(6.1) prove $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$

BAC-CAB oc Lagangés formula oc Tciple product expanion

$$
\begin{gathered}
\vec{a}=a_{k} \hat{\imath}+a_{y} \hat{\jmath}+a_{2} \hat{k} \\
\text { etc... }
\end{gathered}
$$

FIRIT we TAKE $\vec{b} \times \vec{c}$ (inside the perenteres)

$$
\begin{aligned}
& \text { alternoflay signs } \\
& \left.\vec{b} \times \hat{c}=\left[\left\lvert\,\right.\right]=\begin{array}{l}
c_{z}
\end{array} \right\rvert\,=\hat{i}\left(b_{y} c_{2}-b_{2} c y\right) \\
& +K\left(b_{x} c y-b_{x} c y\right)
\end{aligned}
$$

THEN we cross that wcth \vec{A}

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a_{x} & a_{y} & a_{z} \\
b_{y} c_{z}-b_{z} c_{y} & b_{z} c_{x}-b_{x} c_{z} & b_{x} c_{y}-b_{y} c_{x}
\end{array}\right| \\
& =\hat{\imath}\left(a_{y} b_{x} c_{y}-a_{y} b_{y} c_{x}-a_{z} b_{z} c_{x}+a_{z} b_{x} c_{z}\right)
\end{aligned}
$$

$$
\hat{\imath}\left(a_{y} b_{x} c_{y}-a_{y} b_{y} c_{x}-a_{2} b_{z} c_{x}+a_{2} b_{x} c_{z}+a_{x} b_{x} c_{x}\right.
$$

$\left.-a_{x} b_{x} c_{x}\right) \underset{ }{2}$ add t sobtra of the same term \hat{y} then factor out by

$$
=\underbrace{(\begin{array}{c}
\vec{a} \cdot \bar{c}) b_{x} \\
c_{x}
\end{array} \underbrace{\left.\left(\vec{a} \cdot \bar{b}_{x}\right) c_{x}\right]}_{\left(a_{y} b_{y}+a_{z} b_{z}+a_{x} b_{x}\right)}}_{\hat{\imath}[\underbrace{}_{x}\left(a_{x} c_{x}+a_{y} c_{y}+a_{z} b_{z}\right)}
$$

mokes seal an they'ere 381 vectors so...

$$
\begin{aligned}
& \left(\begin{array}{l}
\hat{\imath}(\vec{a} \cdot \vec{c}) b_{x} \\
+ \\
\hat{\imath}(\vec{a} \cdot \vec{c}) b_{y}-\hat{\imath}(\vec{a} \cdot \vec{b}) c_{x} \\
+ \\
\hat{k}\left(\vec{j}(\vec{a} \cdot \vec{b}) c_{y}<\right.\text { we con conclude } \\
+\quad \text { for } \hat{\jmath} \text { e } \hat{k}
\end{array}\right.
\end{aligned}
$$

pull out the $(\vec{a} \cdot \vec{c})$

$$
\begin{aligned}
& (\vec{a} \cdot \vec{c})(\underbrace{}_{\left.\vec{b}+b_{y} \hat{\imath}+b_{z} \hat{k}\right)}=(\underbrace{\left.c_{x} \hat{\imath}+c_{y} \hat{\jmath}+c_{z} \hat{k}_{c}\right)}_{\vec{c}}-\vec{c}(\vec{a} \cdot \vec{a} \cdot \vec{b}) \\
& -(\underbrace{(\vec{a} \cdot \vec{b}}) \\
& \text { THEREFORE } \nabla \times(\nabla \times \vec{E})=\nabla(\nabla \cdot \vec{E})-\vec{E}(\nabla \cdot \nabla)
\end{aligned}
$$

6.29
$C=\frac{Q \text { charge }}{V}$ potential dill.

To solve for Q e V, we can model the cap first as a sloyle infinite prate. To use Gauss' wert consider a box bleating the prate of area A height $2=$ lequel above below).
we know all the flux is traveling vectically through the box. So we can ignore flux through the sides, therefore the surface integral only needs to account For the top 1 bottom faces of area $2 A$

$$
\int_{v} \nabla \cdot \vec{E} d V=\iint_{S} \vec{E} d A=\int_{v} \frac{\rho}{\varepsilon}+V
$$

Mildily confuced by jump from volure integer to area
solving For Fleld sterength:

$$
E=\frac{P}{2 \varepsilon}
$$ which is onlform befween the plates!

extrapolating to twa plates with opposite charges we moltiply by 2 , so $E=\frac{P}{\varepsilon}$
we know from (6.30) thet vottage $V=$

$$
V=\int_{0}^{d} \vec{E} \cdot \vec{d} \mid \longleftarrow \text { negotioe ash is chaflive) }
$$

