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Diffraction Limit Calculations for 1.5 MHz Linear Array Transducer
Given Parameters:

c= 1540 Speed of sound in tissue [m/s]
f=1.5e6 Transducer center frequency [Hz]
A=c/f Wavelength [m]

n_cycles = 2 Tone burst cycles (assumed)

Axial Resolution:
SPL = n_cycles * A Spatial pulse length [m]
axial_res = SPL / 2 Axial resolution = A [m]

Filtered Conventional PALM Resulf: ~1.03 mm
-
Transducer Parameters:
\ element_width_mm = 0.078 Element width
. Y/ \ aperture_mm = element_width_mm * 32 32 elements
_ - aperture = aperture_mm / 1000 [m]
Focus Distances
F = 5e-3 Lateral focus distance [m]
F_elev = 4.75e-3 Elevation focus distance [m]
i, Lateral Resolution (Rayleigh criterion)
\ \ lat_res = A * F / aperture Lateral resolution [m]
Result: ~2.06 mm
. . /
~— \ - Elevation Resolution

elev_res = A ¥ F_elev / aperture Elevation resolution [m]
Result: ~1.96 mm

Betzig et al., Science, 2006

Rayleigh criterion, minimum distance between two distinguishable objects



SIMULATOR FLOWCHART
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k-Wave uses a k-space
pseudospectral method
for solving the governing
equations, which involves
calculating spatial
gradients using a Fourier
collocation scheme and
temporal gradients using
a k-space corrected
finite-difference scheme.

This simulation uses a
fine grid size, and the
volume has been sliced
up and simulated piece
by piece.
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Normalized Amplitude

Fundamental PSF (1D)
Lateral FWHM = 1.77 mm
Axial FWHM = 1.08 mm
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Harmonic PSF (1D)
Lateral FWHM = 1.25 mm
Axial FWHM = 0.92 mm
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Axial Distance [mm]

Processing Steps Visualization

1. Beamformed Signal +—————~_~" ~_ -~ ———

2. Time Gain Compensation

3. Frequency Filtering

4. Envelope Detection +—

5. Log Compression +———
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Density Map (Central Slice)
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Cramer Rao Lower Bound — theoretical resolution limit for imaging microbubbles in localization
1000 microscopy. Dictated by SNR, PSF width and Frame Rate
50
-800 Interesting link between information theory and estimation theory
100 o
:\g\-
o0 2 Using high frame rates, low SNR systems researchers have been able to break past the
> 1501 = R . . . . - . . .
3 Rayleigh's criterion using bubble tracking and statistical estimations. Allows for more practical
dJ e, 0
a bubble densities as a contrast agent.
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WHY IS A BUBBLE CAUSING THIS BEHAVIOR ?
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Fundamental PSF (2D)
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(11.3) Consider a wave at normal incidence to a dielectric laver with index n; between
layers with indices 1) and n: (Figure 10.6).
(@) What 1s the reflectivity? Think about matching the boundary conditions, or
about the multiple reflections.
(h) Can you find values for n; and d such that the reflection vanishes:

Harmonic PSF (2D)
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Figure 10.6. Reflection from dielectric interfaces.
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VALIDATION

Pressure Signals at Both Sensor Positions
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Simulating 1D wave propagation using k-wave and a finite difference method to
simulate the wave equation and validate the kwave simulation




VALIDATION

Simulating 2D space with a
1d array and peak pressure
was tried to be validated
using hand calculation.
Doesn’t add up perfectly
because of the PML
infroduced in the simulation
and due to not being able to
exactly calculate the effect
of non linearities.
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IDEALLY, MEASURE PRESSURE USING A HYDROPOHNE IN THE
WATER TANK TO VALIDATE THE SIMULATION.
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