
4 Information in Physical Systems

What is information? A good answer is that information is what you don’t already know.
You do not learn much from being told that the sun will rise tomorrow morning; you
learn a great deal if you are told that it will not. Information theory quantifies this intuitive
notion of surprise. Its primary success is an explanation of how noise and energy limit
the amount of information that can be represented in a physical system, which in turn
provides insight into how to efficiently manipulate information in the system.
In the last chapter we met some of the many ways that devices can introduce noise into

a signal, effectively adding unwanted information to it. This process can be abstracted
into the concept of a communications channel that accepts an input and then generates
an output. A telephone connection is a channel, as is the writing and subsequent reading
of bits on a disk drive. In all cases there is assumed to be a set of known input symbols
(such as 0 and 1), possibly a device that maps them into other symbols in order to satisfy
constraints of the channel, the channel itself which has some probability for modifying
the message due to noise or other errors, and possibly a decoder that turns the received
symbols into an output set. We will assume that the types of messages and types of
channel errors are sufficiently stationary to be able to define probability distributions
p(x) to see an input message x, and p(y|x) for the channel to deliver a y if it is given
an input x. This also assumes that the channel has no memory so that the probability
distribution depends only on the current message. These are important assumptions: the
results of this chapter will not apply to non-stationary systems.

4.1 INFORMATION

Let x be a random variable that takes on X possible values indexed by i = 1, . . . , X ,
and let the probability of seeing the ith value be pi. For example, x could be the letters
of the alphabet, and pi could be the probability to see letter i. How much information
is there on average in a value of x drawn from this distribution? If there is only one
possible value for x then we learn very little from successive observations because we
already know everything; if all values are equally likely we learn as much as possible from
each observation because we start out knowing nothing. An information functional H(p)
(a functional is a function of a function) that captures this intuitive notion should have
the following reasonable properties:
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• H(p) is continuous in p. Small changes in the distribution should lead to small
changes in the information.

• H(p) ≥ 0, and H(p) = 0 if and only if just one pi is non-zero. You always learn
something unless you already know everything.

• H(p) ≤ C(X), where C(X) is a constant that depends on the number of possible
values X , with H(p) = C(X) when all values are equally likely, and X ′ > X ⇒
C(X ′) > C(X). The more options there are, the less you know about what will
happen next.

• If x is drawn from a distribution p and y is independently drawn from a distribution
q, then H(p, q) = H(p) +H(q), where H(p, q) is the information associated with
seeing a pair (x, y). The information in independent events is the sum of the
information in the events individually.

While it might appear that this list is not sufficient to define H(p), it can be shown [Ash,
1990] that these desired properties are uniquely satisfied by the function

H(p) = −
X∑
i=1

pi log pi . (4.1)

This is the definition of the entropy of a probability distribution, the same definition that
was used in the last chapter in statistical mechanics. To make the dependence on x clear,
we will usually write this as H(x) instead of H(p(x)) or H(p). The choice of the base of
the logarithm is arbitrary; if the base is 2 then the entropy is measured in bits, and if it
is base e then the entropy units are called nats for the natural logarithm. Note that to
change an entropy formula from bits to nats you just change the logarithms from log2 to
loge, and so unless otherwise noted the base of the logarithms in this chapter is arbitrary.
Now consider a string of N samples (x1, . . . , xN ) drawn from p, and let Ni be the

number of times that the ith value of x was actually seen. Because of the independence of
the observations, the probability to see a particular string is the product of the individual
probabilities

p(x1, . . . , xN ) =
N∏
n=1

p(xn) . (4.2)

This product of terms can be regrouped in terms of the possible values of x,

p(x1, . . . , xN ) =
X∏
i=1

pNi
i . (4.3)

Taking the log and multiplying both sides by −1/N then lets this be rewritten as

− 1
N
log p(x1, . . . , xN ) = − 1

N
log

X∏
i=1

pNi
i

= −
X∑
i=1

Ni

N
log pi

≈ −
X∑
i=1

pi log pi
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= H(x) . (4.4)

The third line follows from the Law of Large Numbers (Section 5.2.4): as N →
∞, Ni/N → pi. Equation (4.4) can be inverted to show that

p(x1, . . . , xN ) ≈ 2−NH(x) (4.5)