$V=\frac{P}{\varepsilon} \cdot d \quad \begin{gathered}\text { whece } d \text { is the distorce } \\ \text { betwee }\end{gathered}$ betwee ploteg
charge $=$ cuarge deralty \cdot area $=P \cdot A$
so $C=\frac{p \cdot A \varepsilon}{\rho d}=\frac{A \varepsilon}{d}$
¿purely geomatur
e noterlal driven
6.2 b
dispracement curreat is the time decinotive of \bar{D}

$$
\int_{S} \frac{\partial \vec{D}}{\partial t} \cdot d \vec{A}=\varepsilon \int_{\delta} \frac{\overrightarrow{\partial \varepsilon}}{\partial t} \cdot d A
$$

displectereat curceat is juit the appled electic fie ld $\vec{E} \cdot \varepsilon$
we unow from a. thet $E=P / \varepsilon$

$$
\begin{array}{ll}
\therefore \frac{\varepsilon}{\&} \int_{S} \frac{\partial P}{\partial+} \partial \vec{A} & \quad \text { chasge donalt } \\
\frac{1}{A} \int_{S} \frac{\partial Q}{\partial}+\overrightarrow{\partial A} &
\end{array}
$$

~This is cuccent: change in croge wer time

$$
\therefore \text { dispracement curreat }=\frac{A}{A} I=I
$$

6.2 c pateatal rascgy

$$
U=\frac{1}{2}(E \cdot D+B \cdot H)
$$

$$
D=E \varepsilon
$$

no current flow
(fixed potental)
where <0 magnefic Eield

$$
\begin{aligned}
U & =\frac{\varepsilon}{2} \vec{E} \cdot \vec{E} \quad \vec{E}=\frac{\vec{P}}{\varepsilon} \quad \text { is zeco. } \\
& =\frac{\varepsilon}{2} \cdot \vec{\varepsilon} \cdot \frac{\vec{\rho}}{\varepsilon}=\frac{\vec{\rho}^{2}}{2 \varepsilon} \text { nover volune } A \cdot d \\
& =\frac{1}{2 \varepsilon} \int_{V} \rho^{2} d V=\frac{\rho^{2} A d}{2 \varepsilon} \quad p^{2}=\vec{E}^{2} \varepsilon^{2}
\end{aligned}
$$

we know $c=\frac{A \varepsilon}{d}=\frac{c}{2} \frac{\rho^{2} d^{2}}{\varepsilon^{2}}=\frac{c}{2} \vec{E}^{2} d^{2}$

$$
\vec{E}^{2} d^{2}=V^{2}
$$

precoflal diffecence! $\quad=\frac{C V^{2}}{2}$
6.2 d compose a battery e a capacitor solve for A?

VS.

$$
c=\frac{A \varepsilon_{0}}{d}
$$

$$
\text { energy }=V \cdot I \cdot+(\text { seconds })
$$

also from

$$
u=\frac{c v^{2}}{2}
$$

6.2 c

$$
v=\frac{A \varepsilon_{0} V^{2}}{2 d}
$$

$$
\begin{aligned}
& =10 \cdot 10 \cdot 60 \cdot 60 \\
& v=360000 \mathrm{~J}
\end{aligned}
$$

very large cap!

$$
A=\frac{2 d U}{V^{2} \varepsilon_{0}}=\frac{2\left(10^{-4}\right) \cdot 360 \cdot 10^{3}}{10^{2} \cdot 8 \cdot 85 \cdot 10^{-12}}=8.07 \cdot 10^{8}
$$

for ad port, assuming just the $1 \mu \mathrm{~m}$ dielectece thicuress:

$$
\begin{aligned}
& Q_{10 \mathrm{~m}}^{10 \mathrm{~cm}=1 \mathrm{~m} \cdot 1 \mathrm{~m}}==0.01 \mathrm{~m}^{2} \quad \text { s. } \ldots \\
& 10^{-6}\left(\frac{8 \cdot 10^{8}}{0.01}\right)=80,000 \mathrm{~m} \\
& \text { or } 80 \mathrm{~km}
\end{aligned}
$$

6.3 a

stokes is perfect are because it tells ug
$\left\{\begin{array}{l}\text { thet the corl } \\ \text { (nagfield })\end{array} \int_{S} \nabla \times \vec{E} d \vec{A}\right.$ B I (Amps) (1) 20000000 $\left\{\begin{array}{l}\text { is equol to the } \\ \text { alignamet of } \vec{E} \text { with the } \\ \text { bounting curve } \oint_{4} \vec{E} d \vec{l}\end{array}\right.$

let's make rectongle $A B C D$ our bouatlag curue

$$
\begin{aligned}
\int \hat{H} \cdot \vec{d} & =\int_{A}^{B} \vec{H} \vec{l} \vec{l}+\int_{B}^{C} \vec{H} \overrightarrow{d l}+\int_{C}^{D} \vec{H} \cdot \vec{l}+\int_{D}^{A} \vec{H} / \vec{l} \\
& =H l
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\int_{S} \nabla \times \vec{H} \cdot d \vec{A}=\int_{S} \vec{J} \cdot d \vec{A}=I \cdot l \quad \begin{array}{r}
\text { ovee the } \\
\text { full soreaocd } \\
\text { with a turag }
\end{array} \\
\text { is correat } \vec{J} \quad=I \cdot f \cdot n
\end{array}\right.
$$

