1st Heris physical intuition fre the variables
$n=\#$ of steps / observationg (\# of headflips)
$p=$ proy of outcome ($50^{\circ} \%$ heads)
$N=n p$ (no pyysical intuition)?
$x=\sharp$ of favo[able ootcomes (\# of neads landing)
eg. $n=10$ for 10 neadtijps, proy, of $x=2 \quad 2$ being heats

$$
p_{n}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

mokes sease if goo plug in 1
$\sigma^{2}=$ vallonce
$\sigma=$ the populafion stontard deviation
$\langle x\rangle$ (Glso weitten) $E(x)$ is the expe or "average"
3.1 (a) POISSON DISTRLBUTION

$$
(3.16) P(x)=\frac{e^{-N} N^{x}}{x!}
$$

$$
\begin{aligned}
p_{n}(x) & =\underbrace{\binom{n}{x}}_{\text {sub }} p^{x}(1-p)^{n-x}
\end{aligned}\binom{n}{x}=\frac{n^{\text {where }}}{(n-x)!x!}
$$

using \ln quotlont cole $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$

$$
\ln \left(p_{n}(x)\right)=\ln (n!)-\ln \left[(1-x)^{\prime}\right]-\ln x!+\ln p^{x}+\ln (1-p)^{n-x}
$$

Stirling's approx for lasyn $n:$ 1) $n: \approx \sqrt{2}+n^{n+1 / 2} e^{-n}$ sub 1) e 2)

$$
\text { 2) } \begin{array}{ll}
\ln (n!) & \approx \ln (n)-n \\
x) & \approx n \ln (n)
\end{array}
$$

$$
\ln \left(p_{1}(x)\right)=n \cdot \ln (n)-(x-x) \cdot \ln (n-x)-\ln (x!)+x \ln |p|
$$

$$
+(1-x) \cdot \ln (1-p) \longleftarrow\left(\begin{array}{l}
\ln \left(x^{y}\right)=y \ln x \\
\log \text { of power }
\end{array}\right.
$$

log of power

Talk $n \cdot \ln (n) \approx n \cdot \ln (n-x)$ for large ne small

$$
\left.\ln \left(p_{n}(x)\right)=x \cdot \ln (n-x)-\ln (x!)+x \ln (p)+\ln -x\right) \ln (1-p)
$$

for large n smell $p(1-x) \ln (1-p)=-n p$

$$
\ln \left(p_{n}(x)\right)=x \ln (n-x)-\ln x!+x \ln p-n p
$$

now recoublie evecytury $\quad N=m^{\text {b given }}$ to be aug \#oC events

$$
p n(x)=\frac{n^{x} p^{x} e^{-n p}}{x!}=\frac{(n p)^{x} e^{-n p}}{x!}=\frac{N^{x} e^{-N}}{x!}
$$

$3.1(b)$
Prove: $\left\langle x(x-1)(x-2) \ldots(x-M+1\rangle=N^{M}\right.$
Start of chapter we ale gwen:

$$
\langle f(x)\rangle=\int f(x) p(x) d x
$$

$$
\langle x(x-1)(x-2) \cdots(x-m+1)\rangle
$$

THEREFORE THE FACTORIAL MOMENTS OT THE POISSON DIST are given by:

$$
\begin{aligned}
& \langle x(x-1)(x-2) \cdots(x-M+1)\rangle \\
& <=\sum_{x=0}^{\infty} \frac{e^{-N} N^{x}}{x^{\prime}} x(x-1)(x-2) \cdots(x-\mu+1)
\end{aligned}
$$

(A) \rightarrow shown whet this is $=1$, so we son multiply it in

$$
\begin{aligned}
& \frac{x(x-1)(x-m+1)}{x!}=\frac{1}{(x-9)!} \\
& \therefore e^{-N} N^{x} \quad \text { u<19g } \\
& N^{X}=N^{M} \cdot N^{(X-M)} \\
& \infty \quad e^{-\lambda} N^{x-m} \\
& N^{m} \\
& =N^{m}
\end{aligned}
$$

\longrightarrow if we say $x=x-M$
\therefore this whole thing is $=1$
3.(c) delve $\frac{\sigma}{\langle x\rangle}=\frac{1}{\sqrt{N}}$

