
3 Noise in Physical Systems

Understanding noise is central to understanding the design and performance of almost

any device. Noise sets essential limits on how small a bit can reliably be stored and on how

fast it can be sent; effective designs must recognize these limits in order to approach them.

Our first step will be an introduction to random variables and some of their important

probability distributions, then we will turn to noise generation mechanisms, and close

with some more general thermodynamic insights into noise. Although the study of noise

can be surprisingly interesting in its own right, this chapter primarily provides concepts

that we will use throughout the book.

3.1 RANDOM VARIABLES

3.1.1 Expectation Values

Consider a fluctuating quantity x(t), such as the output from a noisy amplifier. If x is a
random variable, it is drawn from a probability distribution p(x). This means that it is
not possible to predict the value of x at any instant, but knowledge of the distribution
does let precise statements be made about the average value of quantities that depend on

x. The expected value of a function f (x) can be defined by an integral either over time
or over the distribution:

〈f (x)〉 ≡ lim
T→∞

1

T

∫ T/2

−T/2

f (x(t)) dt

=

∫

f (x)p(x) dx (3.1)

(or a sum if the distribution is discrete). Taking f (x) = 1 shows that a probability

distribution must be normalized:
∫ ∞

−∞

1 · p(x) dx = 1 . (3.2)

If p(x) exists and is independent of time then the distribution is said to be stationary.

The moments of a distribution are the expectation values of powers of the observable

〈xn〉. The first moment is the average

〈x〉 =
∫

x p(x) dx , (3.3)
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and the mean square deviation from this is the variance:

σ2 = 〈(x− 〈x〉)2〉
= 〈x2 − 2x〈x〉 + 〈x〉2〉
= 〈x2〉 − 〈x〉2 . (3.4)

The square root of the variance is the standard deviation σ.
The probability distribution contains no information about the temporal properties of

the observed quantity; a useful probe of this is the autocovariance function:

〈x(t)x(t − τ )〉 = lim
T→∞

1

T

∫ T/2

−T/2

x(t)x(t − τ ) dt . (3.5)

(subtracting 〈x〉 from x if the process is not zero-mean). If the autocovariance is normal-
ized by the variance then it is called the autocorrelation function, ranging from 1 for

perfect correlation to 0 for no correlation to −1 for perfect anticorrelation. The rate at
which it decays as a function of τ provides one way to determine how quickly a function
is varying. In the next chapter we will introduce the mutual information, a much more

general way to measure the relationships among variables.

3.1.2 Spectral Theorems

The Fourier transform of a fluctuating quantity is

X(f ) = lim
T→∞

∫ T/2

−T/2

ei2πftx(t) dt (3.6)

and the inverse transform is

x(t) = lim
F→∞

∫ F/2

−F/2

e−i2πftX(f ) df . (3.7)

The Fourier transform is also a random variable. The Power Spectral Density (PSD)

is defined in terms of the Fourier transform by taking the average value of the square

magnitude of the transform

S(f ) = 〈|X(f )|2〉 = 〈X(f )X∗(f )〉

= lim
T→∞

1

T

∫ T/2

−T/2

ei2πftx(t) dt

∫ T/2

−T/2

e−i2πft′x(t′) dt′ . (3.8)

X∗ is the complex conjugate of X , replacing i with −i, and we’ll assume that x is real.
The power spectrum might not have a well-defined limit for a non-stationary process;

wavelets and Wigner functions are examples of time–frequency transforms that retain

both temporal and spectral information for non-stationary signals [Gershenfeld, 1999a].

The Fourier transform is defined for negative as well as positive frequencies. If the sign

of the frequency is changed, the imaginary or sine component of the complex exponential

changes sign while the real or cosine part does not. For a real-valued signal this means that

the transform for negative frequencies is equal to the complex conjugate of the transform

for positive frequencies. Since the power spectrum is used to measure energy as a function

of frequency, it is usually reported as the single-sided power spectral density found by
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adding the square magnitudes of the negative- and positive-frequency components. For a

real signal these are identical, and so the single-sided density differs from the two-sided

density by an (occasionally omitted) factor of 2.

The Fourier transform can also be defined with the 2π in front,

X(ω) = lim
T→∞

∫ T/2

−T/2

eiωtx(t) dt

x(t) = lim
Ω→∞

1

2π

∫ Ω/2

−Ω/2

e−iωtX(ω) dω . (3.9)

ν measures the frequency in cycles per second; ω measures the frequency in radians per
second (2π radians = 1 cycle). Defining the transform in terms of ν eliminates the errors
that arise from forgetting to include the 2π in the inverse transform or in converting

from radians to cycles per second, but it is less conventional in the literature. We will

use whichever is more convenient for a problem.

The power spectrum is simply related to the autocorrelation function by theWiener–

Khinchin Theorem, found by taking the inverse transform of the power spectrum:

∫ ∞

−∞

S(f )e−i2πfτ df

=

∫ ∞

−∞

〈X(f )X∗(f )〉e−i2πfτ df

= lim
T→∞

1

T

∫ ∞

−∞

∫ T/2

−T/2

ei2πftx(t) dt

∫ T/2

−T/2

e−i2πft′x(t′) dt′ e−i2πfτ df

= lim
T→∞

1

T

∫ ∞

−∞

∫ T/2

−T/2

∫ T/2

−T/2

ei2πf (t−t′−τ ) df x(t)x(t′) dt dt′

= lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2

δ(t− t′ − τ )x(t)x(t′) dt dt′

= lim
T→∞

1

T

∫ T/2

−T/2

x(t)x(t − τ ) dt

= 〈x(t)x(t − τ )〉 , (3.10)

using the Fourier transform of a delta function

∫ ∞

−∞

ei2πxy dx = δ(y)

∫ ∞

−∞

f (x)δ(x− x0) dx = f (x0) (3.11)

(one way to derive these relations is by taking the delta function to be the limit of a

Gaussian with unit norm as its variance goes to zero).

