
$(3.1) 6)$
where:
$V=$ volume $M_{0}=\ldots$
$x_{m}=$ diamag susceeptibility $t=\operatorname{mag}$ fleld reancocd

$$
F=-V \mu_{0} x_{m} \frac{H^{2}}{2}
$$

$\frac{d H}{t_{2}}=$ grelcent of field

$$
H=\left(\frac{-F 2}{V \mu_{0}} x_{M}\right)^{1 / 2}
$$

$$
H=\left(\frac{-0.1 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2} \cdot 0.1 \mathrm{~N}}{10^{-4} \mathrm{~m}^{3} \cdot 1.262^{-6} \cdot-10^{-3}}\right)^{1 / 2}=3 \cdot 10^{6} \mathrm{~A} / \mathrm{m}
$$

$$
H=\frac{B}{\mu_{0}} \therefore B=3.7 T \quad(\operatorname{lacger} \text { than pm fayd })
$$

$$
\begin{aligned}
& \text { tmeV } \\
& z=\text { electron seale factoc? } \\
& r=\text { Bohe collos } \\
& M_{e}=\text { mass of al election } \\
& V=\text { atam voluare } \\
& x M=-1.26 e^{-6}\left[\frac{\left(1.6 e^{-19}\right)^{2} \cdot 1 \cdot\left(5.24 c^{-11)^{2}}\right.}{4 \cdot 9.1 \varepsilon-31 \cdot\left(5.29 c^{-11}\right)^{3}}\right] \approx-10^{-5}
\end{aligned}
$$

13.2)
$m_{1} \oint^{m_{2}} \quad M$ for on election k :
Bone $M=\mu_{B}=\frac{e n}{2 m e}$ whica in 51 ontis
Magniton $9.27 e^{-24}$
solving for \vec{B}
where

$$
\begin{aligned}
& B=\frac{\mu_{2}}{4 \cdot \pi}\left(\frac{3 \hat{x}(\vec{m} \cdot \hat{x})-\vec{m}}{1 \hat{x})^{3}}\right) \quad \begin{array}{l}
\hat{x} \text { is whele } \\
\text { unit vectre }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { at } 1 \text { aagsterm } \\
& =3 c^{-7}\left(\frac{18.54 c^{-24}}{r^{3}}\right)=\frac{5.4 c^{-30}}{r^{3}}
\end{aligned}
$$

for electiostofic: definitely woring

$$
\begin{aligned}
& E_{e}=q E=q \frac{a}{4 \pi \epsilon_{0} r}=\frac{(1.6 e-19)^{2}}{4 \pi 1.8 .85 e^{-12} \cdot r} \\
&=2 \cdot \frac{302 e-28 \quad \text { for } 1 \text { Angstcon } r=10 e-10}{r} \\
& \quad 2.302 e-19
\end{aligned}
$$

13.3) a) Electiomegnetic energy density is

$$
\begin{aligned}
& \begin{array}{l}
U=\frac{1}{2}(\vec{E} \cdot \vec{D}+\vec{B} \cdot \vec{M}) \\
\text { no electiantatic } \\
\text { coaterbotion }
\end{array} \quad \frac{1}{2} B \cdot H \\
& \text { magaefic matical is } \quad U=\frac{1}{2 \mu} \int B^{2} d V
\end{aligned}
$$

N in a fecromagaefic matrial is much greeoter then in air, so U is munimizel when μ is maxmized. The force is a fuaction of thes alnimicotion.
$(3.3 \backslash 6)$ For a pecmonant magnet

$$
\begin{gathered}
U=\frac{1}{2} \int \vec{B} \cdot \vec{H} d \vec{V} \quad \text { whese } H=\frac{1}{M} \cdot \vec{B}-\vec{M} \\
\text { so } \quad U=\left(\frac{1}{2} \int \frac{1}{\mu_{0}} \vec{B}^{2}-\overrightarrow{M \cdot \vec{B}}\right) d \vec{v}
\end{gathered}
$$

The sot prosuct $\vec{M} \cdot \vec{B}$ wll le maprizel if the two vectors are parollel, rosulting in lowar energg. (Flux from one with mag. vedor of the othe ()
13.4) satuiction for Fe @ ou
flom 13.21: $M=\frac{M}{V}=\mu_{B} \Delta n=\mu_{B}^{2} B \cap\left(E_{P}\right)$

$$
M=\frac{1}{\mu} B \quad \quad \mu \text { ion }=6.3 e-3 \quad H / M
$$

$$
B=7.8 e \mathrm{~S} \frac{\mathrm{~A}}{\mathrm{~m}} \cdot 6.3 e-3 \frac{\mathrm{H}}{\mathrm{~m}}
$$

$$
=49.14 \mathrm{C} 2 \mathrm{HA} / \mathrm{M}^{2} \approx 5000 \mathrm{~T}
$$

(definitily worg)
for Mis probllm AF
are ashuming saturation occurs when the siln of evaly election's spin is allgned. Fe has 2 Erer valeace electors 40

$$
\begin{aligned}
& \frac{6.02=23}{55.85} \mathrm{~J} \text { atoms } \cdot \frac{7.86 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{9.28 e-24 \mathrm{~J} / \mathrm{T}}{1 \text { electcon }} \\
& =7.8 \text { e } 5 \text { A/MPM Metar }- \text { whs is an H }
\end{aligned}
$$

b) find olla of colve above:
scfurafion of iron applok'metllg 0.5 i
$\approx 2 t$

$$
\begin{aligned}
\text { energy/eycle }=\left(\frac{1}{2}\right. & 2 T \cdot 4 e 3 \\
& =4000 \mathrm{~m}) \cdot 2 \\
& =4 / m^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } 1 \mathrm{~kg} \text { gof } i \text { ion }=7860 \mathrm{lg} / \mathrm{m}^{3} \\
& \text { so } 4000 \mathrm{~J}_{\mathrm{m}} \quad \frac{1}{7860 \mathrm{mg}} \mathrm{~m}^{3}=0.48 \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

at $60 \mathrm{~Hz}\left(\frac{1}{5}\right) x \quad 60 \mathrm{w}$ foc I lig
$13.6)$

we need to apply a fuld \simeq the coeccillty of germa

$$
\begin{aligned}
& \text { fecric oxide }=3000 \mathrm{c} \\
= & 24.3 \mathrm{~A} / \mathrm{M}
\end{aligned}
$$

we cal use boot-gaurt $\quad \begin{aligned} & \text { orthogen-1 so crus } \\ & =I\end{aligned}$ prout

$$
\begin{aligned}
& H(r)=\frac{1}{4 \pi} \int_{i} \frac{I d \lambda \times \hat{r}^{1}}{\left|r^{\prime}\right|^{2}}=\frac{1}{4 \pi} \frac{I \times(I)}{(.0 \mid n)^{2}} \\
& 24 e^{3} \frac{A}{m}=\frac{1}{4 \pi 1} \frac{I}{0.01^{2}} \text { solung for } \\
& I=30.144 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4 \pi_{1}} \int \frac{I d l \times \hat{r}}{\left(\left.r\right|^{2}\right.}=\frac{1}{4 \pi} \frac{I \lambda \times \hat{r}}{\left(r^{\prime} l^{2}\right.} \\
& =\frac{1\|\lambda\| \cdot \frac{\left\|\hat{r}^{2}\right\|}{0.01^{2}}}{}=\frac{1}{4 \pi}+\binom{1}{4 \pi}
\end{aligned}
$$

$$
H=\frac{I}{2 \pi r}=\frac{I}{4 \pi r^{2}}
$$

