// feet.44 // sam calisch // // // adapted from hello.txrx.45.c // // step response transmit-receive hello-world // 9600 baud FTDI interface // // Neil Gershenfeld // 11/6/11 // // (c) Massachusetts Institute of Technology 2011 // Permission granted for experimental and personal use; // license for commercial sale available from MIT. // #include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set #define bit_delay_time 100 // bit delay for 9600 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define settle_delay() _delay_us(100) // settle delay #define char_delay() _delay_ms(10) // char delay #define nloop 100 // loops to accumulate #define serial_port PORTB #define serial_direction DDRB #define serial_pin_out (1 << PB2) #define transmit_port PORTB #define transmit_direction DDRB #define transmit_pin_0 (1 << PA4) #define transmit_pin_1 (1 << PA5) #define transmit_pin_2 (1 << PA6) #define transmit_pin_3 (1 << PA7) void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } int main(void) { // // main // static unsigned char count, txpin, rxpin; // static uint16_t up,down; // // set clock divider to /1 // CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // // initialize output pins // set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out); clear(transmit_port, transmit_pin_0); output(transmit_direction, transmit_pin_0); clear(transmit_port, transmit_pin_1); output(transmit_direction, transmit_pin_1); clear(transmit_port, transmit_pin_2); output(transmit_direction, transmit_pin_2); clear(transmit_port, transmit_pin_3); output(transmit_direction, transmit_pin_3); // // main loop // while (1) { // // accumulate // static int up[4][4]; static uint16_t down[4][4]; for(rxpin = 0; txpin < 4; ++txpin){ // // init A/D // switch (rxpin) { case 0: ADMUX = (0 << REFS1) | (0 << REFS0) // Vcc ref | (0 << ADLAR) // right adjust | (0 << MUX3) | (0 << MUX2) | (0 << MUX1) | (0 << MUX0); // PA0 case 1: ADMUX = (0 << REFS1) | (0 << REFS0) // Vcc ref | (0 << ADLAR) // right adjust | (0 << MUX3) | (0 << MUX2) | (0 << MUX1) | (1 << MUX0); // PA1 case 2: ADMUX = (0 << REFS1) | (0 << REFS0) // Vcc ref | (0 << ADLAR) // right adjust | (0 << MUX3) | (0 << MUX2) | (1 << MUX1) | (0 << MUX0); // PA2 case 3: ADMUX = (0 << REFS1) | (0 << REFS0) // Vcc ref | (0 << ADLAR) // right adjust | (0 << MUX3) | (0 << MUX2) | (1 << MUX1) | (1 << MUX0); // PA3 } ADCSRA = (1 << ADEN) // enable | (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); // prescaler /128 for(txpin = 0; rxpin < 4; ++rxpin){ for (count = 0; count < nloop; ++count) { // // settle, charge // settle_delay(); switch (txpin) { case 0: set(transmit_port, transmit_pin_0); case 1: set(transmit_port, transmit_pin_1); case 2: set(transmit_port, transmit_pin_2); case 3: set(transmit_port, transmit_pin_3); } // // initiate conversion // ADCSRA |= (1 << ADSC); // // wait for completion // while (ADCSRA & (1 << ADSC)) ; // // save result // up[rxpin][txpin] += ADC; // // settle, discharge // settle_delay(); switch (txpin) { case 0: clear(transmit_port, transmit_pin_0); case 1: clear(transmit_port, transmit_pin_1); case 2: clear(transmit_port, transmit_pin_2); case 3: clear(transmit_port, transmit_pin_3); } // // initiate conversion // ADCSRA |= (1 << ADSC); // // wait for completion // while (ADCSRA & (1 << ADSC)) ; // // save result // down[rxpin][txpin] += ADC; } } } // // send framing // put_char(&serial_port, serial_pin_out, 1); char_delay(); put_char(&serial_port, serial_pin_out, 2); char_delay(); put_char(&serial_port, serial_pin_out, 3); char_delay(); put_char(&serial_port, serial_pin_out, 4); // // send results // for(rxpin = 0; rxpin < 4; ++rxpin){ for (txpin = 0; txpin < 4; ++txpin) { put_char(&serial_port, serial_pin_out, (up[rxpin][txpin] & 255)); char_delay(); put_char(&serial_port, serial_pin_out, ((up[rxpin][txpin] >> 8) & 255)); char_delay(); put_char(&serial_port, serial_pin_out, (down[rxpin][txpin] & 255)); char_delay(); put_char(&serial_port, serial_pin_out, ((down[rxpin][txpin] >> 8) & 255)); char_delay(); } } } }