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SINGLE-CELL ANALYSIS

Single-cell mapping of gene
expression landscapes and lineage
in the zebrafish embryo
Daniel E. Wagner, Caleb Weinreb, Zach M. Collins, James A. Briggs,
Sean G. Megason,* Allon M. Klein*

High-throughput mapping of cellular differentiation hierarchies from single-cell data promises
to empower systematic interrogations of vertebrate development and disease. Here we applied
single-cell RNA sequencing to >92,000 cells from zebrafish embryos during the first day of
development. Using a graph-based approach, we mapped a cell-state landscape that describes
axis patterning, germ layer formation, and organogenesis.We tested how clonally related
cells traverse this landscape by developing a transposon-based barcoding approach
(TracerSeq) for reconstructing single-cell lineage histories. Clonally related cells were often
restricted by the state landscape, including a case in which two independent lineages converge
on similar fates. Cell fates remained restricted to this landscape in embryos lacking the chordin
gene.We provide web-based resources for further analysis of the single-cell data.

A
major goal of developmental biology is to
understand the progression of embryonic
cell lineages from pluripotency to adult-
hood (1). Fate mapping and analysis of
mutant phenotypes have explainedmuch

of what we know of development, yet we still
lack a systematic atlas of all cell states in a de-
veloping embryo. Owing to technical advances
in single-cell RNA sequencing (scRNA-seq) (2–6),
it is now possible to assemble comprehensive
single-cell atlases describing complex and dynam-
ic in vivo biological processes. Here we utilized
inDrops scRNA-seq (4, 7) to collect more than
92,000 single-cell transcriptomes from dissociated
wild-type and mutant zebrafish embryos during
the first 24 hours of embryonic development
(Fig. 1 and fig. S1). For different developmental
stages, we sampled 17 to 97% of the total cells per
embryo, sufficient to detect cell states as rare as
0.1 to 0.5% of all cells (fig. S1C), including germ
cells, which were detected in all time points (Fig.
1B and table S2). From this dataset, clustering of
the wild-type transcriptomes revealed an expand-
ing set of epidermal, neural, mesodermal, and
endodermal cell states over developmental time,
many ofwhich could be specifically annotated on
the basis of expression of marker genes (Fig. 1B,
fig. S2A, and table S2) (8). We collected seven bio-
logical replicates for the final time point [24 hours
postfertilization (hpf)], which demonstrated con-
sistency of both transcriptional signatures and
cell-state proportions across independent speci-
mens (fig. S2, B and C).

A single-cell graph of cell-state
progression in the developing
zebrafish embryo
We sought to map trajectories of cell state
during development by linking cell states across
time. Several computational approaches exist to
infer orderings of asynchronous processes from

scRNA-seq data (9–11), typically by projecting
all cells into a single low-dimensional latent
space. Such strategies may be ill-suited to map
gene expression in developing embryos, which
exhibit dramatically increasing cell-state dimen-
sionality and continuous changes in the sets and
numbers of cell state–defining genes (fig. S2,
D and E). To overcome these obstacles, we de-
veloped a graph-based strategy for locally em-
bedding consecutive time points on the basis
of the biological variation that they share, rather
than using a global coordinate system for all time
points. This approach first constructs a single-
cell k-nearest neighbor graph for each time point
ti, with nodes representing cells and edges that
link neighbors in a low-dimensional subspace; it
then joins the graphs by identifying neighboring
cells in pairs of adjacent time points, by using a
coordinate system learned from the future (ti+1)
time point (see methods). The resulting graph
spans all time points and allows application of
formal graph-based methods for data analysis.
When applied to our zebrafish data, the full
graph forms a branching network (Fig. 2A). In-
spection of numerous domain and cell type–
specific transcriptional markers shows that major
initial branches represent neural, epidermal, and
mesendodermal states undergoing progressive
and spatially restricted differentiation (Fig. 2,
B and C, and fig. S3). We also noted distinct and
early branching events for germline, notochord,
enveloping layer epidermis, and the prechordal
plate.
To test whether this graph recapitulates known

