8.2 magnitude of poynting

$$
\begin{aligned}
&\langle | P\left\rangle=\frac{1000 \mathrm{w}}{\begin{array}{r}
\text { area or spence } \\
Q \text { that ratios }
\end{array}}=\frac{1000 \mathrm{w}}{4 \pi(1000 \mathrm{~m})^{2}}\right. \\
&=8 \cdot 10^{-5 \mathrm{w} / \mathrm{m}^{2}}
\end{aligned}
$$

$$
\|\vec{P}\|=\|\vec{E} \times \vec{H}\|
$$

where $\vec{E}+\vec{B}$ ole

To write n terms of \vec{E} only

$$
H=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} E
$$

$$
P=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} E_{\operatorname{mox}}^{2}\left(\frac{1}{2}\right)
$$

plugging in e solving for

$$
\begin{aligned}
E_{\text {rap }} & =\left(\sqrt{E_{r_{0}}} \cdot \frac{1}{2(P)}\right)^{1 / 2} \\
& =0.24 \mathrm{v} / \mathrm{m}
\end{aligned}
$$

peep (free space) e \vec{p} points radially out from the point source

For time overage de a all wave squared

8.3

we wont to solve
for power

$$
\begin{aligned}
& P=I^{2} R_{l} \\
& P=\frac{v^{2}}{\left(R_{r}+R_{l}\right)^{2}} R_{l}
\end{aligned}
$$

from ohm's law

$$
\begin{aligned}
& V=I\left(R_{r}+R_{l}\right) \\
& I=V+R l
\end{aligned}
$$

class ic peak is at 0 derivative problem

$$
\begin{aligned}
& P=\frac{V^{2} R_{l}}{R_{r}^{2}+R_{R} R_{l}+R_{l}^{2}}=V_{a}^{2} R_{l}\left(R_{r}^{2}+R_{R} R_{l}+R_{l}^{2}\right)^{-1} \\
& \frac{d P}{d R_{l}}=0=V^{2} R_{l}\left(R_{r}^{2}+R_{l} R_{r}+R_{l}^{1}\right. \\
&=\frac{d a}{-b}+a \cdot d b \\
& 0=\frac{v^{2}}{\left(R_{l}+R_{r}\right)^{2}}-\frac{2 V^{2} R_{l}}{\left(R_{l}+R_{r}\right)^{3}} \\
& \begin{array}{l}
R_{l}+R_{l}
\end{array} \\
&=1 \Rightarrow 2 R_{l}=R_{l}+R_{l} \\
& R_{l}=R_{r}
\end{aligned}
$$

8.4

gain e area?

1 Id height
GAIN
we alc given:

$$
\langle | P\left\rangle=\frac{I_{0}^{2} k^{2} d^{2}}{3^{2} \pi^{2} r^{2}} \sqrt{\frac{N_{0}}{\varepsilon_{0}}} \sin ^{2} \theta\right.
$$

(mag. of poynting)

$$
w=\frac{I_{0}^{2} \pi}{3} \sqrt{\frac{M_{0}}{\varepsilon_{0}}}\left(\frac{d}{\lambda}\right)^{2}
$$

(total enelgy radietid)

$$
\begin{aligned}
& \text { wherc } \\
& \text { I ? } \\
& I_{0}=\left(I_{\max }\right) \\
& k=\frac{2 \pi}{\lambda} \\
& \begin{array}{l}
=\frac{\omega}{C} \frac{\text { Erequencs }}{\text { spees }} \\
\text { of iggut }
\end{array}
\end{aligned}
$$

Thecefore gain is: $P_{\text {mad }}$ is at
gain is
daflues $G=\frac{\left\langle 1 P\left(1=1, \theta_{\text {max }}, \phi \text { max }\right.\right.}{} \begin{aligned} & \omega / 4 \pi \\ & \text { as Poyntingmax }\end{aligned}+r=1$ to simplify

+ no pui dependeace

$$
\begin{aligned}
& \text { powal/4T1 }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{27}{\lambda} \\
& =\frac{3 r^{2} x^{2} \cdot 4}{8 \pi^{2} r^{2}}=\frac{12}{8 r^{2}} \operatorname{cr}=1
\end{aligned}
$$

AREA
we know $P_{\text {max }}=V^{2} / 4 R_{\text {rad }}$

$$
\begin{aligned}
& t \quad P_{\text {Mat }}=A \cdot\langle | \vec{p}| \rangle \\
& =\frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{r_{0}}} E_{\max }^{2} \cdot A \\
& \text { so } A=\frac{2 V^{2}}{8 R_{\operatorname{ral}}^{E_{20 x}^{2}}} \sqrt{\frac{M_{0}}{\varepsilon_{0}}} \\
& \text { we are given } \\
& R_{(\rightarrow)}=\frac{2 \pi}{3}\left(\frac{\mu_{0}}{\varepsilon_{0}}\left(\frac{d}{\lambda}\right)^{2}\right. \\
& =\frac{3}{8 \pi} \frac{V^{2}}{E_{\operatorname{mox}}^{2}}\left(\frac{\lambda}{d}\right)^{2}
\end{aligned}
$$

for an infiniteanel length d, will be congtont (max) across it. So we know from last week $\left.V=-\int \vec{E} \cdot d\right)$

$$
\therefore \quad V=E_{\operatorname{mas}} \cdot d
$$

$$
\begin{aligned}
\therefore \frac{3}{8 \pi} \lambda^{2} \text { RATO } \frac{A}{G} & =\frac{3}{8 \pi} \lambda^{2}\left(\frac{3}{2}\right)^{-1} \\
& =\lambda^{2}
\end{aligned}
$$

