(4.2)

$$
I(x, y)=\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
$$

$$
\begin{aligned}
& =\sum_{x} \sum_{y} \rho(x, y) \cdot \log (p(x, y))-\sum_{x} \rho(x, y) \cdot \log p(x) \\
& \frac{4.9}{H(x, y)}= \\
& =\sum_{x y} p(x, y)=S H(x, y)-H(x)-H(y)
\end{aligned}
$$

$\cdot \log p(x, y)$ so signs flup
by the def. of conditionol entcopy

$$
\begin{aligned}
& H(y \mid x)=H(x, y) \cdot H(x) \Rightarrow H(x, y)=H(y \mid x)+H(x) \\
& H(x \mid y)=H(x, y)-H(y) \Rightarrow H(x, y)=H(x \mid y)+H(y)
\end{aligned}
$$

con be plugged tato above
(4.3) a. Using majority usthg:
$\epsilon=$ pros. of siagle cyannl error

$$
\begin{aligned}
P_{\text {elcor }} & =P(\text { at least } 2 \text { wrong bits }) \\
& =3 \cdot P(2 \text { wiong })+P(3 \text { wrong })
\end{aligned}
$$

$$
\begin{aligned}
& \text { Binomlal dot }=3(1-\epsilon) \epsilon^{2}+\epsilon^{3} \\
& 3 \text { is from choose } 2
\end{aligned}
$$

3 is from choose 2

$$
=3 \epsilon^{2}-3 \epsilon^{3}+\epsilon^{3}
$$

$(1-\epsilon)$ : pray of

$$
\text { getting } 1 \text { right }=3 e^{2}-2 e^{3}
$$

$\left.\epsilon^{2}=P_{(2 \text { wor }}\right)$
1 b. $P_{\text {ecror }}=3 \epsilon_{1}^{2}-2 \epsilon_{1}^{3} \quad$ Negt the probs.
wher $\epsilon_{1}=3 \epsilon^{2}-2 \epsilon^{3}$

$$
=3\left(3 \epsilon^{2}-2 t\right)^{2}-2\left(3 \epsilon^{2}-2 t\right)^{3}
$$

C. eacy rosind of soting tripies \# sent so $n$ coands requilcy $3^{n}$ bits
so we hove Nof soce now to waite $\left.P_{\text {ligigh }}\right) \cdot P_{(2 \text { wrong })}$ this recurciom motherctiedy

- 3
can hoppun 3saya.
4.4 Diff. Entiopy $=\int_{-\infty}^{\infty} p(x) \log p(x) d x$
where for a govasion procesg $p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$
dift
entropy

$$
\begin{aligned}
& \text { wherefitute } \mu^{2} \text { woon } \\
& \gamma=x-\mu^{2} \xrightarrow{\sigma^{2}=\text { voriane }}
\end{aligned}
$$

entropy

$$
\frac{-\mu)^{2}}{\sigma^{2}} \cdot \log \left[\frac{1}{\sqrt{2 \pi \sigma^{2}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}}\right]_{\text {syst is }}[a
$$

$$
2 x
$$

the syct is
$p(x)$ ! intgeotet

$$
\begin{aligned}
& =\frac{1}{2} \log \left(2 \pi \sigma^{2}\right) \cdot \int_{-\infty}^{\infty}\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)\left(\frac{-(x)^{2}}{2 \sigma^{2}}(d x)+\int_{-\infty}^{\infty}\left(\frac{1}{\sqrt{2 \pi^{2}}}\right)\left(e^{-(x)^{2}}\right)^{2}\right)\left(\frac{x^{2}}{2 \sigma^{2}}\right) d x \\
& =-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2} \int_{-\infty}^{\infty}\left(\frac{x^{2}}{\sigma^{2}}\right)\left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)\left(e^{\frac{-x^{2}}{2 \sigma^{2}}}\right) d x
\end{aligned}
$$

can't do the same trick
(4.5) a. Telcpuone linc $\Delta t=3300 \mathrm{~Hz}$

$$
S N R=20 d B
$$

whot is capoelty (in bits (second)
quarran-
Hal fley

$$
\begin{aligned}
& =\Delta \epsilon \log _{2}\left(1+\frac{s}{N}\right) \\
& =3300 \cdot \log _{2}\left(1+10^{2}\right) \\
& =3300 \log _{2}(100) \\
& =3300 \cdot 6.6=21945 \mathrm{bits} / \mathrm{s}
\end{aligned}
$$

b.

$$
\begin{aligned}
1 \cdot 10^{9} \text { bits } / 3 & =3300 \cdot \log _{2}(1+5 / N) \\
\log _{2}\left(1+\frac{5}{N}\right) & =3.03 \cdot 10^{5} \\
\log _{10}(1+5 / N) & =3.03 \cdot 10^{5} \cdot \log _{10^{2}} 2 \\
& =91212 \\
& \approx 10^{5} \\
10 \log (3 / N) & =10^{6} \mathrm{~dB} \\
S N R & =10^{5} \mathrm{db}
\end{aligned}
$$

$$
f\left(x_{1}, x_{2} \ldots x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \text { med }
$$

$$
\begin{aligned}
&\left\langle f\left(x_{1}, x_{2} \ldots x_{n}\right)\right\rangle=\left\langle\frac{1}{n} \sum_{i=1}^{n} x_{i}\right\rangle=\frac{1}{n} \sum_{i=1}^{n}\left\langle x_{i}\right\rangle \\
&=\frac{1}{n} \sum_{i=1}^{n} x_{0} \quad \sum_{1=1}^{n} x_{0}=x_{0}+x_{0}+x_{0} \ldots+1 m e s \\
&=n \cdot x_{0} \\
&=\frac{1}{n} \cdot n \cdot x_{0}=x_{0}
\end{aligned}
$$

Craméc-Rao Bound states that the variance of the estimator must be $>$ the nurse of the fishes information
(4.1) continuity