lineage relationships, we used ameasure of graph
distance (diffusion pseudotime, or DPT) (12) to
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Fig. 1. A single-cell transcriptional atlas of the zebrafish embryo. (A) Experimental workflow.
Single-cell suspensions were dissociated from staged zebrafish embryos and introduced into the
inDrops microfluidic device. Single-cell transcriptome libraries were prepared and sequenced by
RNA-seq. (B) tSNE maps for each time point, constructed in dimensionality-reduced principal
component analysis subspace defined by highly covariable genes (see methods). Cells are colored by
germ layer identities inferred from expressed marker genes (see also fig. S2A and table S2).
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explore long-range temporal connections between
cell states. Cell states of the early gastrula (shield
stage, 6 hpf) are defined largely by positional
marker genes (Fig. 3A), yet these cells are con-
nected, through the single-cell graph, to tissue-
specific states that emerge later (for example,
pharyngula stage, 24 hpf). We found that the
shield-stage cells with the shortest mean graph
distance to each particular 24-hpf tissue were
clustered and expressed spatial marker genes
predicted from previous in vivo fate-mapping
studies (13–16); for example, 24-hpf neural tissues
mapped to the 6-hpf dorsal anterior epiblast (Fig.
3B and fig. S4). Conversely, direct comparison

of 6- and 24-hpf gene expression states failed to
capture lineage relationships (Fig. 3B and fig. S4,
blue points).
We next tested the extent to which the single-

cell graph represents a simple treelike hierarchy
of discrete states. For this, we “coarse-grained”
the graph by collapsing groups of similar cells
into state nodes; edges between state nodeswere
weighted by the number of original single-cell
connecting edges. A spanning treewas then traced
through the most densely weighted edges to a
4-hpf root state (Fig. 3C and fig. S5A). This span-
ning tree (the “state tree”) reflects many specific
aspects of early development. In the neural plate,

we observe notable branch points for the optic
cup, diencephalon, telencephalon, mesencephalon,
and rhombencephalon, with associated states for
region-specific postmitotic neurons (for example,
eomes+ and dlx1+ neurons in distinct forebrain
branches). The neural plate also includes neural
crest, which branches to include cell states for
melanoblasts, iridoblasts, and xanthoblasts. In the
lateral plate and ventralmesoderm, the state tree
encodes extensive branching into hematopoietic
cells, endothelial cells, heart, pharyngeal arches,
the pronephritic duct, and fin buds. In the endo-
derm, two branch points give rise to cell states for
pancreatic primordium (which includes insulin+
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Fig. 2. Single-cell graph reveals a continuous developmental land-
scape of cell states. (A) Overview of graph construction strategy and a
force-directed layout of the resulting single-cell graph (nodes colored by
collection time point). For each cell, up to 20 within– or between–time
point mutual nearest neighbor edges are retained. sc-kNN, single

cell–k-nearest neighbor; EVL, enveloping layer epidermis. (B) Single-cell
graph colored by germ layer identities inferred from differentially
expressed marker genes (see table S2). (C) Single-cell graphs, colored by
log10 expression counts for indicated cell type–specific marker genes.
UMI, unique molecular identifier.
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cells) and the pharyngeal pouch. In the epi-
dermal lineage, branch points differentiate the
otic placode, lateral line, ionocytes, and several
states expressing markers for annotated mucous-
secreting cells (8). To facilitate data exploration,
we developed web-based interfaces for the state
tree and the full single-cell graph (www.tinyurl.
com/scZfish2018). These tools permit interactive
examination of the inferred state hierarchy, ex-
pression for any gene of interest, and differential
expression analysis between states, state combi-
nations, or single cells.
Although many major cell-state transitions

are captured in the state tree, more complex fea-
tures are evident in the coarse-grained and single-
cell graphs. Off-tree interconnections between
states, for example, were evident for the neural
crest and pharyngeal arches, spinal cord and
somitic mesoderm, the neural plate, and others
(Fig. 3C and fig. S5A). To formalize the degree
to which the developmental landscape can be
approximated as a hierarchy with discrete, non-
looping branches, we defined a “canalization
score” (Fig. 3D, see legend for definition), which
reflects the off-tree connectivity of each coarse-
grained state node. This analysis revealed wide-

spread regions of low canalization, particularly
in the neural plate and somitic mesoderm. These
observations suggest that, in contrast to the classic
notion of a cell lineage, the zebrafish cell-state
landscape cannot be fully represented as a tree.