(taking the entropy to be defined base 2). Something remarkable has happened: the
probability of seeing a particular long string is independent of the elements of that string.
This is called the Asymptotic Equipartition Property (AEP). Since the probability of
occurrence for a string is a constant, its inverse 1/p = 2NH(x) gives the effective number
of strings of that length. However, the actual number of strings is larger, equal to

XN = 2N log2X . (4.6)

The difference between these two values is what makes data compression possible. It has
two very important implications [Blahut, 1988]:

• Since samples drawn from the distribution can on average be described by H(x)
bits rather than log2X bits, a coder can exploit the difference to store or transmit
the string with NH(x) bits. This is Shannon’s First Coding Theorem, also called
the Source Coding Theorem or the Noiseless Coding Theorem.

• The compressibility of a typical string is made possible by the vanishing probability
to see rare strings, the ones that violate the Law of Large Numbers. In the unlikely
event that such a string appears the coding will fail and a longer representation
must be used. Because the Law of Large Numbers provides an increasingly tight
bound on this occurrence as the number of samples increases, the failure probability
can be made arbitrarily small by using a long enough string. This is the Shannon–
McMillan Theorem.

Because the entropy is a maximum for a flat distribution, an efficient coder will rep-
resent information with this distribution. This is why phone modems would “hiss”: they
make best use of the telephone channel if the information being sent appears to be as
random as possible. The value of randomness in improving a system’s performance will
recur throughout this book, particularly in Chapter 6.
We see that the entropy (base 2) gives the average number of bits that are required to

describe a sample drawn from the distribution. Since the entropy is equal to

−
X∑
i=1

pi log pi = ⟨− log pi⟩ (4.7)

it is natural to interpret − log pi as the information in seeing event pi, and the entropy
as the expected value of that information.
Entropy can be applied to systems with more degrees of freedom. The joint entropy

for two variables with a joint distribution p(x, y) is

H(x, y) = −
∑
x

∑
y

p(x, y) log p(x, y) . (4.8)
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This can be rewritten as

H(x, y) = −
∑
x

∑
y

p(x, y) log p(x, y)

= −
∑
x

∑
y

p(x, y) log[p(x|y)p(y)]

= −
∑
x

∑
y

p(x, y) log p(x|y)−
∑
x

∑
y

p(x, y) log p(y)

= −
∑
x

∑
y

p(x, y) log p(x|y)−
∑
y

p(y) log p(y)

= H(x|y) +H(y) (4.9)

by using Bayes’ rule p(x, y) = p(x|y)p(y). The entropy in a conditional distribution
H(x|y) is the expected value of the information ⟨− log p(x|y)⟩. The entropy of both
variables equals the entropy of one of them plus the entropy of the other one given the
observation of the first.
The mutual information between two variables is defined to be the information in

them taken separately minus the information in them taken together

I(x, y) = H(x) +H(y)−H(x, y)

= H(y)−H(y|x)
= H(x)−H(x|y)

=
∑
x

∑
y

p(x, y) log
p(x, y)
p(x)p(y)

(4.10)

(these different forms are shown to be equal in Problem 4.2). This measures how many
bits on average one sample tells you about the other. It vanishes if the variables are
independent, and it is equal to the information in one of them if they are completely
dependent. The mutual information can be viewed as an information-theoretic analog of
the cross-correlation function ⟨x(t)y(t)⟩, but the latter is useful only for measuring the
overlap among signals from linear systems [Gershenfeld, 1993].
In a sequence of N values (x1, x2, . . . , xN ) the joint (or block entropy)

HN (x) = −
∑
x1

∑
x2

· · ·
∑
xN

p(x1, x2, . . . , xN ) log p(x1, x2, . . . , xN ) (4.11)

is the average number of bits needed to describe the string. The limiting rate at which
this grows

h(x) = lim
N→∞

1
N
HN (x) = lim

N→∞
HN+1 −HN (4.12)

is called the source entropy. It is the rate at which the system generates new information.
So far we’ve been discussing random variables that can take on a discrete set of values;

defining entropy for continuous variables requires some care. If x is a real number, then
p(x) dx is the probability to see a value between x and x + dx. The information in
such an observation is given by its logarithm, − log[p(x) dx] = − log p(x) − log dx. As
dx → 0 this will diverge! The divergence is in fact the correct answer, because a single
real number can contain an infinite amount of information if it can be specified to any
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resolution. The differential entropy is the part of the entropy that does not diverge:

