// happy octopus // input: transmit-receive (step response) 9600 baud rate // output: yellow LED from RGB LED // this is a node board that communicate with a bridge board through serial // Xin Wen #include #include #include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define input(directions,pin) (directions &= (~pin)) // set port direction for input #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set #define bit_delay_time 102 // bit delay for 9600 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define settle_delay() _delay_us(100) // settle delay #define char_delay() _delay_ms(10) // char delay #define nloop 100 // loops to accumulate #define PWM_delay() _delay_us(25) // PWM delay // serial #define serial_port PORTA #define serial_direction DDRA #define serial_pin_out (1 << PA2) #define serial_pin_in (1 << PA3) #define serial_pins PINA // input: txrx sensor #define transmit_port PORTA #define transmit_direction DDRA #define transmit_pin (1 << PA6) //output: RGBLEDs #define led1_port PORTA #define led1_direction DDRA #define led1_blue (1 << PA0) #define led1_green (1 << PA1) #define led1_red (1 << PA4) #define led2_port PORTB #define led2_direction DDRB #define led2_red (1 << PB0) #define led2_green (1 << PB1) #define led2_blue (1 << PB2) #define node_id '3' void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte) { // // read character into rxbyte on pins pin // assumes line driver (inverts bits) // *rxbyte = 0; while (pin_test(*pins,pin)) // // wait for start bit // ; // // delay to middle of first data bit // half_bit_delay(); bit_delay(); // // unrolled loop to read data bits // if pin_test(*pins,pin) *rxbyte |= (1 << 0); else *rxbyte |= (0 << 0); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 1); else *rxbyte |= (0 << 1); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 2); else *rxbyte |= (0 << 2); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 3); else *rxbyte |= (0 << 3); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 4); else *rxbyte |= (0 << 4); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 5); else *rxbyte |= (0 << 5); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 6); else *rxbyte |= (0 << 6); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 7); else *rxbyte |= (0 << 7); // // wait for stop bit // bit_delay(); half_bit_delay(); } void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } void put_string(volatile unsigned char *port, unsigned char pin, PGM_P str) { // // send character in txchar on port pin // assumes line driver (inverts bits) // static char chr; static int index; index = 0; do { chr = pgm_read_byte(&(str[index])); put_char(&serial_port, serial_pin_out, chr); ++index; } while (chr != 0); } // display yellow light void displayLight(void){ unsigned char count, pwm; for (count = 0; count <40; ++count){ clear(led1_port, led1_red); clear(led1_port, led1_green); for (pwm = count; pwm < 255; ++pwm) PWM_delay(); // clear(led1_port, led1_blue); // for (pwm = 0; pwm < count; ++pwm) // PWM_delay(); //set(led1_port, led1_red); set(led1_port, led1_green); set(led1_port, led1_red); for (pwm = 0; pwm < count; ++pwm) PWM_delay(); } } void turnOffLight(void){ clear(led1_port, led1_red); clear(led1_port, led1_green); clear(led1_port, led1_blue); } // void put_string(volatile unsigned char *port, unsigned char pin, PGM_P str) { // // // // send character in txchar on port pin // // assumes line driver (inverts bits) // // // static char chr; // static int index; // index = 0; // do { // chr = pgm_read_byte(&(str[index])); // put_char(&serial_port, serial_pin_out, chr); // ++index; // } while (chr != 0); // } int main(void){ // variables setup // static unsigned char count; // static uint16_t up, down; // static int16_t lastup; // static int16_t deltaup;// to track changes between loops // static int16_t diff; // static uint16_t upS; static char chr; unsigned char count, pwm; // set clock divider to /1 (how does this code work?) CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // init LED pins set(led1_port, led1_red); output(led1_direction, led1_red); set(led1_port, led1_green); output(led1_direction, led1_green); set(led1_port, led1_blue); output(led1_direction, led1_blue); set(led2_port, led2_red); output(led2_direction, led2_red); set(led2_port, led2_green); output(led2_direction, led2_green); set(led2_port, led2_blue); output(led2_direction, led2_blue); // initialize output pins // set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out); clear(transmit_port, transmit_pin); output(transmit_direction, transmit_pin); // init A/D // // ADMUX = (0 << REFS1) | (0 << REFS0) // Vcc ref // | (0 << MUX3) | (0 << MUX2) | (1 << MUX1) | (1 << MUX0) | (0 << MUX4) | (0 << MUX5); // PB3 // ADCSRA = (1 << ADEN) // enable // | (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); // prescaler /128 // main loop while(1){ // for (count = 0; count < 255; ++count) { // clear(led1_port,led1_red); // //clear(led2_port,led2_blue); // for (pwm = count; pwm < 255; ++pwm) // PWM_delay(); // set(led1_port,led1_red); // //set(led2_port,led2_blue); // for (pwm = 0; pwm < count; ++pwm) // PWM_delay(); // } get_char(&serial_pins, serial_pin_in, &chr); if (chr == node_id){ output(serial_direction, serial_pin_out); static const char message[] PROGMEM = "node "; put_string(&serial_port, serial_pin_out, (PGM_P) message); put_char(&serial_port, serial_pin_out, chr); put_char(&serial_port, serial_pin_out, 10); // new line for (count = 0; count < 255; ++count) { clear(led1_port,led1_green); clear(led2_port,led1_green); //clear(led2_port,led2_blue); for (pwm = count; pwm < 255; ++pwm) PWM_delay(); set(led1_port,led1_green); set(led2_port,led1_green); //set(led2_port,led2_blue); for (pwm = 0; pwm < count; ++pwm) PWM_delay(); } input(serial_direction, serial_pin_out); } // // accumulate // // // up = 0; // down = 0; // for (count = 0; count < nloop; ++count) { // // // // settle, charge // // // settle_delay(); // set(transmit_port, transmit_pin); // // // // initiate conversion // // // ADCSRA |= (1 << ADSC); // // // // wait for completion // // // while (ADCSRA & (1 << ADSC)) // ; // // // // save result // // // up += ADC; // // // // settle, discharge // // // settle_delay(); // clear(transmit_port, transmit_pin); // // // // initiate conversion // // // ADCSRA |= (1 << ADSC); // // // // wait for completion // // // while (ADCSRA & (1 << ADSC)) // ; // // // // save result // // // down += ADC; // } // deltaup = up-down; // diff = deltaup - lastup; // if (diff<0) {upS = -diff;} // else {upS = diff;} // lastup = deltaup; // if(diff>1000){ // output(serial_direction, serial_pin_out); // put_char(&serial_port, serial_pin_out, 35); // send a # // put_char(&serial_port, serial_pin_out, node_id); // put_char(&serial_port, serial_pin_out, 10); // new line // PWM_delay(); // displayLight(); // input(serial_direction, serial_pin_out); // } } }