The Wiener–Khinchin Theorem shows that the Fourier transform of the autocovari-

ance function gives the power spectrum; knowledge of one is equivalent to the other.

An important example of this is white noise: a memoryless process with a delta function

autocorrelation will have a flat power spectrum, regardless of the probability distribution
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for the signal. As the autocorrelation function decays more slowly, the power spectrum

will decay more quickly (Figure 3.1).
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Figure 3.1. Illustration of the Wiener–Khinchin Theorem: as the power spectrum decays

more quickly, the autocorrelation function decays more slowly.

Taking τ = 0 in the Wiener–Khinchin Theorem yields Parseval’s Theorem:

〈x(t)x(t − τ )〉 =
∫ ∞

−∞

S(f )e−i2πfτ df =

∫ ∞

−∞

〈|X(f )|2〉e−i2πfτ df

⇒ 〈|x|2(t)〉 =
∫ ∞

−∞

〈|X(f )|2〉 df . (3.12)

The average value of the square of the signal (which is equal to the variance if the signal

has zero mean) is equal to the integral of the power spectral density. This means that true

white noise has an infinite variance in the time domain, although the finite bandwidth of

any real system will roll off the frequency response, and hence determine the variance

of the measured signal. If the division by T is left off in the limiting process defining

the averages on both sides of Parseval’s Theorem, then it reads that the total energy

in the signal equals the total energy in the spectrum (the integral of the square of the

magnitude).
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3.2 PROBABILITY DISTRIBUTIONS

So far we have taken the probability distribution p(x) to be arbitrary. In practice, three
probability distributions recur so frequently that they receive most attention: binomial,

Poisson and Gaussian. Their popularity is due in equal parts to the common conditions

that give rise to them and to the convenience of working with them. The latter reason

sometimes outweighs the former, leading these distributions to be used far from where

they apply. For example, many physical system have long-tailed distributions that fall

off much more slowly than these ones do [Crisanti et al., 1993; Boguna & Corral, 1997].

3.2.1 Binomial

Consider many trials of an event that can have one outcome with probability p (such
as flipping a coin and seeing a head), and an alternative with probability 1 − p (such as
seeing a tail). In n trials, the probability pn(x) to see x heads and n−x tails, independent
of the particular order in which they were seen, is found by adding up the probability

for each outcome times the number of equivalent arrangements:

pn(x) =

(
n
x

)

px(1− p)n−x , (3.13)

where
(
n
x

)

=
n!

(n− x)! x!
(3.14)

(read “n choose x”). This is the binomial distribution. The second line follows by
dividing the total number of distinct arrangements of n objects (n!) by the number of
equivalent distinct arrangements of heads x! and tails (n−x)!. The easiest way to convince
yourself that this is correct is to exhaustively count the possibilites for a small case.

3.2.2 Poisson

Now consider events such as radioactive decays that occur randomly in time. Divide

time into n very small intervals so that there are either no decays or one decay in any
one interval, and let p be the probability of seeing a decay in an interval. If the total
number of events that occur in a given time is recorded, and this is repeated many times

to form an ensemble of measurements, then the distribution of the total number of events

recorded will be given by the binomial distribution. If the number of intervals n is large,
and the probability p is small, the binomial distribution can be approximated by using
ln(1 + x) ≈ x for small x and Stirling’s approximation for large n:

n! ≈
√
2π nn+ 1

2 e−n

lnn! ≈ n lnn− n , (3.15)

to find the Poisson distribution (Problem 3.1):

p(x) =
e−NNx

x!
, (3.16)
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where N = np is the average number of events. This distribution is very common for
measurements that require counting independent occurrences of an event. Naturally, it

is normalized:
∞∑

x=0

e−NNx

x!
= e−N

∞∑

x=0

Nx

x!
︸ ︷︷ ︸

eN

= 1 . (3.17)

If x is drawn from a Poisson distribution then its factorial moments, defined by the
following equation, have a simple form (Problem 3.1):

〈x(x− 1) · · · (x−m + 1)〉 = Nm . (3.18)

This relationship is one of the benefits of using a Poisson approximation. With it, it is

easy to show that 〈x〉 = N and σ =
√
N , which in turn implies that the relative standard

deviation in a Poisson random variable is

σ

〈x〉 =
1√
N

. (3.19)

The fractional error in an estimate of the average value will decrease as the square root

of the number of samples. This important result provides a good way to make a quick

estimate of the expected error in a counting measurement.

3.2.3 Gaussian

The Gaussian or normal distribution

p(x) =
1√
2πσ2

e−(x−µ)2/2σ2 (3.20)

has mean µ, a standard deviation σ, and the integral from −∞ to ∞ is 1. The partial

integral of a Gaussian is an error function:

1√
2πσ2

∫ y

0

e−x2/2σ2 dx =
1

2
erf

(
y√
2σ2

)

. (3.21)

Since the Gaussian is normalized, erf (∞) = 1.
The Gaussian distribution is common for many reasons. One way to derive it is from

an expansion around the peak of the binomial distribution for large n [Feller, 1968]:

p(x) =
n!