H(x) = −
∫ ∞

−∞
p(x) log p(x) dx . (4.13)

Unlike the discrete entropy this can be positive or negative. The particular value of the
differential entropy is not meaningful, because we have ignored the diverging part due
to the infinitesimal limit, but differences between differential entropies are meaningful,
because the diverging parts would cancel.
To understand mutual information for the continuous case we first need Jensen’s

Theorem [Cover & Thomas, 2012]: for a convex function f (x) (one that has a non-
negative second derivative, such as − log)

⟨f (x)⟩ ≥ f (⟨x⟩) . (4.14)

This implies that for two normalized distributions p and q

D(p, q) ≡
∫ ∞

−∞
p log

p

q
(4.15)

= −
∫ ∞

−∞
p log

q

p
(4.16)

≥ − log
∫ ∞

−∞
p
q

p

= − log
∫ ∞

−∞
q

= − log 1
= 0 .

D(p, q) is non-negative, vanishing if p = q. It is called the Kullback–Leibler distance
between two probability functions, and D[p(x, y), p(x)p(y)] is the continuous analog of
the mutual information. The Kullback–Leibler distance arises naturally as a measure of
the distance between two distributions, but it is not a true distance function: it is not
symmetric in f and g (it can change value if they are interchanged), and it does not
satisfy the triangle inequality (D(p, q) +D(q, r) is not necessarily greater than or equal
to D(p, r)).

4.2 CHANNEL CAPACITY

Claude Shannon is best known for finding a surprisingly simple solution to what had
been thought to be a hard problem. The use of telephones grew faster than the available
capacity of the phone system and so it became increasingly important to make good use
of that capacity, raising an essential question: how many phone calls can be sent through
a phone line? This is not easy to answer because a phone line is an analog channel with
limited SNR and bandwidth. Clever modulation schemes can let more messages share
the same cable; is there any limit to how much of an improvement is possible? Shannon’s
answer was a simple quantitative yes.
Consider a long string of N symbols (x1, x2, . . . , xN ) drawn independently from p(x)
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that are input to a channel specified by p(y|x). On average each sample contains H(x)
bits of information, so this input string of N symbols can represent roughly 2NH(x)

different states. After being sent through the channel an output string (y1, y2, . . . , yN )
can represent 2NH(y) states. However, it is possible that because of noise in the channel
different input states can produce the same output state and hence garble the message;
2NH(y|x) is the average number of different output states that are produced by an input
state, the extra information in y given knowledge of x. In order to make sure that each
input state typically leads to only one output state it is necessary to reduce the number of
allowable output states by the excess information generated by the channel (Figure 4.1)

2NH(y)

2NH(y|x)
= 2N [H(y)−H(y|x)] = 2NI(x,y) . (4.17)

input states

output states

p x( )

p y x( | )

p y( )

2
NH x( )

2
NH y|x( )2

NH y( )

} } }
Figure 4.1. Effective number of states input to, added by, and output from a channel.

We see that the probability distribution that maximizes the mutual information between
the input and the output leads to the maximum number of distinct messages that can
reliably be sent through the channel. The channel capacity is this maximum bit rate:

C = max
p(x)

I(x, y) . (4.18)

Applying the Shannon–McMillan Theorem to the input and output of the channel taken
together shows that, if the data rate is below the channel capacity and the block length
is long enough, then messages can be decoded with an arbitrarily small error. On the
other hand, it is impossible to send data error-free through the channel at a rate greater
than the capacity. This is Shannon’s Second Coding Theorem (also called the Channel
Coding Theorem or the Noisy Coding Theorem). If you’re sending information at a
rate below the channel capacity you are wasting part of the channel and should seek a
better code (Chapter 6 will look at how to do this); if you’re sending information near
the capacity you are doing as well as possible and there is no point in trying to improve
the code; and there is no hope of reliably sending messages much above the capacity.
A few points about channel coding:

• As the transmission rate increases it might be expected that the best-case error
rate will also increase; it is surprising that the error rate can remain zero until the
capacity is reached (Figure 4.2; Problem 4.3).
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• This proves the existence of zero-error codes but it doesn’t help find them, and
once they are found they may not be useful. In particular, the coding/decoding
effort or latency may become enormous as the rate approaches the capacity. For
example, the length of the required code word may become prohibitively long.