Cell-lineage history does not invariantly
reflect cell-state graph topology

Although the single-cell and coarse-grained graphs
represent an inferred landscape of developmental
cell states, they do not reveal how individual cells
traverse these states. A simple prediction would
be that individual cell histories mirror graph to-
pology. We tested this prediction by developing
an inDrops-compatible strategy for recording
in vivo lineage histories at the single-cell level:
sequencing of transcribed clonally encoded ran-
dom barcodes (TracerSeq). TracerSeq utilizes the
Tol2 transposase system (17) to randomly integrate
green fluorescent protein (GFP) reporter cassettes
driven by the b-actin promoter (actb2) into the
zebrafish genome. To render each integration
event unique and detectable by RNA-seq, we
utilized Gibson assembly (18) without subsequent
amplification to introduce a random 20-nucleotide
oligomer sequence barcode into the GFP 3′ un-

translated region (Fig. 4A and fig. S6). Because
transgenic insertions can occur asynchronously
over successive cell divisions, TracerSeq barcodes
can facilitate the construction of lineage trees
(Fig. 4A). TracerSeq offers an advantage over
related Cas9-based approaches (19, 20), which
can generate identical edits and/or large barcode
deletions in independent lineages at nontrivial
frequencies. By contrast, TracerSeq barcodes are
uniformly distributed over a large sequence space
(for example, 420 nucleotide combinations = 1012

unique barcode sequences), facilitating straight-
forward calling of genetic clones (fig. S7). The
small (20–base pair) locus size also greatly sim-
plifies the construction, sequencing, and analysis
of TracerSeq inDrops libraries.
The use of TracerSeq to analyze potentially

small clones of cells (each restricted to a single
embryo) requires high-efficiency tissue dissocia-
tion and transcriptomic barcoding methods. We
therefore optimized a high-yield cell dissociation
and recovery protocol for individual 24-hpf zebra-
fish embryos (fig. S1D and methods) and lever-
aged the high cell barcoding efficiency (>80%) of
the inDrops platform (7). We then sequenced in-
dividual embryos (n = 5) at 24 hpf (fig. S7) that
were injected at the one-cell stage with the
TracerSeq library, generating combined lineage
and transcriptome datasets for 1269 clonal bar-
codes distributed over 4342 single cells (fig. S8).
Of these cells, 2361 (54%) were each marked by
≥2 distinct barcode integrations; 624 cells (14%)
were marked by ≥5 integrations (fig. S8). Hier-
archical clustering of TracerSeq barcodes orga-
nized these cells intomore than ahundreddistinct
founder cloneswith internal nested clone structures
(Fig. 4B and fig. S9, A to D). We then compared
the lineage history and inferred transcriptional
history of each founder clone by embedding its
constituent cells onto the single-cell graph (Fig. 4C).
We found that the largest clones often marked a
wide diversity of cell states. In multiple cases,
however, additional barcode integrations in the
same founder clone marked cells that were state
restricted. For example, one such clone (34F1)
marked cells of the neural plate, epidermal tissues,
and muscle but contained a subclone restricted
to ectoderm. Similar lineage restriction events
could be described for other founder clones (Fig.
4C). These observations suggest that the current
timing of TracerSeq integrations encompasses
the transition from unrestricted pluripotency to
the first fate-restriction events appearing in the
zebrafish embryo.
To investigate lineage relationships more sys-

