number of cell states is represented (fig. 2a). 
For convenience we take the bumps to be 0.2 wide 
and constant outside of 0.01 from the transition 
boundaries. The height error should be less than 
0.1 (fig. 2b). The variables S l ( x , y , t )  . . . .  , 
S8(x, y, t) hold the same information as N(x,  y, t) 
in the same format but shifted in ( x , y )  by the 
amounts: ( -  1, 0), ( -  1, 1), (0, 1), (1, 1), (1, 0), 
(1, - 1 ) ,  (0, - 1 ) ,  ( -  1, - 1 )  (fig. 2c). The variable 
F(x, y, t) (for "Future")  will hold the next state of 
the automata in the same format as N(x , y ,  t) but 
with bumps that are .4 across. 
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Fig. 2. a) the graph of a bump state; b) the specifications of a single bump; c) the eight nearest neighbors of a cell. 
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3. Bump functions 

The basic smooth construction tools are C °~ 
bump functions (sometimes called mollifiers) 
which can be constant in some regions and yet 
smoothly vary in others. The bumps we shall need 
are defined in fig. 3. b,(x) is the basic bump: zero 
for Ixl 0.01, nonzero for )xl < 0.01. b=(x)is 0.4 
wide and has a peak value of 1. b3(,x) is a smooth 
step that is zero for x < - 0 . 0 1  and 1 for x > 0.01, 
b4(x) is a 0.2 wide bump that is 1 for Ix[ < 0.03 and 

0 for ]x l>0 .11 .  bs(x) is the same but 0.4 wide. 
b6(x) is a bunch of  0.2 wide b4's over integers, bT(x) 
is 0.4 wide b/s  over integers, bs(x) is a bunch ofb2's 
with no flat top over integers. 

4. Time steps 

The P.D.E. cycles once every unit of time. This 
unit is broken into four intervals of length 0.2 as 
in fig. 4 during which different operations take 
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Fig. 3. The definitions and graphs of the 8 basic bump functions used in the construction, 
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Fig, 4. The four time steps. 
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place. In the first time step br(t  - 0 . 1 1 ) ,  the now 
variable N and the shifted variables S are cleared 
and the state in F is smoothed out. In the second 
time step br(t  - 0.36), F is loaded into N and the 
S's truncating with a 0.2 wide bump. In the third 
time step b6(t - 0.61), F is cleared and the state of  
the S's is shifted in each of  the eight directions. In 
the fourth time step br(t  - 0.86), we load Fwi th  the 
new value computed from N and the S's with 
hysteresis. 

5.  H y s t e r e s i s  

We now define the mechanism which pushes 
near integer values closer to being integral. For a 
four state automata we could define a function 
H ( x ,  c )  where x is thought of  as the state and c as 
a control parameter. We build H ( x , c )  out of  
bumps to be a C ~ function with critical points 
given in fig. 5a: solid lines are minima, dotted are 
maxima. As a function o f  x, H will look  like fig. 
5b. With the dynamics 

8 
Yc = c~ ax  H(x ,  c) 

and large enough c~ we have a device with control 
knob c that behaves as follows: if c is close to - 1 
(i.e. - 1 . 1  < c < - 0 . 9 )  then x is "reset" to 0 (i.e. 
- 0 . 1  < x < 0.1) within 0.01 time units, if  c is set 
close to n = 0, 1, 2, 3 when x is near zero then x 
is "set" to n, and otherwise x remembers its state. 
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Fig. 5. a) The critical points of  H(x, c), solid lines are minima, dotted are maxima; b) Graphs of  H versus x at various values of  c. 
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Fig. 6. a) The graph of -db2(x)/dx; b) the effect of smoothing 
on a bump. 

