(C.1) prove
$$\overline{A} \times (\overline{B} \times \widehat{C}) = \overline{B} (\overline{A} \cdot \widehat{C}) - \overline{C} (\overline{A} \cdot \widehat{B})$$

BAC-CAB of Lagrange's Formula a
Triple product exponsion
 $\overline{a} = a_x \widehat{1} + a_y \widehat{J} + a_z \widehat{k}$
etc...
FIRM WE TAKE $\overline{b} \times \widehat{C}$ (inside the parenthesis)
 $alternoid ny signs$
 $\overline{b} \times \widehat{C} = \left[\begin{bmatrix} \widehat{1} & \widehat{0} & \widehat{k} \\ & \widehat{0} & \widehat{1} \\ & \widehat{1} \times (\widehat{1} \times \widehat{C}) = \left[\begin{array}{c} \widehat{1} & \widehat{1} & \widehat{1} \\ a_x & a_y & a_z \\ & b_y \widehat{1} - b_z \widehat{1} & b_z - b_z \widehat{1} \\ & \widehat{1} & \widehat{1} \\ &$

rature mon do it all out ...

To solve for Q e V, we can model the cap fust as a single infinite prote. To ose Gauss' we'll consider a box bisecting the prote of area A + height 22 leavel above t below).

we know all the flux is traveling vertically through the 60x. So we can ignore flux through the sides, threefore the solface integral only needs to account for the top + bottom Faces of area 2N. $\int_{V} \nabla \cdot \vec{E} \, dV = \int_{S} \vec{E} \Delta A = \int_{V} \frac{P}{E} \, dV$

We know from (6.30) that voltage V = $V = \int_{D}^{d} \vec{E} \cdot \vec{k} \vec{l} = negative sign is culotive;$ $V = \frac{P}{\epsilon} \cdot \vec{d}$ where d is the distance betwee plates charge = charge density area = $p \cdot A$ so $C = \frac{\beta \cdot A \cdot \epsilon}{P \cdot d} = \frac{A \cdot \epsilon}{d}$ $Z = \frac{\beta \cdot A \cdot \epsilon}{P \cdot d} = \frac{A \cdot \epsilon}{d}$ $Z = \frac{\beta \cdot A \cdot \epsilon}{P \cdot d} = \frac{A \cdot \epsilon}{d}$

6.2 b
displacement current is the time derivative
of
$$\overline{D}$$

 $\int_{S} \frac{\partial \overline{P}}{\partial t} \cdot d\overline{A} = E \int_{S} \frac{\partial \overline{E}}{\partial t} \cdot d\overline{A}$
displacement current is just me
applied dectric field $\overline{E} \cdot E$
we know from a. that $E = \frac{P}{E}$
 $\therefore E \int \frac{\partial \overline{P}}{\partial \overline{A}} \cdot d\overline{A}$
 $\overline{E} \int \frac{\partial \overline{P}}{\partial \overline{A}} \cdot d\overline{A}$
 $\overline{E} \int \frac{\partial \overline{Q}}{\partial \overline{A}} \cdot d\overline{A}$
 $\overline{E} \int \frac{\overline{E} \int$

6,2 c patential energy
$U = \frac{1}{2} (E \cdot D + B \cdot H)$
D= EE (fixed potent al)
$U = \frac{z}{2} \vec{E} \cdot \vec{E}$ $\vec{E} = \frac{\vec{A}}{\vec{E}}$ is zero,
$= \frac{\varepsilon}{2} \frac{\rho}{\varepsilon} \frac{\rho}{\varepsilon} = \frac{\rho}{2\varepsilon} $
$= \frac{1}{2\varepsilon} \int_{V} p^{2} dV = \frac{p^{2} A d}{2\varepsilon} \qquad p^{2} = \varepsilon^{2}$
we know $C = AE = C P^2 J^2 = C E^2 J^2$ $d = Z E^2 = Z E^2 J^2$ $E^2 J^2 = V^2$ privential difference, Z