tematically, we assessed the likelihood of recov-
ering shared TracerSeq barcodes from all pairs
of transcriptional states in the 24-hpf zebrafish
embryo. We first calculated a lineage coupling
score (fig. S9E andmethods), defined as the num-
ber of shared barcodes relative to randomized
data (z-score standardized), with values ranging
from positive (coupled fates) to negative (anti-
coupled fates). Hierarchical clustering of the
pairwise correlation between coupling scores re-
vealed structured groups of cell states (Fig. 5A),
which comprised related tissues and/or inferred
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Fig. 3. Single-cell and coarse-grained graphs encode progenitor-fate relationships. (A) tSNE
map of 6-hpf epiblast and hypoblast states, colored by normalized transcript counts for select
positional marker genes. Overlapping color gradients demonstrate continuous expression domains
defined by position. Diagram relates positions of cells in the tSNE map to theoretical positions
in the embryo. 2D, two dimensions. (B) In silico fate predictions for 6-hpf embryo cells. The top
100 cells with predicted 24-hpf fate outcomes are indicated for shortest graph diffusion distances
(red) or direct single-cell gene expression correlation distances (blue) between 6-hpf cells and
24-hpf cluster centroids. r, Pearson correlation. (C) Construction and overview of the coarse-grained
graph (see also fig. S5). Nodes indicate states (groups of transcriptionally similar cells), colored
by time point. Weighted edges connect similar states within or between time points. Spanning tree
edges connecting each node to the 4-hpf root state through the top weighted edges are highlighted
in dark gray. (D) Coarse-grained graph nodes are colored by a canalization score, defined as
the ratio of diffusion distances between each node (DPTall) and the 4-hpf root node through state
tree edges only (DPTscaff) versus through all graph edges. Highly canalized regions of the graph
correspond to branches with the fewest off-tree edges.
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germ layer derivatives. These included one dis-
tinct group that contained bothmesodermal and
endodermal derivatives, four groups containing
ectodermal derivatives, and two groups contain-
ingmixtures of ectoderm andmesoderm. Several
of these lineage groups are corroborated by prior
fate-mapping studies. We discuss here three ex-
amples. The firstmajor lineage group (MesEndo)
includes derivatives of both lateral plate meso-
derm and endoderm. These tissues originate from
the marginal blastomeres of the early zebrafish
gastrula, which involute first during gastrulation
to form the hypoblast and then rapidly migrate
toward the animal pole (13, 15, 21). The observed
lineage isolation of these tissues is thus con-
sistent with an early spatial partitioning of this
region, further reflected in Fig. 5A by negative
lineage correlations to most other states. A sec-
ond group (Fig. 5A, Ecto III) captures strong
lineage couplings both between anterior neural
tissues—including the optic cup, midbrain, and
telencephalon (16)—and to anterior epidermal
derivatives such as the olfactory placode (22).
These tissues are coupled to a lower degree with
another group (Ecto II), which includes cou-
plings between the hindbrain, spinal cord, and
neural crest (grem2+). The third example we note
is a group coupling ectoderm and mesoderm

(Fig. 5A, MesEcto II), includingmuscle (myl1+),
myotome, spinal cord, posterior neural crest, and
epidermal states. These correlations mirror the
development of posterior body regions, which
trace their origins to blastomeres proximal to
the medial and ventral margin (13). These
mesodermal–spinal cord couplings might also
be explained by the presence of a later popula-
tion of transient, multipotent neuromesodermal
progenitor cells in the embryonic tailbud, which
give rise to both of these populations (23–25).
Interestingly, these lineage groups tend to be
organized by position (for example, along the
anterior-posterior axis) rather than strictly by
germ layer or tissue origin (for example, neural,
epidermal, and mesodermal).
We next questioned how clonal relationships

compared with cell-state relationships. A sim-
plistic model of development is that cells prog-
ressively diverge in state as they diverge in lineage.
Developing embryos, however, could violate this
prediction in at least two ways: First, clonally
distinct embryonic fields can give rise to similar
cell types (“convergent clones”); second, major
transcriptional changes might drive related cells
into qualitatively dissimilar states, possibly even
late in development (“divergent clones”). Over-
laying TracerSeq lineage correlation scores on

the cell-state graph and comparing these scores
to graph-derived state distances (Fig. 5B and fig.
S10) revealed that some nearby states on the state
graphwere indeed clonally correlated, as expected
by the simplistic model. However, nearby cell
states also frequently displayed weak clonal cor-
relations, suggesting convergent differentiation.
These patterns were evident among state rela-
tionships for endothelial, optic cup, and muscle
tissues (Fig. 5B and fig. S10, A to F) and sys-
tematically when examining all states (fig. S10G).
We observed considerably fewer cases of di-