• This is not a fundamental limit like the speed of light. The channel capacity holds
for long strings of symbols independently drawn from a stationary probability
distribution; it does not apply to short strings, non-stationary systems, or correlated
variables. These approximations may not be justified, but can nevertheless be useful
to make a rough estimate of the properties of a system. High-speed modems, for
example, can exceed the theoretical capacity of a phone line (Problem 4.5) by
adaptively modeling and coding for the channel errors.

• In many domains, such as broadcasting video, error-free transmission is irrelevant.
All that matters is that the errors are not apparent; this is the subject of lossy
compression. By taking advantage of what is known about human perception much
higher bit rates are possible. Although you wouldn’t want a money machine to do
lossy compression on your bank balance when it communicates with the bank, your
ear doesn’t respond to a soft sound with a frequency immediately adjacent to that
of a louder sound, and your eye cannot recognize the details of families of image
textures beyond their statistical properties. These kinds of insights are used in the
standards developed by theMoving Pictures Experts Group (MPEG) for variable
lossy compression of video and audio. The MPEG-4 standard goes further to
abandon a description based on arbitrary bit patterns and instead decomposes sights
and sounds into high-level descriptions of their constituent elements [Koenen,
1999].

asymptotic
error rate

bit rate

capacity

Figure 4.2. Onset of errors at the channel capacity in transmitting a long string.

4.3 THE GAUSSIAN CHANNEL

In the last chapter we saw that the Central Limit Theorem explains why Gaussian noise
is so common. It is therefore natural to consider a channel that adds Gaussian noise:
yi = xi + ηi, where ηi is drawn from a Gaussian distribution. This might represent the
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Johnson noise in the input stage of a telephone amplifier, along with the accumulated effect
of many small types of interference. Gaussian distributions are particularly important in
information theory because, for a given mean and variance, they maximize the differential
entropy. This makes it easy to calculate the maximum in equation (4.18). To see this, let
N (x) be a Gaussian distribution

N (x) = 1√
2πσ2N

e−(x−µN )
2/2σ2N , (4.19)

and let p(x) be an arbitrary distribution with mean µp and variance σ2p. Then

−
∫ ∞

−∞
p(x) lnN (x) dx

= −
∫ ∞

−∞
p(x)

[
− ln

√
2πσ2N − (x− µN )2

2σ2N

]
dx

= ln
√
2πσ2N +

σ2p + µ
2
p − 2µpµN + µ2N
2σ2N

. (4.20)

This depends only on the mean and variance of p(x) and so if q(x) has the same mean
and variance then

−
∫ ∞

−∞
p(x) lnN (x) dx = −

∫ ∞

−∞
q(x) lnN (x) dx . (4.21)

Now consider the difference in the entropy between a Gaussian distribution N and
another one p with the same mean and variance:

H(N )−H(p) = −
∫ ∞

−∞
N (x) lnN (x) dx +

∫ ∞

−∞
p(x) ln p(x) dx

= −
∫ ∞

−∞
p(x) lnN (x) dx +

∫ ∞

−∞
p(x) ln p(x) dx

=
∫ ∞

−∞
p(x) ln

p(x)
N (x)

dx

= D(p,N ) ≥ 0 . (4.22)

The differential entropy in any other distribution will be less than that of a Gaussian with
the same mean and variance. This differs from the discrete case, where the maximum
entropy distribution was a constant, or an exponential if the energy is fixed.
Now return to our Gaussian channel y = x + η. Typically the input signal will be

constrained to have some maximum power S = ⟨x2⟩. The capacity must be found by
maximizing with respect to this constraint:

C = max
p(x):⟨x2⟩≤S

I(x, y) . (4.23)

The mutual information is

I(x, y) = H(y)−H(y|x)
= H(y)−H(x + η|x)
= H(y)−H(η|x)
= H(y)−H(η) , (4.24)
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where the last line follows because the noise is independent of the signal. The differential
entropy of a Gaussian process is straightforward to calculate (Problem 4.4):

