$$N = \# \text{ of steps (observations (# of headflips))}$$

$$p = proy of outcome (soo(6 heads))$$

$$N = np (no pyysical intuition)?$$

$$X = \# \text{ of four four outcomes (# of heads)}$$

$$Ianding)$$
eq.
$$n = 10 \quad \text{for (o headflips, proy. of x = 2 \\ X = 2 \\ Pn(4) = {n \choose x} P^{K} (I-p)^{n-K}$$

$$makes sense \quad \text{if gov plug in 1}$$

$$p_{n}(x) = \binom{n}{k} p^{x} (1-p)^{n-x} \qquad \binom{n}{k} = \frac{n!}{(n-x)!x!}$$

$$(3.6) P(X) = \frac{e^{-N}N^{X}}{X!}$$

3.1 (a)

POISSON DISTRIBUTION

$$ln(p, |X|) = X \cdot (n(n-x)) - ln(x!) + X ln(p) + (n-x) ln(1-p)$$

for longe n small p (n-x) ln (1-p) = -np

$$ln(p, (X)) = X ln(n-x) - ln X! + X ln p - np$$

$$now (cowhing everything to be aug to county
to be aug to county
pn(X) = n × p × c^n p = (np) × c^n = N × c^n$$

$$X! = X! = X!$$

$$(X) = n × p × c^n p = (np) × c^n = N × c^n$$

$$X! = X!$$

$$(X) = (X + 1) |X - 2| - (X - M + 1) > = N^m$$
Sech of chapter we are grian:

$$< f(x) > = \int f(x)p(x) dx$$

$$eq.$$

$$3.1b$$

$$< x (x - 1) (x - 2) - (x - M + 1) >$$

TO EQUA $N \cdot IN(n) \approx R \cdot IN(n-x)$ for large $n \in Smoll$

TALK

.

X

ale given by:

$$4t(x-1)(x-2) \cdots (x-m+1) > (x-m+1) > (x-m+1) + (x-m+1) + (x-1)(x-2) \cdots (x-m+1) + (x-m) + ($$

THEREFORE THE FACTORIAL MOMENTS OF THE POISSON DIST

3.1c don't ve
$$\frac{\sigma}{2\times 2} = \frac{1}{\sqrt{N}}$$

1) $\sigma^2 = (x^{27} - cx)^2$ we wonth get
2) $2\times 2 = N = np$ with just N
so using (j + 2) $\sigma^2 = cx^2 - N^2$
Now lets convert
3) $(x^{27} = (x(x-1)) + (cx)^2$ (pull out the
convert rules now bjust N
Using result from 3.1 b
 $(x(x-1)) = N^2$ because... do it out in
3.16 x woth
 $\sigma^2 = N^2 + N - N^2$ Amilian woth
 $\int \sigma^2 = N^2 + N - N^2$ Amilian woth
 $\int \sigma^2 = \sqrt{N}$ (reminder that
 $\int \sigma^2 = \sqrt{N}$ ($\tau = \sqrt{N}$)
 $\int \sigma^2 = \sqrt{N}$ ($\tau = \sqrt{N}$) ($\tau = \sqrt{N}$)
 $\int \sigma^2 = \sqrt{N}$ ($\tau = \sqrt{N}$) ($\tau = \sqrt{N}$)

3.2 We can model public creation
as a polition process. (reation + independent)
where N = photons detected/recond
:. to measure to within 190
where N' = photons detected/recond
:. to measure to within 190
where N''s ensure (10⁻²)
1%
$$\sigma \leq 0.01$$
 N'' we need $\nabla N \leq 0.01$ N
or N > 10⁴
1ppm $\sigma \leq 10^{-2}$ N'' N > 10⁴
1ppm $\sigma \leq 10^{-2}$ N'' N > 10⁴
 $E = \frac{hc}{\lambda} = \frac{c_{1}c_{2}c_{2} \cdot c_{0}^{-3}e}{J_{1}} for W just multiply by$

A soluc for
$$U_{source}$$

amp bandwith of 20 $UH_2 = f$
 $Z = 10 U J2$
 $T = 300 U$
SHR of 20 db

Janson Noisc is thermal goodining causing cuaige to jiggie awar $V_{A} = 4 K_{B} T \cdot R \cdot P$ $-3.3.0^{-12}$ V² $dB = 10 \log_{10} \left(\frac{V_{clg}}{V_{c}^{2}} \right)$ for porce $202(0 \log 10 \left(\frac{V_{19}}{3.3 \cdot 10^{-12}} \right)$ we know $2 = \log(0 | 100)$: $100 = \frac{v_{sig}}{3.3(0^{-12})} = \frac{v_{sig}}{3.3}$

fim textbook 3.36) Eaupartition Theorem: energy $E_0 = CV^2$ in a can; Z_1 ing cap: also each "fuermallie Unrefic DOF" has Eo of Eo = 1/2K.T solving for C $\frac{CV^2}{2} = \frac{K_BT}{2} \qquad C = \frac{K_BT}{V_{Aouse}^2}$

 $(=\frac{1}{38}, \frac{-23}{0}, \frac{5}{10}, \frac{5}{12}, \frac$

C= 1,25.10 F

3.3c RMS shot noise firm tokt

$$\begin{aligned}
\begin{aligned}
\begin{aligned}
\begin{aligned}
\begin{aligned}
\begin{aligned}
\begin{aligned}
\begin{aligned}
LT^{2}_{2} &= 2a \ LT > bf \\
\\
Q^{2} & 1.602 \ e^{-19} \ C \ (cleation \ Chorge)
\end{aligned}$$
(f we wont $[0]_{0}$ Noise relative to contract:

$$I \ Noise = 0.0 | I \\
\end{aligned}$$

$$\begin{aligned}
I \ Noise = 2a \ F = 2a \ F = (0.0 | T)^{2} \\
I \ T = \frac{2a \ F}{(0.0 | 2]} = \frac{2 \cdot 1.6 \ e^{-19} \cdot 20 \ h \ Hz}{0.0 | 2} \\
\end{aligned}$$

$$\begin{aligned}
I \ T = 6.4 \cdot (0^{-11} \ A)
\end{aligned}$$