(n− x)! x!
px(1− p)n−x

ln p(x) = lnn! − ln(n− x)!− lnx! + x ln p + (n− x) ln(1− p) . (3.22)

Finding the peak by treating these large integers as continuous variables and setting the

first derivative to zero shows that this has a maximum at x ≈ np, and then expanding
in a power series around the maximum gives the coefficient of the quadratic term to be

−1/(2np(1− p)). Because the lowest non-zero term will dominate the higher orders for
large n, this is therefore approximately a Gaussian with mean np and variance np(1 −
p). In the next section we will also see that the Gaussian distribution emerges via the
Central Limit Theorem as the limiting form for an ensemble of variables with almost
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any distribution. For these reasons, it is often safe (and certainly common) to assume

that an unknown distribution is Gaussian.

The Fourier transform of a Gaussian has a particularly simple form, namely a Gaussian

with the inverse of the variance

1√
2πσ2

∫ ∞

−∞

e−x2/2σ2eikx dx = e−k2σ2/2 . (3.23)

Remember this: you should never need to look up the transform of a Gaussian, just invert

the variance. Because of this relationship, the product of the variance of a Gaussian and

the variance of its Fourier transform will be a constant; this is the origin of many classical

and quantum uncertainty relationships.

Figure 3.2 compares the binomial, Poisson, and Gaussian distributions for n = 10 and
100, and for p = 0.1 and 0.5, showing where they are and are not good approximations.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

 p
(x

)

 n = 10,  p = 0.1

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

 n = 10,  p = 0.5

0 10 20 30 40 50
0

0.05

0.1

 x

 p
(x

)

 n = 100,  p = 0.1

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

 x

 n = 100,  p = 0.5

Figure 3.2. Comparison of the binomial (◦), Poisson (+) and Gaussian (−) distributions: n is
the number of trials, and p is the probability of seeing an event. By definition, the binomial

distribution is correct. For a small probability of seeing an event, the Poisson distribution is

a better approximation (although the difference is small for a large number of events), while

for a large probability of seeing an event the Gaussian distribution is closer.
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3.2.4 Central Limit Theorem

What is the probability distribution for the noise in a room full of people talking? This

may sound like a nonsensical question, because the answer will depend on how many

people there are, and on what is being said in what language. The remarkable result from

the Central Limit Theorem is that if there is a large number of people in the room, then

the distribution will approximately be Gaussian, independent of the details of what they

say.

If two random variables x1 and x2 are added (such as the sounds from two random

people), the probability distribution for their sum y = x1 + x2 is found by counting all
of the outcomes that give the same final result, weighted by the joint probability for that

event:

p(y) =

∫ ∞

−∞

p1(x)p2(y − x) dx

≡ p1(x) ∗ p2(x) . (3.24)

The distribution for the sum is the convolution of the individual distributions. Now

consider the average of N variables

y =
x1 + x2 + · · · + xN

N
(3.25)

that are independent and identically distributed (abbreviated as iid). The distribution

of y is equal to the distribution for x convolved with itself N times, and since taking

a Fourier transform turns convolution into multiplication, the Fourier transform of the

distribution of y is equal to the product of the transforms of the distribution of x. It is
convenient to take the transform of a probability distribution by using the characteristic

function, which is the expectation value of a complex exponential

〈eiky〉 =
∫ ∞

−∞

eikyp(y) dy . (3.26)

The characteristic function is equal to the Fourier transform of the probability distribu-

tion, and when evaluated with time-dependent quantities it plays an interesting role in

studying the dynamics of a system [Gershenfeld, 1999a]. Now let’s look at the charac-

teristic function for the deviation of y from the average value 〈x〉:

〈eik(y−〈x〉)〉 = 〈eik(x1+x2+···+xN−N〈x〉)/N〉
= 〈eik[(x1−〈x〉)+···+(xN−〈x〉)]/N 〉
= 〈eik(x−〈x〉)/N 〉N

=

〈

1 +
ik

N
(x− 〈x〉)− k2

2N 2
(x− 〈x〉)2 +O

(
k3

N 3

)〉N

=

[

1 + 0− k2σ2

2N 2
+O

(
k3

N 3

)]N

≈ e−k2σ2/2N . (3.27)

This derivation assumes that the variance σ2 = 〈(x − 〈x〉)2〉 exists, and drops terms of
third order and higher in the Taylor series expansion of the exponential because they
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will become vanishingly small compared to the lower-order terms in the limit N → ∞.
The last line follows because an exponential can be written as

lim
N→∞

(

1 +
x

N

)N

= ex , (3.28)

which can be verified by comparing the Taylor series of both sides. To find the probability

distribution for y we now take the inverse transform

p(y − 〈x〉) = 1

2π

∫ ∞

−∞

e−k2σ2/2Ne−ik(y−〈x〉) dk

=

√

N

2πσ2
e−N (y−〈x〉)2/2σ2 (3.29)

(remember that the Fourier transform of a Gaussian is also a Gaussian). This proves the

Central Limit Theorem [Feller, 1974]. The average of N iid variables has a Gaussian

distribution, with a standard deviation σ/
√
N reduced by the square root of the number

of variables just as with Poisson statistics. It can be a surprisingly good approximation

even with just tens of samples. The Central Limit Theorem also contains the Law of

Large Numbers: in the limit N → ∞, the average of N random variables approaches

the mean of their distribution. Although this might appear to be a trivial insight, lurking

behind it is the compressibility of data that is so important to digital coding (Section 4.1).

3.3 NOISE MECHANISMS

Now that we’ve seen something about how to describe random systems we will turn to

a quantitative discussion of some of the most important fundamental noise mechanisms:

shot noise, Johnson noise, and 1/f noise. Chapter 14 will consider other practical sources

of noise, such as interference from unwanted signals.