H(N ) = 1
2
log(2πeN ) (4.25)

(where N = σ2N is the noise power). The mean square channel output is

⟨y2⟩ = ⟨(x + η)2⟩
= ⟨x2⟩ + 2⟨x⟩ ⟨η⟩︸︷︷︸

0

+⟨η2⟩

= S +N . (4.26)

Since the differential entropy of x must be bounded by that of a Gaussian process with
the same variance, the mutual information will be a maximum for

I(x, y) = H(y)−H(η)

≤ 1
2
log[2πe(S +N )]− 1

2
log(2πeN )

=
1
2
log
(
1 +

S

N

)
. (4.27)

The capacity of a Gaussian channel grows as the logarithm of the ratio of the signal power
to the channel noise power.
Real channels necessarily have finite bandwidth. If a signal is sampled with a period

of 1/2∆f then by the Nyquist Theorem the bandwidth will be ∆f . If the (one-sided,
white) noise power spectral density is N0, the total energy in a time T is N0∆fT , and
the noise energy per sample is (N0∆fT )/(2∆fT ) = N0/2. Similarly, if the signal power
is S, the signal energy per sample is S/2∆f . This means that the capacity per sample is

C =
1
2
log
(
1 +

S

N

)
=
1
2
log
(
1 +

S

2∆f
2
N0

)
=
1
2
log2

(
1 +

S

N0∆f

)
bits
sample

. (4.28)

If the signal power equals the noise power, then each samples carries 1/2 bit of informa-
tion.
Since there are 2∆f samples per second the information rate is

C = ∆f log
(
1 +

S

N

)
= ∆f log2

(
1 +

S

N0∆f

)
bits
second

. (4.29)

This is the most important result in this chapter: the capacity of a band-limited Gaussian
channel. It increases as the bandwidth and input power increase, and decreases as the
noise power increases.
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4.4 FISHER INFORMATION

There is a natural connection between the information in a measurement and the accuracy
with which the measurement can be made, and so not surprisingly entropy shows up
here also. Let pα(x) be a probability distribution that depends on a parameter α, and let
f (x1, x2, ..., xN ) be an estimator for the value of α given N measurements of x drawn
from pα(x). The function f is a biased estimator if ⟨f (x1, x2, . . . , xN )⟩ ̸= α, and it is
consistent if in the limit N → ∞ the probability to see |f (x1, x2, . . . , xN ) − α| > ϵ
goes to 0 for any ϵ. An estimator f1 dominates f2 if ⟨(f1(x1, x2, . . . , xN ) − α)2⟩ ≤
⟨(f2(x1, x2, . . . , xN ) − α)2⟩. This raises the question of what is the minimum variance
possible for an unbiased estimator of α? The answer is given by the Cramér–Rao bound.
Start by defining the score:

V =
∂

∂α
log pα(x) =

1
pα(x)

∂pα(x)
∂α

. (4.30)

The mean value of the score is

⟨V ⟩ =
∫ ∞

−∞
pα(x)

1
pα(x)

∂pα(x)
∂α

dx

=
∫ ∞

−∞

∂pα(x)
∂α

dx

=
∂

∂α

∫ ∞

−∞
pα(x) dx

=
∂

∂α
1

= 0 . (4.31)

Therefore the variance of the score is just the mean of its square, σ2(V ) = ⟨V 2⟩. The
variance of the score is called the Fisher information:

J (α) = ⟨V 2⟩

=

〈[
∂ log pα(x)

∂α

]2〉

=

〈[
1

pα(x)
∂pα(x)
∂α

]2〉

=
∫ ∞

−∞

1
pα(x)

[
∂pα(x)
∂α

]2
dx . (4.32)

The score for a set of independent, identically distributed variables is the sum of the
individual scores:

V (x1, x2, . . . , xN ) =
∂

∂α
log pα(x1, x2, . . . , xN )

=
∂

∂α
log

N∏
i=1

pα(xi)

=
N∑
i=1

∂ log pα(xi)
∂α
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=
N∑
i=1

V (xi) (4.33)

and so the Fisher information for N measurements is

JN (α) =

〈(
∂

∂α
log pα(x1, x2, . . . , xN )

)2〉
= ⟨V 2(x1, x2, . . . , xN )⟩

=

〈(
N∑
i=1

V (xi)

