// // rgb-button.ftdi.44.c // // 115200 baud FTDI character echo, with flash string // // set lfuse to 0x7E for 20 MHz xtal // // Daniel Windham // 11/04/15 // // adapted from // Neil Gershenfeld // 12/8/10 // // (c) Massachusetts Institute of Technology 2010 // This work may be reproduced, modified, distributed, // performed, and displayed for any purpose. Copyright is // retained and must be preserved. The work is provided // as is; no warranty is provided, and users accept all // liability. // #include #include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define input(directions,pin) (directions &= ~pin) // set port direction for input #define pullup(port,pin) (port |= pin) // set internal pullup on input pin #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define led_r_direction DDRB #define led_r_port PORTB #define led_r_pin (1 << PB2) #define led_g_direction DDRA #define led_g_port PORTA #define led_g_pin (1 << PA6) #define led_b_direction DDRA #define led_b_port PORTA #define led_b_pin (1 << PA7) #define buttons_direction DDRA #define buttons_port PINA #define buttons_pins PINA #define button_0_pin (1 << PA5) #define button_1_pin (1 << PA4) #define button_2_pin (1 << PA3) #define button_3_pin (1 << PA2) void set_rgb_pulse_rates(int button_states[4], int rgb_pulses_per_ms[3]) { rgb_pulses_per_ms[0] = 0; rgb_pulses_per_ms[1] = 0; rgb_pulses_per_ms[2] = 0; if (button_states[0]) { rgb_pulses_per_ms[0] += 20; rgb_pulses_per_ms[1] += 0; rgb_pulses_per_ms[2] += 0; } if (button_states[1]) { rgb_pulses_per_ms[0] += 0; rgb_pulses_per_ms[1] += 50; rgb_pulses_per_ms[2] += 0; } if (button_states[2]) { rgb_pulses_per_ms[0] += 0; rgb_pulses_per_ms[1] += 0; rgb_pulses_per_ms[2] += 50; } if (button_states[3]) { if (button_states[0] || button_states[1] || button_states[2]) { rgb_pulses_per_ms[0] *= 2; rgb_pulses_per_ms[1] *= 2; rgb_pulses_per_ms[2] *= 2; } else { rgb_pulses_per_ms[0] += 10; rgb_pulses_per_ms[1] += 25; rgb_pulses_per_ms[2] += 25; } } } int main(void) { // set clock divider to /1 CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // initialize rgb output pins set(led_r_port, led_r_pin); set(led_g_port, led_g_pin); set(led_b_port, led_b_pin); output(led_r_direction, led_r_pin); output(led_g_direction, led_g_pin); output(led_b_direction, led_b_pin); input(buttons_direction, button_0_pin); input(buttons_direction, button_1_pin); input(buttons_direction, button_2_pin); input(buttons_direction, button_3_pin); pullup(buttons_port, button_0_pin); pullup(buttons_port, button_1_pin); pullup(buttons_port, button_2_pin); pullup(buttons_port, button_3_pin); unsigned int elapsed_us = 0; int button_polls_per_second = 10; int button_states[4] = {0, 0, 0, 0}; int rgb_pulses_per_ms[3] = {0, 0, 0}; while (1) { _delay_us(1); elapsed_us++; // poll button state if (elapsed_us % 1000 < button_polls_per_second) { if (!pin_test(buttons_pins, button_0_pin)) { button_states[0] = 10; } else if (button_states[0]) { button_states[0]--; } if (!pin_test(buttons_pins, button_1_pin)) { button_states[1] = 10; } else if (button_states[1]) { button_states[1]--; } if (!pin_test(buttons_pins, button_2_pin)) { button_states[2] = 10; } else if (button_states[2]) { button_states[2]--; } if (!pin_test(buttons_pins, button_3_pin)) { button_states[3] = 10; } else if (button_states[3]) { button_states[3]--; } } // calculate rgb values set_rgb_pulse_rates(button_states, rgb_pulses_per_ms); // update red led if (elapsed_us % 1000 < rgb_pulses_per_ms[0]) { clear(led_r_port, led_r_pin); } else { set(led_r_port, led_r_pin); } // update green led if (elapsed_us % 1000 < rgb_pulses_per_ms[1]) { clear(led_g_port, led_g_pin); } else { set(led_g_port, led_g_pin); } // update blue led if (elapsed_us % 1000 < rgb_pulses_per_ms[2]) { clear(led_b_port, led_b_pin); } else { set(led_b_port, led_b_pin); } } }