3.3.1 Shot Noise

A current, such as electrons in a wire or rain on a roof, is made up of the discrete arrival

of many carriers. If their interactions can be ignored so that they arrive independently,

this is an example of a Poisson process. For an electrical signal, the average current is

〈I〉 = qN/T for N electrons with charge q arriving in a time T . If the electrons arrive
far enough apart so that the duration during which they arrive is small compared to the

time between the arrival of successive electrons, then the current can be approximated

as a sum of delta functions

I(t) = q
N∑

n=1

δ(t− tn) , (3.30)

where tn is the arrival time for the nth electron. The Fourier transform of this impulse
train is

I(f ) = lim
T→∞

∫ T/2

−T/2

ei2πft q
N∑

n=1

δ(t − tn) dt
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= q
N∑

n=1

ei2πftn . (3.31)

Therefore, the power spectrum is

SI (f ) = 〈I(f )I∗(f )〉

= lim
T→∞

q2

T

(
N∑

n=1

ei2πftn
N∑

m=1

e−i2πftm

)

= lim
T→∞

q2N

T
= q〈I〉 (3.32)

(the cross terms n 6=m vanish in the expectation because their times are independent).

We see that the power spectrum of carrier arrivals is white (flat) and that the magnitude

is linearly proportional to the current. This is called shot noise or Schottky noise. If

the carriers do not really arrive as delta functions then the broadening of the impulses

will roll the spectrum off for high frequencies, so the flat power spectrum is a good

approximation up to the inverse of the characteristic times in the system.

To find the fluctuations associated with shot noise, we can use Parseval’s Theorem to

relate the average total energy in the spectrum to the average variance. If the bandwidth

of the system is infinite this variance will be infinite, because for ideal shot noise there is

equal power at all frequencies. Any real measurement system will have a finite bandwidth,

and this determines the amplitude of the noise. Multiplying the power spectrum by 2∆f ,
where ∆f is the bandwidth in hertz and the factor of 2 comes from including both positive
and negative frequencies,

〈I2noise〉 = 2q〈I〉∆f . (3.33)

Shot noise will be important only if the number of carriers is small enough for the rate

of arrival to be discernible; Problem 3.2 looks at this limit for detecting light.

3.3.2 Johnson Noise

Johnson (or Nyquist) noise is the noise associated with the relaxation of thermal fluctu-

ations in a resistor. Small voltage fluctuations are caused by the thermal motion of the

electrons, which then relax back through the resistance. We will calculate this in Section

3.4.3, but the result is simple:

〈V 2
noise〉 = 4kTR∆f (3.34)

(where R is resistance, ∆f is the bandwidth of the measuring system, T is the temper-
ature, and k is Boltzmann’s constant). Once again, this is white noise, but unlike shot
noise it is independent of the current. The resistor is acting almost like a battery, driven

by thermodynamic fluctuations. The voltage produced by these fluctuations is very real

and very important: it sets a basic limit on the performance of many kinds of electronics.

Unfortunately, it is not possible to take advantage of Johnson noise by rectifying the fluc-

tuating voltage across a diode to use a resistor as a power source (hint: what temperature

is the diode?).



24 Noise in Physical Systems

Johnson noise is an example of a fluctuation–dissipation relationship (Section 3.4.3)

– the size of a system’s thermodynamic fluctations is closely related to the rate at which

the system relaxes to equilibrium from a perturbation. A system that is more strongly

damped has smaller fluctuations, but it dissipates more energy.

3.3.3 1/f Noise and Switching Noise

In a wide range of transport processes, from electrons in resistors, to cars on the highway,

to notes in music, the power spectrum diverges at low frequencies inversely proportionally

to frequency: S(f ) ∝ f−1. Because such 1/f noise is scale-invariant (the spectrum looks

the same at all time scales [Mandelbrot, 1983]) and is so ubiquituous, many people have

been lured to search for profound general explanations for the many particular examples.

While this has led to some rather bizarre ideas, there is a reasonable theory for the

important case of electrical 1/f noise.
In a conductor there are usually many types of defects, such as lattice vacancies or

dopant atoms. Typically, the defects can be in a few different inequivalent types of sites

in the material, which have different energies. This means that there is a probability for

a defect to be thermally excited into a higher-energy state, and then relax down to the

lower-energy state. Because the different sites can have different scattering cross-sections

for the electron current, this results in a fluctuation in the conductivity of the material.

A process that is thermally activated between two states, with a characteristic time τ to
relax from the excited state, has a Lorentzian power spectrum of the form

S(f ) =
2τ

1 + (2πfτ )2
(3.35)

(we will derive this in Problem 3.4). If there is a distribution of activation times p(τ )
instead of a single activation time in the material, and if the activated scatterers don’t

interact with each other, then the spectrum will be an integral over this:

S(f ) =

∫ ∞

0

2τ

1 + (2πfτ )2
p(τ ) dτ . (3.36)

If the probability of the defect having an energy equal to a barrier height E goes as

e−E/kT (Section 3.4), then the characteristic time τ to be excited over the barrier will be
inversely proportional to probability

τ = τ0e
E/kT . (3.37)

This is called a thermally activated process. If the distribution of barrier heights p(E)
is flat then p(τ ) ∝ 1/τ , and putting this into equation (3.36) shows that S(f ) ∝ 1/f
(Problem 3.4) [Dutta & Horn, 1981].