6.3 a

$$I = 00$$
 I Stokes is perfect and
because it tells as
thet the curl $\int_{S} \nabla x \tilde{E} d\tilde{A}$
B $T = (hmps)$ is equal to the
alignment of \tilde{E} with the
bounding curve $\int_{g} \tilde{E} d\tilde{J}$
OCCOODCO
 $S = 1 + 1/S$ make
 $I + 1/S$

integrated over the whome of the solenoid $U = \frac{\pi r^2 \lambda}{2} i \frac{1}{4} z$ plugging in H = In

$$y = \pi (2 \lambda I^2 n^2)$$

2

outorer à force =
$$\frac{1}{2} \left(U(r) \right)$$

we have Utotal SD:

$$= ((0T)^{2} + 1 + 1m^{2} + 2m)^{2} = 2 \cdot 1 \cdot 257 \cdot 10^{56}$$

6.4

$$K^{e}$$
 $M = H_{0}$
 K^{e} $M = H_{0}$
 K^{e} $M = H_{0}$
 K^{e} $M = H_{0}$
 K^{e} $M = \frac{1}{2}$
 K^{e} K^{e} $M = \frac{1}{2}$
 K^{e} $M = \frac{1$

The Poynting vector represents the energy flox
in exectic re magnetic fields (their cross product)
$$\vec{P} = \vec{E} \times \vec{H}$$

For light in fire space the drie perpindicular, so

$$\begin{aligned} \|\hat{a} \times \hat{b}\| &= \|\hat{a}\| \cdot \|\hat{b}\| \cdot \sin \theta \qquad \theta = 90^{\circ} \\ \|\hat{e} \times \hat{n}\| &= \|\hat{e}\| \cdot \|\hat{n}\| + \|\hat{n}\| \cdot \|\hat{n}| \\ \text{Using } \|\hat{e}\| &= \|\hat{e}\| - \left(\frac{\mu_{0}}{\epsilon_{0}}\right)^{1/2} \implies \|\hat{h}\| = \|\hat{e}\| \left(\frac{\epsilon_{0}}{\mu_{0}}\right)^{1/2} \\ (6\cdot \cos) & \|\hat{n}\| - \left(\frac{\mu_{0}}{\epsilon_{0}}\right)^{1/2} \qquad \text{sub } n \quad \|\hat{n}\| \\ \|\hat{P}\| &= \|\hat{E}\| \left(\frac{\epsilon_{0}}{\mu_{0}}\right)^{1/2} \\ \|\hat{P}\| &= \|\hat{E}\| \left(\frac{\epsilon_{0}}{\mu_{0}}\right)^{1/2} \\ \text{we can relate } \hat{p} \quad \text{to power using } (6\cdot \|\hat{p}|) \\ \text{we can relate } \hat{p} \quad \text{to power using } (\frac{\epsilon_{0}}{\epsilon_{0}})^{1/2} \\ \|\hat{E}\| &= 1 \|\hat{E}\| = 1000^{\circ} \text{ m/m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \text{we can relate } \hat{p} \quad \text{to power using } (\frac{\epsilon_{0}}{\epsilon_{0}})^{1/2} \\ \|\hat{E}\| &= 1000^{\circ} \text{ m/m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 1000^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 1000^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 1000^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 1000^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 1000^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 100^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 10^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 10^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{ m^{2}}\right)^{1/2} \\ \|\hat{E}\| &= 10^{\circ} \text{ m^{2}} \left(\frac{\epsilon_{0}}{\epsilon_{0}} + 10^{\circ} \text{$$

6.66 for
$$1 w$$
 lacer focuses to $1 m^2$
Now we $\| \tilde{E} \| = \sqrt{\frac{1}{000}} = \frac{19424}{1000} \frac{\sqrt{n}}{1000}$
recting From much higher!
 $1.9424 \cdot 10^4 \sqrt{n}$

(

Now foursed to
$$l\mu m^2$$

= $\int \frac{l\nu}{(l^{-r})^2} m^2 l_{,9424.07}$