so: $H X=I \cdot X \cdot n=H=F 1$
6.36

energy storld in the salenoid would be pacely the ragretic Find, 50

$$
\begin{aligned}
& U=\frac{1}{2}(E \cdot O+H \cdot G) \\
& U=\frac{1}{2} \vec{H} \vec{B}
\end{aligned}
$$

where $\vec{B}=\mu \vec{H}$

$$
U=\frac{\mu}{2} H^{2}
$$

integreted over the wiume of the solenod

$$
U=\frac{\pi r^{2} \lambda}{2} \vec{H}^{2}
$$

plogging in $H=I n$

$$
U=\frac{\pi r^{2} l I^{2} n^{2}}{2}
$$

6.3 c

$$
\begin{aligned}
U=\frac{1}{2} B \cdot M & =\frac{1}{2} B \cdot B / M \\
& =\frac{1}{2} B^{2} / \mu
\end{aligned}
$$

$$
\text { outward force }=\frac{\partial}{\partial r}(U(r))
$$

we hove $U_{\text {total }}$ so:

$$
\begin{aligned}
& F=U_{h a+1} \cdot \pi r^{2} \cdot l=\frac{1}{2} \frac{B^{2}}{\mu} \pi r^{2} l \\
& =(10 T)^{2} \cdot \pi \cdot 1 \mathrm{~m}^{2} \cdot 2 m=\begin{array}{c}
2 . S \cdot 10^{8} \\
\mathrm{~N}
\end{array}
\end{aligned}
$$

6.4

$$
\begin{aligned}
d \vec{F} & =I d \vec{l} \times \vec{B} \\
& =\mu_{0} I d \vec{l} \times \vec{H} \\
& =\frac{\mu_{0} I^{2}}{2 \pi r} d \vec{l}
\end{aligned}
$$

sob in
(6.87)
where for a lm distance r

$$
d \vec{F}=\frac{1 \cdot 26 e^{-\varepsilon}(1 \mathrm{~A})^{2}}{2 \pi(1 \mathrm{~m})^{2}} d \vec{l}=2 \cdot 10^{-7} \mathrm{~N} d \vec{l}
$$

(b) very dieficdt to this is the force validate expectimately expected by the presence of wire X 's flux \vec{B} interacting with wire ing current Id \vec{l} so this is the tofol force not a $2 x$
6.6 o $1 \mathrm{kw} / \mathrm{m}^{2}$ from sonlight estlmete assockfed \vec{E}

The poyating vector repreceats the erergy fius in erectric e magaetic fields ltueir cooss profuct)

$$
\vec{P}=\vec{E} \times \vec{H}
$$

for light in free spoce theyil perpinticulor, so

$$
\begin{aligned}
& \|\vec{a}+\vec{b}\|=\|\vec{a}\| \cdot\|\vec{b}\| \cdot \sin \theta \quad \theta=90^{\circ} \\
& \|\vec{E} \times \vec{H}\|=\|\vec{E}\| \cdot\|\vec{H}\| \cdot \| \\
& \quad \text { asing } \frac{\|\vec{E}\|}{\|\vec{H}\|}=\left(\frac{\mu_{0}}{\varepsilon_{0}}\right)^{1 / 2} \quad \Rightarrow\|\vec{H}\|=\|\vec{E}\|\left(\frac{\varepsilon_{0}}{\mu_{0}}\right)^{1 / 2} \\
& (6.105) \text { sub in }\|\vec{r}\| \\
& \|\vec{P}\|=\|\vec{E}\|\left(\frac{\varepsilon_{0}}{\mu_{0}}\right)^{1 / 2}
\end{aligned}
$$

we con relote \vec{p} to $\frac{\text { power using }}{m 2}(6.119)$

$$
\begin{aligned}
w=-\int_{s} \vec{P} \cdot d \vec{A} \quad \text { so: }\|\vec{E}\|^{2} & =1000 \mathrm{~m}\left(\mathrm{~m}^{2}\right. \\
p=-\frac{1000}{m^{2}} & \left.\frac{8.85 e^{-12}}{1.26 e^{-6}}\right)^{-1 / 2} \\
\|\vec{E}\| & =614.2 \mathrm{cs} \frac{\mathrm{v}}{\mathrm{~m}}
\end{aligned}
$$

$\begin{gathered}\text { now we } \\ \text { can prog }\end{gathered}\|\vec{E}\|=\sqrt{\frac{1 \omega}{.001^{2} \mathrm{~m}}}=19424 \mathrm{~V} / \mathrm{m}$
e chug from
port a. much higher!

$$
1.9424 \cdot 10^{4} \mathrm{v} / \mathrm{m}
$$

now focused to $1 \mu \mathrm{~m}^{2}$

$$
=\sqrt{\frac{1 w}{\left(10^{-8}\right)^{2} \mu}}=1.9424 \cdot 10^{7}
$$

so the story is it takes a much stronger fred to foes power over a smaller area.