This is the origin of 1/f noise: scatterers with a roughly flat distribution of activation
energies. Cooling a sample to a low enough temperature can turn off the higher-energy

scatterers and reveal the individual Lorentzian components in the spectrum [Rogers &

Buhrman, 1984]. In this regime, the noise signal in time is made up of jumps between

discrete values, called switching noise. This can be seen unexpectedly and intermittently

at room temperature, for example if a device has a very bad wire-bond so that the current

passes through a narrow constriction.
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Unlike Johnson noise, 1/f noise is proportional to the current in the material because
it is a conductivity rather than a voltage fluctuation, and it increases as the cross-sectional

area of the material is decreased because the relative influence of a single defect is greater.

That is why 1/f noise is greater in carbon resistors, which have many small contacts
between grains, than in metal film resistors. Low-noise switches have large contact areas,

and wiping connections that slide against each other as the switch is closed, to make sure

that the conduction is not constrained to small channels.

The power spectrum of the noise from a resistor will be flat because of Johnson noise

if there is no current flowing; as the current is increased the 1/f noise will appear, and
the frequency below which it is larger than the Johnson noise will depend on the applied

current as well as on the details of the material. 1/f noise is not an intrinsic property:
the magnitude is a function of how a particular sample is prepared. Figure 3.3 shows

the Johnson and 1/f noise for a carbon resistor. Because 1/f noise diverges at low
frequencies, it sets a time limit below which measurements cannot be made; a common

technique to avoid 1/f noise is to modulate the signal up to a higher frequency (we will
discuss this in Chapter 14).

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

 frequency   (Hz)

 p
o

w
er

  
(V

2
/H

z)

Figure 3.3. Noise in a 50 Ω resistor with and without a current

3.3.4 Amplifier Noise

Any device that detects a signal must contend with these noise mechanisms. Johnson noise

leads to the generation of voltage noise by an amplifier. Since the power spectral density is

flat, the mean square noise magnitude will be proportional to the bandwidth, or the Root

Mean Square (RMS) magnitude will increase as the square root of the bandwidth. The

latter quantity is what is conventionally used to characterize an amplifier; for a low-noise

device it can be on the order of 1 nV/
√
Hz. Likewise, shot noise is responsible for the
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generaton of current noise at an amplifier’s output; this is also flat and for a low-noise

amplifier can be on the order of 1 pA/
√
Hz.

Given the practical significance of detecting signals at (and beyond) these limits, it can

be more relevant to relate the noise an amplifier introduces to the noise that is input to

it. Signals and noise are usually compared on a logarithmic scale to cover a large dynamic

range; the Signal-to-Noise Ratio (SNR), measured in decibels, is

SNR = 10 log10

(

〈V 2
signal〉

〈V 2
noise〉

)

= 20 log10

(

〈V 2
signal〉1/2

〈V 2
noise〉1/2

)

= 20 log10

(
VRMS signal
VRMS noise

)

. (3.38)

It can be defined in terms of the mean square values of the signal and noise (equal to the

variances if the signals have zero mean), or the RMS values by bringing out a factor of

2.

One way to describe the performance of an amplifier is to ask how much more noise

appears at its output than was present at its input, assuming that the input is responsible

for Johnson noise due to its source impedance Rsource (Chapter 7). This ratio, measured

in decibels, is called the noise figure:

NF = 10 log10

(
output noise power

input noise power

)

= 10 log10

(
4kTRsource∆f + 〈V 2

noise〉
4kTRsource∆f

)

= 10 log10

(

1 +
〈V 2
noise〉

4kTRsource∆f

)

. (3.39)

Vnoise is the noise added by the amplifier to the source; it is what would be measured
if the input impedance was cooled to absolute zero. The noise figure is often plotted as

noise contours as a function of the input impedance and frequency (Figure 3.4). There is

a “sweet spot” in the middle: it gets worse at low source impedances because the source

thermal noise is small compared to the amplifier thermal noise; it gets worse at high

source impedances and high frequencies because of capacitive coupling; and it degrades

at low frequencies because of 1/f noise.

Amplifier noise can also be measured by the noise temperature, defined to be the tem-

perature Tnoise to which the input impedance must be raised from its actual temperature
Tsource for its thermal noise to match the noise added by the amplifier:

NF = 10 log10

(

1 +
〈V 2
noise〉

4kTsourceR∆f

)

= 10 log10

(

1 +
4kTnoiseR

4kTsourceR∆f

)

= 10 log10

(

1 +
Tnoise
Tsource

)

. (3.40)
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Figure 3.4. Noise contours for a low-noise amplifier.

In a GaAs HEMT (High-Electron-Mobility Transistor, Chapter 11) most of the elec-

tron scattering mechanisms have been eliminated and so the mean-free-path can be as

large as the device. Since inelastic scattering is the origin of resistance and hence of the

thermodynamic coupling of the conduction electrons to the material, this means that

the noise temperature can be much lower than room temperature. In the best devices it

gets down to just a few kelvins. One of the places where this sensitivity is particularly

important is for detecting the weak signals from space for satellite communications and

radio astronomy.

3.4 THERMODYNAMICS AND NOISE

Thermal fluctuations and noise are intimately related. This section turns to a more general

discussion of this connection, starting with a brief review of macroscopic thermodynamics

and its origin in microscopic statistical mechanics, and then looking at the Equipartition

Theorem (which relates temperature to the average energy stored in a system’s degrees

of freedom) and the Fluctuation–Dissipation Theorem (which relates fluctuations to the

dissipation in a system).