vergent clonal behavior (fig. S10G). However, one
notable example manifested as apparent looping
of the neural crest into the pharyngeal arches,
which originate in the graph from both neural
plate and lateral plate mesoderm and merge at
18 to 24 hpf (Fig. 2, A and B, and fig. S11A). Al-
though the contribution of neural crest to various
mesenchymal tissues is well established (26–28),
the transcriptional information reflected by the
graph loop alone does not reveal which annotated
pharyngeal arch states arise from neural crest.
TracerSeq data, however, provide a clear signature
of distinct clonal patterns between pharyngeal
arch states: One pharyngeal arch state (ph.arch-
tbx1) is a member of the MesEndo lineage group
with mesodermal clonal associations, whereas
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Fig. 4. Single-cell transcriptomic
barcoding of cell lineages using
TracerSeq. (A) Method overview.
Tol2 transposase system integrates
barcode-containing GFP reporter
cassettes into zebrafish genome.
Asterisks denote integration events.
Colors (red, blue, black, and green)
indicate unique barcode sequences.
(B) Clustered heatmap for one
of five TracerSeq embryos (see also
fig. S9, A to D), displaying lineage
and transcriptome information
for each cell. Heatmap rows are single
cells for which both transcriptome
and >1 TracerSeq barcodes were
recovered. Columns denote unique
TracerSeq barcodes (left: black
squares, ≥1 UMI) and tissue identities
(right: red squares) inferred from
cluster annotations (table S2). Heat-
maps were clustered using Jaccard
similarity and average linkage.
(C) Examples of TracerSeq founder
clones with positions of constituent
cells (colored nodes) overlaid on the
single-cell graph. Graph edges are
shown in dark gray. Colors indicate
the first lineage bifurcation within
each founder clone. In the three cases
shown, the founder clone included
cells that differentiated into both
ectodermal (E) and mesodermal (M)
states, whereas one of the two first
subclones was restricted to ectoderm.
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the secondpharyngeal arch state (ph.arch-cd248b)
is clonally related to neural crest and posterior
neural states (Fig. 5A and fig. S11, B to F). These
data indicate that cells in the ph.arch-cd248b
state diverged from a neural plate lineage and
subsequently converged with other lateral plate–
derived states. The ability of embryonic clones
to undergo dramatic converging and diverging
behaviors thus underscores a continued need for
independent measurements of both cell state
and lineage in themapping of cell-fate hierarchies.

Robustness of cell-type transcriptional
programs after a signaling perturbation

Single-cell maps of vertebrate development can,
in principle, facilitate unbiased, systematic analy-
ses of mutant phenotypes and disease states. We
used scRNA-seq to analyze the mutant pheno-
type for chordin, a well-studied developmental
gene that encodes a secreted bone morphoge-
netic protein (BMP) inhibitor expressed in the
organizer and required for patterning the early
dorsal-ventral axis (29–33). Disruption of chordin
leads to changes in gross embryo morphology,
with an expansion of ventral tissues and a re-
duction of dorsal tissues (30). The scRNA-seq
method is well suited to address how all cell
types in the embryo change in frequency, and

in gene expression, while also allowing detec-
tion of qualitatively new states, or combinations
of states, if they occur.
We used CRISPR-Cas9 (34) to disrupt the

chordin locus, resulting in highly penetrant
clutches ofmutant zebrafish embryos (fig. S12).We
performed inDrops profiling on chordin-targeted
and control embryos (tyrosinase-targeted, see
methods) in a narrow time series correspond-
ing to ~14 to 16 hpf (Fig. 6A). After sequencing,
we classified each of the chordin- and control-
targeted cells to reference cell clusters of the
14-hpf wild-type embryo (fig. S13 andmethods)
and tested for altered gene expression. We rea-
soned that a qualitatively new cell state, if formed
as a result of the aberrant patterning, would man-
ifest as widespread changes in gene expression
after mutation, with a magnitude comparable
to the differences between wild-type embryonic
states. Applying this criterion, we found no evi-
dence of a qualitatively new cell state after chordin
depletion. Rather, the number of genes differen-
tially expressed within states was modest com-
pared to the differences defining the wild-type
states of the 14-hpf embryo (Fig. 6B and fig. S14A).
Moreover, a t-distributed stochastic neighbor em-
bedding (tSNE) mapping of CRISPR-targeted
cells (fig. S13, A to C) identified only a single clus-