6. Forcing relaxation to a bump 

As part of our design we would like the P.D.E. 
to accept initial states which are noisy and do not 
follow bump protocol and quickly convert them to 
cleaner states. There are many ways to do this but 
most suffer from lack to centralized control. Our 
scheme eventually slaves the whole bump to the 
value at the center. The technique is to push the 
bad information out to the wings of  the bump in 
F(which uses the wider 0.4 bumps) and to truncate 
it away when loading F 's  state into N and the S's. 
The function - d b 2 ( x ) / d x  is shown in fig. 6a. 
The effect of  the evolution: /~(x) = 
-c2(db2/dx)OF/Ox is to push F's  value near zero 
outward while keeping the nonzero portion within 
0.2 of zero (see fig. 6b). In two dimensions this 
evolution is given by 

/'db2(x) OF db2(y) OF) 
~ ' ( x ' y ' t ) = - - c 2 ~  ~ x  ~x + d ~ - - ~ y  " 

We choose ¢2 large enough that this blows up a 
small neighborhood of zero to the whole of a 0.2 
bump in the allotted time. 

7. Transition function 

The function T of nine variables holds the 
transition rules for the automata. We construct it 
from bump functions so that T(N,  SI . . . . .  Ss) is 
the integer representing the successor state to the 
state represented by the integer N and the eight 
neighbors S~ . . . . .  Ss. 

8. Shifting the bumps around 

We now describe the means for getting the 
shifted versions SI . . . . .  Ss of the state N. The idea 
is to turn on a bunch of first order wave equations 
for the right amount of time to shift by the right 
amount. The equation 

• f  . ~ ~ ~ f  

= oaO Ux 

has the solution: f ( x , t ) = f ( x + a ( t ) )  where 
a( t )  = S'-0.. b4(t) dt. After t = 0.11 the effect is to 
just shift f by a distance a(0.11). Define 
al -- j-0,¢°~ b4(l) dl. Then Of lOt = (b,(t)/aO(Of/Ox) 
sh i f t s fone  space to the left. The equations for the 
other 7 directions are similar. 

9. The P.D.E. 

Using the pieces we have described in the pre- 
vious sections we now exhibit the full P.D.E. 

[ : ( x ' y ' t ) = { - b 6 ( t - O ' l l ) c 2 ( d b ~ x  x)OFOx 

dbs(y ) OF'I -- b6(t -- 0.61)e3F 4 dy Oy] 

+ b6(t - 0.86)H(F, T(N,  S, . . . . .  Ss)) t ,  

]V(x, y, t) = - b6(t - 0.11)c3N 

+ b6(t - 0.36)c3[b6(x)b6(y)F - W], 

S,(x,  y, t) = { - b6( t - 0.11)c3S, 

+ b6(t - 0.36)c3[b6(x)b6(y)F - S~] 

+ b6(t - 0.61) 1 c3S,~ 
T ; j '  

and similarly for $2 . . . .  , As. 
The first term in fl" smooths F in the first time 

step, the second term clears F in the third time step 



134 s .  Omohundro / Modelling cellular automata with P.D.E?s 

and the last term sets F to the new state with 

hysteresis in the fourth time step. The first term in 
clears N in the first time step and the second term 

sets N to the values in F with truncation to 0.2 

bumps in the second time step. The first term in Sz 
clears S~ in the first time step, the second term sets 
SI to F with truncation in the second time step and 

the last term shifts $2 leftward in the third time 
step. It is the last term in ~t that is altered in 

$2 . . . .  , Ss to cause shifting in the different direc- 
tions. 

tions might be in some sense computat ion univer- 

sal [10]. Other work relating continuous and dis- 
crete realizations may be found in [11] and [12]. 
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10. Conclusions 

We have demonstrated the existence of  a set o f  
P.D.E. 's  which simulates cellular au tomata  and 
thus may exhibit computat ion universality and 

self-reproduction. In some ways these P.D,E. 's  are 
somewhat  artificial in that  they use rather intricate 

C ~ functions in a manner  quite analogous to the 
design of  a digital simulator. One would really like 
to use the cont inuum tools of  functional analysis 
to analyze the behavior of  cellular au tomata  like 

one uses Koopman i sm [9] to analyze finite dimen- 
sional nonlinear problems via equivalent infinite 
dimensional linear ones. For  this type of  program 
one would prefer a much more "na tura l"  system of  

P.D.E. 's  defined by very simple analytic functions. 
One wonders if some of  the standard nonlinear 

P.D.E. 's  with regimes exhibiting very complex 
" turbulent"  behavior like the Navier-Stokes  equa- 
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