3.4.1 Thermodynamics and Statistical Mechanics

A thermodynamic system can be described by a temperature T , an internal energy E,
and an entropy S. The internal energy is the sum off all of the energy stored in all of
the degrees of freedom of the system. The entropy provides a relationship between heat

and temperature: if the system is kept at a constant temperature, and a heat current δQ
flows into or out of the system, the change in entropy is

δQ = T dS . (3.41)
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This is written as δQ rather than dQ because energy that flows in and increases the

entropy of a system cannot be reversibly recovered to do work. In any spontaneous

process the entropy cannot decrease:

dS ≥ 0 . (3.42)

This is the Second Law of Thermodynamics, with equality holding for a reversible

process (the first law is conservation of energy). Because of the second law, all of the

internal energy in a system is not available to do work on another system, only that part

that was not associated with an entropy increase. Integrating both sides of equation (3.41)

shows that the total heat energy in a system is Q = TS. Therefore the free energy, A,
defined to be

A = E − TS , (3.43)

is the difference between the internal energy and the heat energy. It measures the energy

in the system that is available to do work. We will see that a system seeks to minimize

its free energy, by both reducing the internal energy and increasing the entropy.

Entropy was originally introduced in the early 1800s as a phenomenological quantity

to help explain the efficiency of heat engines; one of the greatest problems in modern

science has been explaining its microscopic origin. Although this was essentially solved

by Maxwell, Boltzmann, and Gibbs around 1870, many subtle questions remained. This

quest helped lead to many other areas of inquiry, including the development of informa-

tion theory that we will see in the next chapter [Leff & Rex, 1990].

All systems are quantized so that they are restriced to a discrete set of possbile states,

even though the spacing between the states may be so small that macroscopically they

appear to be continuous. Let i index the possible states of a system, pi be the probability
to be in the ith state, and let there be Ω total states. Then the microscopic definition of
the entropy is

S = −k
Ω∑

i=1

pi log pi , (3.44)

where k is Boltzmann’s constant, which has units of energy over temperature. If all of
the states are equally likely, then

pi =
1

Ω
⇒ S = k log Ω . (3.45)

This equation was so important to Boltzmann that it appears on his grave!

According to the postulates of statistical mechanics, if there are Ω microscopic config-

urations of a system compatible with a given macroscopic state, then the probability p of
seeing that macroscopic state is proportional to the number of states,

p ∝ Ω = eS/k . (3.46)

The system is equally likely to be in any of the available microscopic states. If the total

energy is fixed, then the probability to be in any state with that energy is the same

(equation 3.45). This is called a microcanonical ensemble. In the real world it is much

more common to be able to determine the average energy (which we’ll see is closely related

to the temperature) rather than the exact energy. That case is called a canonical ensemble.
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To work out its properties we need one more postulate from statistical mechanics: the

system chooses the distribution of probabilities that maximizes its entropy, subject to

the constraints that we impose. Justifying this essentially experimental fact is the subject

of endless mathematical if not mystical discussion; Boltzmann’s H-Theorem provides a

derivation in the context of scattering in a dilute gas [Reichl, 1998].

For the canonical ensemble there are two constraints: the probability distribution must

be normalized
Ω∑

i=1

pi = 1 , (3.47)

and the average energy must be a constant E

Ω∑

i=1

Eipi = E . (3.48)

To do a constrained maximization we will use the method of Lagrange multipliers.

Define a quantity I to be the entropy plus Lagrange multipliers times the constraint
equations

I = −k
Ω∑

i=1

pi log pi + λ1

Ω∑

i=1

pi + λ2

Ω∑

i=1

Eipi . (3.49)

We want to find the values for the pis that make this extremal:

∂I

∂pi
= 0 . (3.50)

We can do this because the two terms that we’ve added are just constants, Equations

(3.47) and (3.48); we just need to choose the values of the Lagrange multipliers to make

sure that they have the right values. Solving,

∂I

∂pi
= 0 = −k log pi − k + λ1 + λ2Ei (3.51)

⇒ pi = e(λ1/k)+(λ2Ei/k)−1 . (3.52)

If we sum this over i,

Ω∑

i=1

pi = 1 = eλ1/k−1
Ω∑

i=1

eλ2Ei/k . (3.53)

This can be rearranged to define the partition function Z

Z ≡ e1−λ1/k =

Ω∑

i=1

eλ2Ei/k . (3.54)

Another equation follows from multiplying equation (3.51) by pi and summing:

Ω∑

i=1

pi
∂I

∂pi
= S − k + λ1 + λ2E = 0 . (3.55)
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Since

Z = e1−λ1/k , (3.56)

k logZ = k − λ1 , (3.57)

and so equation (3.55) can be written as

S − k logZ + λ2E = 0 . (3.58)

Comparing this to the definition of the free energy A = E − TS, we see that

S − k logZ
︸ ︷︷ ︸

−A/T

+ λ2
︸︷︷︸

−1/T
E = 0 . (3.59)

This provides a connection between the macroscopic thermodynamic quantities and the

microscopic statistical mechanical ones.

Putting the value of λ2 into equation (3.54) shows that the partition function is given
by

Z =

Ω∑

i=1

e−Ei/kT ≡
Ω∑

i=1

e−βEi . (3.60)

Returning to equation (3.52) we see that

pi = eλ1/k−1e−Ei/kT =
e−Ei/kT

Z . (3.61)

In terms of this, the expected value of a function fi that depends on the state of the
system is

〈f〉 =
Ω∑

i=1

fipi =

∑Ω
i=1 fie

−Ei/kT

Z (3.62)

3.4.2 Equipartition Theorem

The Equipartition Theorem is a simple, broadly applicable result that can give the

magnitude of the thermal fluctuations associated with energy storage in independent

degrees of freedom of a system. Assume that the state of a system is specified by variables

x0, . . . , xn, and that the internal energy of the system is given in terms of them by

E = E(x0, . . . , xn) . (3.63)

Now consider the case where one of the degrees of freedom splits off additively in the

energy:

E = E0(x0) + E1(x1, . . . , xn) . (3.64)

E might be the energy in a circuit, and E0 = CV 2
0 /2 the energy in a particular capacitor

in terms of the voltage V0 across it, or E0 = mv20/2 the kinetic energy of one particle in
terms of its velocity v0.