ter solely occupied by chordin-mutant cells (fig.
S13D), distinguished primarily by a heat shock–
like transcriptional signature. This same stress
signature was increased in multiple states in
chordin-targeted embryos (fig. S14A).
We next tested whether chordin disruption led

to changes in abundance of particular classified
cell types. As expected, expansion of states cor-
responding to ventral tissues (for example, so-
mitic mesoderm, epidermis, hatching gland,
blood, and endothelial tissues) at the expense
of dorsal tissues (for example, the neural plate
and notochord) was observed (fig. S14, A and
B) (30, 35). Additional features could be appre-
ciated by projecting the CRISPR datasets direct-
ly onto the wild-type single-cell graph (Fig. 6, C
and D). For example, a sharp boundary bisected
the lateral plate mesoderm into two compart-
ments of opposing chordin sensitivity, separat-
ing the heart and fin bud progenitor fields. Similar
juxtaposed domains of opposing chordin sen-
sitivity were evident in the axial mesoderm,
partitioning notochord from hatching gland,
and in the tailbud separating spinal cord from
somitic mesoderm (Fig. 6D). Notably, each of
these pairs of phenotypic domains appeared to
beorganized downstream of an inferred branch-
point in the cell-state landscape. These domain
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Fig. 5. TracerSeq reveals systematic relationships between cell line-
age and cell state. (A) Heatmap of TracerSeq lineage coupling scores
(see methods) between pairs of 24-hpf states, clustered by correlation
distance and average linkage. Groups of states with similar lineage

coupling signatures are annotated. (B) Quantitative relationships between
lineage coupling correlation distances and scaled state tree diffusion
distances for (i) endothelial, (ii) optic cup, and (iii) myl+ muscle states
(see also fig. S10, A to F).
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pairs, therefore, likely reflect binary fate choices
that are tuned by BMP signaling in wild-type
embryos.
In a final analysis, we searched for the putative

identity of the cells responding to chordin in the
tailbud, as this is the site showing the largest
expansion (somitic mesoderm) and loss (spinal
cord) after perturbation. In zebrafish, chordin is
expressed in the embryonic shield, adaxial cells,
posterior tailbud region, and also transiently
in the neural plate (36). All of these expression
patternswere confirmed in our single-cell graphs
(fig. S15A). Furthermore, in contrast to its earlier
expression in the shield, continued expression of
chordin in the tailbudwas distinct among a large
panel of known BMP inhibitor genes (fig. S15A)
and was tightly apposed by expression domains
for multiple bmp transcripts (fig. S15B). These
expression characteristics might explain the in-
creased chordin sensitivity of posterior body re-
gions. To examine this region in greater detail,
we isolated a subgraph of tailbud and descend-
ent cells. Consistent with previous studies, two
cell-state trajectories branching from a common
neuromesodermal-like brachyury+;sox2+ progeni-
tor state were identified, each expressing markers
of neural fates (sox3, sox19a, pax6a, and neurog1)
or somitic fates (tbx16, tbx6, tbx24, msgn1, and
myod1) (fig. S16, A to C) (25, 37–39). Notably,
the neural-mesodermal branchpoint coincided
with the boundaries of both chordin expression
and sensitivity (fig. S16, D and E). The chordin-
expressing cells in this region of the single-cell
graph exhibited a distinct expression profile (fig.
S17), including a cadherin (cdh11), early neuro-
genic markers (her3, her8a, and sox19a), and
several relatively uncharacterized genes (gig2g,
foxb1b, and foxb1a). We hypothesize that these
cells represent a key transition state, at which
point tailbud cells initiate a posterior neuro-
genic program in a chordin-dependent manner.