)2〉

=
N∑
i=1

⟨V 2(xi)⟩

= NJ (α) . (4.34)

The sum can be taken out of the expectation because the variables are uncorrelated.
TheCramér–Rao inequality states that the mean square error of an unbiased estimator

f of α is lower bounded by the reciprocal of the Fisher information:

σ2(f ) ≥ 1
J (α)

. (4.35)

To prove this, start with the Cauchy–Schwarz inequality

⟨(V − ⟨V ⟩)(f − ⟨f⟩)⟩2 ≤ ⟨(V − ⟨V ⟩)2⟩⟨(f − ⟨f⟩)2⟩
⟨V f − ⟨V ⟩f − ⟨f⟩V + ⟨V ⟩⟨f⟩⟩2 ≤ ⟨V 2⟩⟨(f − ⟨f⟩)2⟩

⟨V f⟩2 ≤ J (α)σ2(f ) . (4.36)

The expectation of the left hand side equals one:

⟨V f⟩ =
∫ ∞

−∞
pα(x)

1
pα(x)

∂pα(x)
∂α

f (x) dx

=
∫ ∞

−∞

∂pα(x)
∂α

f (x) dx

=
∂

∂α

∫ ∞

−∞
pα(x)f (x) dx

=
∂

∂α
⟨f (x)⟩

=
∂α

∂α
= 1 , (4.37)

thus proving the Cramér–Rao inequality. Just like the channel capacity, the Cramér–Rao
bound sets a lower limit on what is possible but does not provide any guidance in actually
finding the minimum variance estimator. In fact, in practice a biased estimator might be
preferable because it could be easier to calculate, or might converge more quickly.
The Cramér–Rao inequality measures how tightly a distribution constrains a param-

eter. To relate it to the differential entropy H(x) of a distribution p(x), consider what
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happens when a random Gaussian variable η is added to x. The new probability distri-
bution is found by convolution:

p(x + η︸ ︷︷ ︸
≡ y

) =
∫ ∞

−∞
p(x)

1√
2πσ2

e−(y−x)
2/2σ2 dx . (4.38)

Differentiating,

∂p

∂σ2
=
∫ ∞

−∞
p(x)

1√
2πσ2

[
(y − x)2 − σ2

2σ4

]
e−(y−x)

2/2σ2 dx

∂2p

∂y2
=
∫ ∞

−∞
p(x)

1√
2πσ2

[
(y − x)2 − σ2

σ4

]
e−(y−x)

2/2σ2 dx

⇒ ∂p

∂σ2
=
1
2
∂2p

∂y2
. (4.39)

This has the form of a diffusion equation: the added noise smooths out the distribution.
Now taking the gradient of the differential entropy with respect to the noise variance, we
see that

∂H

∂σ2
= − ∂

∂σ2

∫ ∞

−∞
p(y) log p(y) dy

= − ∂

∂σ2

∫ ∞

−∞
p(y) dy︸ ︷︷ ︸
0

−
∫ ∞

−∞

∂p

∂σ2
log p(y) dy

= −1
2

∫ ∞

−∞

∂2p

∂y2
log p(y) dy

(∫ ∞

−∞
u dv = uv|∞−∞ −

∫ ∞

−∞
v du

)
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The first term on the left vanishes because although the logarithm diverges as p → 0
when y → ∞, the slope ∂p/∂y must be vanishing faster than logarithmically for the
probability distribution to be normalized. Taking the limit σ → 0,

∂H

∂σ2

∣∣∣∣
σ2=0

=
1
2
J (x) . (4.41)

The growth rate of the differential entropy with respect to the variance of an added
Gaussian variable is equal to the Fisher information of the distribution. This is de Bruijn’s
identity. It can be interpreted as saying that the entropy measures the information in the
volume of a distribution, and the Fisher information measures the information associated
with its surface (as probed by smoothing it with the noise).
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4.5 INFORMATION AND THERMODYNAMICS