If we now assume that the overall system is in equilibrium at a temperature T , the
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expectation value for E0 is given by the canonical statistical mechanical distribution (here
taken as an integral instead of a discrete sum for a continuous system)

〈E0〉 =
∫∞

−∞ e−βE(x0,...,xn)E0(x0) dx0 · · · dxn
∫∞

−∞ e−βE(x0,...,xn) dx0 · · · dxn

(β ≡ kT )

=

∫∞

−∞ e−β[E0(x0)+E1(x1,...,xn)]E0(x0) dx0 · · · dxn
∫∞

−∞ e−β[E0(x0)+E1(x1,...,xn)] dx0 · · · dxn

=

∫∞

−∞ e−βE0(x0)E0(x0) dx0
∫∞

−∞ e−βE1(x1,...,xn) dx1 · · · dxn
∫∞

−∞ e−βE0(x0) dx0
∫∞

−∞ e−βE1(x1,...,xn) dx1 · · · dxn

=

∫∞

−∞ e−βE0(x0)E0(x0) dx0
∫∞

−∞ e−βE0(x0) dx0

= − ∂

∂β
ln

∫ ∞

−∞

e−βE0(x0) dx0 . (3.65)

If E0 = ax20 for some constant a, we can simplify the integral further:

〈E0〉 = − ∂

∂β
ln

∫ ∞

−∞

e−βE0(x0) dx0

= − ∂

∂β
ln

∫ ∞

−∞

e−βax20 dx0

= − ∂

∂β
ln

[
1√
β

∫ ∞

−∞

e−ay2 dy

]

(y2 ≡ βx20)

= − ∂

∂β

[

−1
2
lnβ + ln

∫ ∞

−∞

e−ay2 dy

]

a〈x20〉 =
1

2
kT . (3.66)

Each independent thermalized quadratic degree of freedom has an average energy of

kT/2 due to fluctuations.

3.4.3 Fluctuation–Dissipation Theorem

The Equipartition Theorem relates the size of thermal fluctuations to the energy stored

in independent degrees of freedom of a system; the Fluctuation–Dissipation Theorem

relates the thermal fluctuations to the amount of dissipation. We will start with a simple

example and then discuss the more general theory. Consider an ideal inductor L connected
in parallel with a resistor R. Because of thermal fluctuations there will be a voltage across
the resistor; model that by a fluctuating voltage source V in series with a noiseless resistor
(Figure 3.5).

In Chapter 7 we will show that the energy stored in an inductor is LI2/2. Since the
inductor is the only energy storage element, from the equipartition theorem we know

what the current across it due to thermal fluctuations must be:
〈
1

2
LI2

〉

=
1

2
kT . (3.67)

Ohm’s Law (Section 7.1.3) still applies, so this current must also be equal to the fluctu-
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R

V

L

Figure 3.5. Resistor modeled as a fluctuating voltage source in series with a noiseless

resistor, connected in parallel with an inductor.

ating thermal voltage divided by the total impedance Z of the circuit. Written in terms

of the frequency components,

I(ω) =
V (ω)

Z(ω)
=

V (ω)

R + iωL(ω)
(3.68)

(we will explain why the impedance of an inductor is iωL when we derive the circuit
equations from Maxwell’s equations). Writing the equipartition result in terms of fre-

quency components,

1

2
kT =

〈
1

2
LI2

〉

=
L

2
〈I2〉

=
L

2

∫ ∞

−∞

〈
|I(ω)|2

〉
dω (Parseval’s Theorem)

=
L

2

∫ ∞

−∞

〈 |V (ω)|2
|Z(ω)|2

〉

dω

=
L

2

∫ ∞

−∞

〈
|V (ω)|2

〉

R2 + ω2L2
dω . (3.69)

Since this is assumed to be an ideal resistor with no time constant from an inductive or

capacitative component, it’s a reasonable assumption to take the fluctuating voltage V to

have a delta function autocorrelation (this can be justified by a microscopic derivation).

And since that implies that the power spectrum of the fluctuations is flat, V does not

depend on ω and can come out of the intergral:

1

2
kT =

L〈V 2(ω)〉
2

∫ ∞

−∞

1

R2 + ω2L2
dω . (3.70)

This integration can then be done analytically,

1

2
kT =

π〈V 2(ω)〉
2R

. (3.71)

Therefore,

π〈V 2(ω)〉
2R

=
1

2
kT

〈V 2(ω)〉 = kTR

π

〈V 2(f )〉 = 4kTR . (3.72)
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In the last line there is a factor of 2π to convert from radian per second to cycles per

second, and a factor of 2 to convert to the single-sided distribution with only positive

frequencies used for power spectra. This is the familiar Johnson noise formula we saw

earlier.