Discussion

Our study demonstrates a graph-based approach
for mapping whole-embryo developmental land-
scapes, over time, from scRNA-seq data. The
graph was constructed with minimal assump-
tions about development and describes indi-
vidual cell states transitioning from pluripotent
blastomeres to a large array of cell types and
tissues during the first day of zebrafish embryo-
genesis. This dataset can now be mined to iden-
tify temporal and tissue associations for any
gene, cell type, or biological process of interest.
As with genome annotation efforts over the years,
we expect that the annotation of identified cell
states may undergo refinement with community
input.
As single-cell atlases and landscapes of embryo

development become routinely available, one is
challenged to reconsider the relationship between
a cell lineage (by definition, a tree) and the con-
siderably more topologically complex gene ex-
pression landscape through which these cells
traverse. Using TracerSeq, we confirmed that
differentiating cells of the zebrafish embryo do
not invariantly follow treelike hierarchies. In-

stead, we observed bothwidespread convergence
in cell states for clonally distant cells and instances
inwhich clonally related cells diverged into distant
states. Non-treelike convergence of cell states
could be explained by the differentiation of well-
separated spatial domains of the embryo into the
same basic cell types (for example, along the
anterior-posterior axis), whereas divergence could
involve mechanisms such as asymmetric cell di-
vision or exposure to spatially varying signals
(40). We anticipate that the synthesis of single-
cell lineage and transcriptome information will
continue to be crucial for deciphering how cells

traverse state trajectorieswith complex topologies
(for example, loops or continua).
Single-cell mapping of genetic perturbation

data presents a powerful framework for iden-
tifying regulatory features of a developmental
landscape. After disruption of chordin, which
encodes a BMP inhibitor, we showed that the
defining transcriptional features of the land-
scape remained mostly unchanged, yet cell-state
abundances could be dramatically and recip-
rocally altered, as if the landscape were “tilted”
but cell fates remain canalized. Future systematic
mapping of signaling perturbations could be
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Fig. 6. Regulatory features of the developmental landscape identified by genetic perturbation.
(A) Overview of the CRISPR experiment. Three pairs of chordin- and tyrosinase (control)–targeted
samples were prepared and processed by inDrops at ~14 to 16 hpf. (B) Histogram depicting numbers
of differentially expressed genes (DEGs) identified in chordin versus control (tyrosinase) cells for each
state (blue bars), compared to DEG numbers when comparing between all state pairs (red bars). DEGs
were identified by Wilcoxon rank sum test (adjusted P value < 0.01, absolute log2 fold change > 1,
average expression > 25 transcripts per million). (C) Histogram of Pearson correlation similarities
(after PCA projection) between each chordin or tyrosinase cell and its nearest neighbor from 10-, 14-, and
18-hpf wild-type datasets (see methods). (D) Log2 ratios of cell states with significant differential
abundance (false discovery rate < 0.25) in the chordin versus tyrosinase samples. Purple and green
regions correspond to wild-type cell states that are over- or underrepresented in the chordin mutant,
respectively. Adjacent graph domains with opposing chordin sensitivity are highlighted by brackets. TB,
tailbud region (see cdx4 expression in fig. S3).
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used to reveal the complete signaling logic of
the embryo, as cells are specified toward their
final fates. Together, these studies demonstrate
the power, modularity, and quantitative benefits
of unbiased scRNA-seq–based interrogations of
embryonic development. We anticipate that sim-
ilar large-scale datasets will facilitate explora-
tions of additional developmental stages, tissues,
and species.
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Single-cell mapping of gene expression landscapes and lineage in the zebrafish
embryo
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Mapping the vertebrate developmental landscape
As embryos develop, numerous cell types with distinct functions and morphologies arise from pluripotent cells.
Three research groups have used single-cell RNA sequencing to analyze the transcriptional changes accompanying
development of vertebrate embryos (see the Perspective by Harland). Wagner et al. sequenced the transcriptomes of
more than 90,000 cells throughout zebrafish development to reveal how cells differentiate during axis patterning, germ
layer formation, and early organogenesis. Farrell et al. profiled the transcriptomes of tens of thousands of embryonic
cells and applied a computational approach to construct a branching tree describing the transcriptional trajectories that
lead to 25 distinct zebrafish cell types. The branching tree revealed how cells change their gene expression as they
become more and more specialized. Briggs et al. examined whole frog embryos, spanning zygotic genome activation
through early organogenesis, to map cell states and differentiation across all cell lineages over time. These data and
approaches pave the way for the comprehensive reconstruction of transcriptional trajectories during development.
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