1) $\sigma^{2}=\left\langle x^{2}\right\rangle-(x\rangle^{2} \longrightarrow \begin{aligned} & \text { we wont get } \\ & \text { this into a form }\end{aligned}$
2) $\langle x\rangle=N=\eta p$ with iss N
so paling 1) e^{2}) $\quad \sigma^{2}=\left\langle x^{2}\right\rangle-N^{2}$
Now lets convert $(p o l l$
oud the
$<x)$ convert fuss row joust N <x>)
using result from $3.1 b$
$\angle x(x-1)\rangle=N^{2}$ because... do it out in 3.16 e wain

$$
\begin{aligned}
\therefore \sigma^{2} & =N^{2}+N-N^{2} \\
\sigma^{2} & =N \quad \Rightarrow \sigma=\sqrt{N}
\end{aligned}
$$ Amice's video

(reminder that

$$
\begin{gathered}
\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{\sqrt{2}-\sqrt{2}} \\
\left.=\frac{\sqrt{2}}{2}\right)
\end{gathered}
$$

3.2
we con model photon creation as a.poisron process, (random tindepentont) we now std dec: $\sigma=\sqrt{N}$
where $N=$ photons detected/recond
\therefore to measure to within 1% we Must ensure
$1 \%<0.01 \mathrm{~N} \quad \therefore$ we need $\sqrt{N} \leq 0.01 \mathrm{~N}$

$$
\text { Or } \quad N \geq 10^{4}
$$

$\operatorname{lppm} \sigma \leq 10^{-6} N \quad \therefore \quad N \geq 10^{12}$
for wattage:

$$
\begin{aligned}
& \lambda_{\text {visible }}=500 \cdot 10^{-9} \mathrm{~m} \\
& E=\frac{n c}{\lambda}=6,626 \cdot \frac{10^{-34} \mathrm{Jg} \cdot 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}{500 \cdot 10^{-9} \mathrm{~m}} \text { rate/ }
\end{aligned}
$$

$=3.8 \cdot\left(0^{-19} \mathrm{~J}\right.$, for ω just multiply by
3.39 solve for usuice
amp bandwith of $20 \mathrm{UH}_{2}=f$

$$
\begin{aligned}
& 2=10 \mathrm{u} \Omega \\
& T=300 \mathrm{~K}
\end{aligned}
$$

$S N R$ of $20 d b$

Jancson Nolse is thecmol grodents cavaing cuarge to jiggic acound

$$
\begin{aligned}
V_{1}^{2} & =4 K_{B} T \cdot R \cdot P \\
& =3.3 \cdot 10^{-12} V^{2}
\end{aligned}
$$

for pooler $\quad d B=10 \log _{10}\left(\frac{V_{\text {sig }}^{2}}{V_{2}^{2}}\right)$

$$
20=10 \log _{10}\left(\frac{v_{\mathrm{slg}}{ }^{2}}{3.3 \cdot 10}-12\right)
$$

we know

$$
2=\log _{10}(100) \therefore 100=\frac{v_{515}^{2}}{3.310^{-12}}\left(\begin{array}{l}
v_{519}^{2} \\
3.3 .10 \\
V
\end{array}\right)
$$

fium texthouk
3.3 baupatition Theochm: enecgy: $E_{0}=\frac{C v^{2}}{2}$
also each "thecmollzed biretic DOF" hos E of

$$
E_{0}=1 / 2 K_{B} \cdot T
$$

solulig for C

$$
\begin{aligned}
& \frac{C U^{2}}{2}=\frac{K_{B} T}{2} C=\frac{K_{B} T}{V_{\text {No1se }}^{2}} \\
& C=\frac{1,38 \cdot 0^{-23} \mathrm{~J} / \mathrm{V}}{3.3 \cdot 10^{-12} \mathrm{~V}^{2}} \\
& C=1,25 \cdot 10^{-9} \mathrm{~F}
\end{aligned}
$$

3.3c) RMS shot noise foum toxt

$$
\begin{aligned}
&\left\langle I_{n o c k e}^{2}\right\rangle^{2}\langle I\rangle \Delta f \\
& q=\left.1.602 e^{-19} \mathrm{C} \quad \text { (electron chorge) }\right)
\end{aligned}
$$

If we wont 1% Noise relofive to cocrent:

$$
I_{\text {wasc }}=0.01 \mathrm{I}
$$

so

$$
\begin{aligned}
&\left\langle I_{\text {noise }}^{2}\right.=2 q \cdot \frac{I \cdot \Delta G}{I}=\frac{(0.01 I}{I} \\
& I=\frac{2 q \Delta F}{(0.01)^{2}} \\
&=\frac{2 \cdot 6 e^{-19} \cdot 20 \mathrm{kHz}}{0.01^{2}} \\
& P=6.4 \cdot 10^{-11} \mathrm{~A}
\end{aligned}
$$