Johnson noise is a simple example of a much more general relationship between the

fluctuations in a system and the dissipation in the system: more dissipation implies smaller

fluctuations. Let’s start by assuming that the macroscopic state of a system is indexed by

a single degree of freedom x (say, the current in a circuit). This means that the entropy
is a function of this variable, S(x). In equilibrium, the system will be in the state that

maximizes the entropy. Taking for convenience this to be at x = 0, the entropy can be
approximated by a Taylor series around its maximum:

S = S0 −
1

2
kαx2 (3.73)

(remember that there is no linear term around a maximum). The constant α determines
how sharply peaked the entropy is. The probability to see a state away from the maximum

is then

p(x) ∝ eS(x)/k ∝ e−αx2/2 . (3.74)

x is a random variable; we see that it has a Gaussian distribution with a variance

σ2 = 〈x2〉 =
∫

x2 p(x) dx =
1

α
. (3.75)

As α grows larger the entropy becomes more sharply peaked and the distribution becomes
narrower. We now see why fluctuations such as Johnson noise so often have a Gaussian

distribution (remember the Central Limit Theorem?).

If the state of the system is away from equilibrium there will be an effective restoring

force that moves it back. This will depend on how the entropy varies with the state; the

simplest assumption good for small deviations takes the time rate of change of the state

to be proportional to the slope of the entropy

R
dx

dt
=

dS

dx
. (3.76)

There are many familiar examples of this kind of linear restoring force, such as Ohm’s

Law IR = V for which the flux dx/dt is the current I, the slope of the entropy dS/dx is
the driving force V , and the damping constant R is the resistance. These are the subject
of linear non-equilibrium thermodynamics [de Groot & Mazur, 1984; Callen, 1985].

Equation (3.73) can be plugged into equation (3.76) to give a stochastic differential

equation for the relaxation of x (called a Langevin equation [Gershenfeld, 1999a])

R
dx

dt
= −kαx . (3.77)

Squaring both sides and averaging over time gives

R2

〈(
dx

dt

)2
〉

= k2α2〈x2〉 . (3.78)

The right hand side is just the variance, the size of the fluctuations. To understand the left

hand side we need to return to equation (3.76). Remember that force times displacement
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gives energy, and that energy per time gives power. Therefore multiplying the driving

force dS/dx by dx and dividing by dt gives the power P being dissipated,

P =
dS

dx

dx

dt
= R

(
dx

dt

)2

. (3.79)

Therefore equation (3.77) shows that

P = k2
α2

R
〈x2〉 = k2

α

R
. (3.80)

If the entropy is sharply peaked (α large relative to R), then the fluctuations will be small
but the dissipation will be large. If the entropy is flatter (α small), the fluctuations will be
large but the dissipation will be small. A related equation is found by multiplying both

sides of equation (3.77) by x and averaging:

R x
dx

dt
︸︷︷︸

1

2

dx2

dt

= −kαx2

d〈x2〉
dt

= −2k α
R
〈x2〉 . (3.81)

If the system is perturbed, the variance also relaxes at a rate proportional to α/R. It
doesn’t go to zero, of course, because we’ve left off the noise source term in the Langevin

equation that drives the fluctuations.

Equation (3.80) is a simple example of the Fluctuation–Dissipation Theorem. The

generalization is straightforward to systems with more degrees of freedom [Montroll &

Lebowitz, 1987; Reichl, 1998] and to quantum systems [Balian, 2007]. In higher dimen-

sions the relaxation constant R becomes a matrix, and if the system has time reversal

invariance so that the governing equations are the same if t → −t then this matrix is
symmetrical (Rij = Rji, called the Onsager reciprocal relationship).

The fluctuation dissipation theorem can be understood by remembering that a change

in entropy is associated with a heat current δQ = TdS; if the entropy is sharply peaked
then the fluctuations lead to larger changes in the entropy. This is an essential tradeoff

in the design of any system: the faster and more accurately you want it to do something,

the more power it will require. For example, one of the most important lessons in the

design of low-power electronics is to make sure that the system does not produce results

any faster than they are needed. This also shows why, without knowing anything else

about electronics, low-noise amplifiers require more power than noisy ones.
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3.6 Problems

(3.1) (a) Derive equation (3.16) from the binomial distribution and Stirling’s approxi-

mation,

(b) use it to derive equation (3.18), and

(c) use that to derive equation (3.19).

(3.2) Assume that photons are generated by a light source independently and randomly

with an average rate N per second. How many must be counted by a photodetector

per second to be able to determine the rate to within 1%? To within 1 part per

million? How many watts do these cases correspond to for visible light?

(3.3) Consider an audio amplifier with a 20 kHz bandwidth.

(a) If it is driven by a voltage source at room temperature with a source impedance

of 10kΩ how large must the input voltage be for the SNR with respect to the

source Johnson noise to be 20 dB?

(b) What size capacitor has voltage fluctuations that match the magnitude of this

Johnson noise?

(c) If it is driven by a current source, how large must it be for the RMS shot noise

to be equal to 1% of that current?

(3.4) This problem is much harder than the others. Consider a stochastic process x(t)
that randomly switches between x = 0 and x = 1. Let α dt be the probability that
it makes a transition from 0 to 1 during the interval dt if it starts in x = 0, and let
β dt be the probability that it makes a transition from 1 to 0 during dt if it starts
in x = 1.

(a) Write a matrix differential equation for the change in time of the probability

p0(t) to be in the 0 state and the probability p1(t) to be in the 1 state.
(b) Solve this by diagonalizing the 2× 2 matrix.
(c) Use this solution to find the autocorrelation function 〈x(t)x(t + τ )〉.
(d) Use the autocorrelation function to show that the power spectrum is a Lorentzian.

(e) At what frequency is the magnitude of the Lorentzian reduced by half relative

to its low-frequency value?

(f) For a thermally activated process, show that a flat distribution of barrier energies

leads to a distribution of switching times p(τ ) ∝ 1/τ , and in turn to S(f ) ∝ 1/ν.