We introduced entropy through statistical mechanics in Section 5.4, and in this chapter
developed it as a powerful tool for analyzing probability distributions. The connection
between thermodynamics and information theory is much deeper, providing a great ex-
ample of how hard it can be to draw a clear boundary between basic and applied research
in the evolution of significant ideas.
The important concept of the maximum efficiency of a heat engine was introduced

by Sadi Carnot in 1824, motivated by the practical problem of understanding the limits
on the performance of steam engines. This led to the macroscopic definition of entropy
δQ = TdS by Lord Kelvin (then William Thomson) and Rudolf Clausius around 1850–
1860. Clausius named entropy for the Greek word for continuous transformation.
Statistical mechanics then grew out of the search for a microscopic explanation for

macroscopic thermodynamics. This started with Maxwell’s kinetic model of a gas, and
the crucial connection S = k log Ω was made by Boltzmann in 1877. Boltzmann, through
his H-Theorem, provided a microscopic explanation for the macroscopic observation
that a system moves to the available state with the maximum entropy. One of the (many)
paradoxes in statistical mechanics was introduced by Maxwell in 1867: a microscopic
creature (later called a Maxwell Demon) could open and close a door between two
containers, separating fast from slow gas molecules without doing any work on them.
This appears to violate the Second Law of Thermodynamics, because the hot and cold
gases could be used to run a heat engine, making a perpetual motion machine. Leo Szilard
studied this problem in 1929, reducing it to a single molecule that can be on either side of
a partition, arguably the first introduction of the notion of a bit of information [Szilard,
1929]. While Szilard did not explain the paradox of the Demon, Shannon was inspired by
this analysis to use entropy as a measure of information to build information theory, which
later helped create the very important and practical modern theory of coding [Slepian,
1974].
The real resolution of Maxwell’s Demon did not come until 1961, when Rolf Landauer

showed that the irreversibility in the Demon arises when it forgets what it has done; any
computer that erases information necessarily dissipates energy [Landauer, 1961]. A stored
bit can be in one of two states; if you initially have no idea what was stored then the
minimum entropy associated with this bit is

S = k log Ω = k log 2 . (4.42)

A real bit may represent much more entropy than this because many electrons (for
example) are used to store it, but this is the minimum possible. Erasing the bit reduces
the number of possible microscopic states down to one. It compresses the phase space of
the computer, and so the dissipation associated with this erasure is

δQ = T dS = kT log 2− kT log 1 = kT log 2 . (4.43)

No matter how a computer is built, erasing a bit costs a minimum energy on the order
of kT log 2.
This result contains a strong assumption that the bit is near enough to thermal equi-

librium for statistical mechanics to apply and for temperature to be a meaningful concept.
Also, kT at room temperature is on the order of 0.02 eV, far below the energy of bits
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stored in common computers. Nevertheless, Landauer’s result is very important: what-
ever sets the energy scale of a stored bit (this might be the size of thermal fluctuations,
or quantization in a small system), there is an energy penalty for erasing information.
This has significant immediate implications for the design of low-power computers and
algorithms [Gershenfeld, 1996].
Charles Bennett later showed in 1973 that it is possible to compute with reversible

computers that never erase information and so can use arbitrarily little energy, depending
on how long you are willing to wait for a sufficiently correct answer [Bennett, 1973]. We
will return to this possibility in Section 12.6 when we look at the limits on computer
performance.
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4.7 PROBLEMS

(4.1) Verify that the entropy function satisfies the required properties of continuity,
non-negativity, boundedness, and independence.

(4.2) Prove the relationships in Equation (4.10).
(4.3) Consider a binary channel that has a small probability ϵ of making a bit error.

(a) What is the probability of an error if a bit is sent independently three times and
the value determined by majority voting?

(b) How about if that is done three times, and majority voting is done on the
majority voting?
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(c) If majority voting on majoriy voting on . . . on majority voting is done N times,
how many bits are needed, and what is the probability of an error? How does
this probability depend on ϵ?

(4.4) Calculate the differential entropy of a Gaussian process.
(4.5) A standard telephone line is specified to have a bandwidth of 3300 Hz and an SNR

of 20 dB.

(a) What is the capacity?
(b) What SNR would be necessary for the capacity to be 1 Gbit/s?

(4.6) Let (x1, x2, . . . , xn) be drawn from a Gaussian distribution with variance σ2 and
unknown mean value x0. Show that f (x1, . . . xn) = n−1∑n

i=1 xi is an estimator for
x0 that is unbiased and achieves the Cramér–Rao lower bound.


