// // // phil_hello.ftdi.44.echo.interrupt_T.c // // 115200 baud // // set lfuse to 0x5E for 20 MHz xtal. This divides clock by 8, giving 2.5 MHz clock frequency. // The divider is set to /1 in the main program, running the chip at 20 MHz, just at the top // of the specified range. The chip should receive 4.5-5.5 V in order to operate above 10 MHz. //F. Phil Brooks III // 10/23/19 // Harvard Chemistry and Chemical Biology // Based on code by // Neil Gershenfeld // 12/8/10 // (c) Massachusetts Institute of Technology 2010 // This work may be reproduced, modified, distributed, // performed, and displayed for any purpose. Copyright is // retained and must be preserved. The work is provided // as is; no warranty is provided, and users accept all // liability. //--------------------------------------------------------------------------------------------------- //#include #include #include #include #include #include #include #define bit_delay_time 8.5 // bit delay for 115200 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define serial_pin_in (1 << PA0) #define serial_pin_out (1 << PA1) #define serial_interrupt (1 << PCIE0) #define serial_interrupt_pin (1 << PCINT0) #define serial_interrupt_flag (1 << PCIF0) //needed to clear flag #define button_interrupt (1 << PCIE1) #define button_interrupt_pin (1 << PCINT10) #define button_interrupt_flag (1 << PCIF1) #define button_pin (1 << PB2) #define led_pin (1 << PA7) #define max_buffer 120 //can be raised as long as it fits in chip memory. This is low for demonstration of buffer filling. #define ADC_N 100 //number of readings to average. volatile char buffer[max_buffer] = {0}; volatile int buffer_index = 0; volatile uint8_t count = 0; //For repeating ADC. Max is 255. (unsigned) volatile long t_acc = 0; volatile char sleep_flag = 0; //must be volatile so it isn't optimized out of main(). void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte) { // read character into rxbyte on pins pin // assumes line driver (inverts bits) *rxbyte = 0; while (*pins & pin) { ;// wait for start bit } // delay to middle of first data bit //half_bit_delay(); //causes problems receiving o, w with fixed code. May have been legacy of bug. bit_delay(); // unrolled loop to read data bits if (*pins & pin) *rxbyte |= (1 << 0); else *rxbyte |= (0 << 0); bit_delay(); if (*pins & pin) *rxbyte |= (1 << 1); else *rxbyte |= (0 << 1); bit_delay(); if (*pins & pin) *rxbyte |= (1 << 2); else *rxbyte |= (0 << 2); bit_delay(); if (*pins & pin) *rxbyte |= (1 << 3); else *rxbyte |= (0 << 3); bit_delay(); if (*pins & pin) *rxbyte |= (1 << 4); else *rxbyte |= (0 << 4); bit_delay(); if (*pins & pin) *rxbyte |= (1 << 5); else *rxbyte |= (0 << 5); bit_delay(); if (*pins & pin) *rxbyte |= (1 << 6); else *rxbyte |= (0 << 6); bit_delay(); if (*pins & pin) *rxbyte |= (1 << 7); else *rxbyte |= (0 << 7); // wait for stop bit bit_delay(); half_bit_delay(); } void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // send character in txchar on port pin // assumes line driver (inverts bits) // start bit *port &= (~pin); bit_delay(); // // unrolled loop to write data bits if (txchar & (1<<0)) *port |= pin; else *port &= (~pin); bit_delay(); if (txchar & (1<<1)) *port |= pin; else *port &= (~pin); bit_delay(); if (txchar & (1<<2)) *port |= pin; else *port &= (~pin); bit_delay(); if (txchar & (1<<3)) *port |= pin; else *port &= (~pin); bit_delay(); if (txchar & (1<<4)) *port |= pin; else *port &= (~pin); bit_delay(); if (txchar & (1<<5)) *port |= pin; else *port &= (~pin); bit_delay(); if (txchar & (1<<6)) *port |= pin; else *port &= (~pin); bit_delay(); if (txchar & (1<<7)) *port |= pin; else *port &= (~pin); bit_delay(); // // stop bit *port |= pin; bit_delay(); } void put_string(volatile unsigned char *port, unsigned char pin, char *str) { // // print a null-terminated string static int index; index = 0; do { put_char(port, pin, str[index]); ++index; } while (str[index] != 0); } ISR(PCINT0_vect) { // // pin change interrupt handler // static char chr; get_char(&PINA, serial_pin_in, &chr); /* put_string(&PORTA, serial_pin_out, "hello.ftdi.44.echo.interrupt.c: you typed \""); buffer[buffer_index++] = chr; if (buffer_index == (max_buffer-1)) { //last char is always null (necessary for put_string). PORTA |= led_pin; //turn on LED if buffer is full. buffer_index = 0; } put_string(&PORTA, serial_pin_out, (char *)buffer); put_char(&PORTA, serial_pin_out, '\"'); put_char(&PORTA, serial_pin_out, 10); // new line */ if (chr == 'T') { MCUCR |= (1 << SM0); //ADC noise reduction mode. sleep_flag = 1; //set sleep flag for main loop to catch. } GIFR = serial_interrupt_flag; //clear pending serial interrupts caused by data transmission. } ISR(INT0_vect) { //button press interrupt handler /* //clear buffer for (int i = 0; i < max_buffer; i++) { buffer[i]= 0; } //send cleared message put_string(&PORTA, serial_pin_out, "Buffer Cleared\n"); buffer_index = 0; //reset buffer index. PORTA &= (~led_pin); //turn off LED */ PORTA |= led_pin; MCUCR |= (1 << SM0); //ADC noise reduction mode. sleep_flag = 1; //set sleep flag for main loop to catch. GIFR = (1 << INTF0); //clear button interrupt flag //(catches bouncing, but not release of button, since // user release of button is much slower than this interrupt handler. } ISR(ADC_vect) { static char T[16]=""; //ADC conversion complete interrupt handler //read ADC in correct order. MCUCR &= ~(1 << SE); //disable sleep (recommended to prevent accidental sleep) static int t; t = ADCL;//must read low register first, then high. t |= (ADCH<<8); t_acc += t; //Start next conversion if not at ADC_N yet if (++count < ADC_N) { //ADCSRA |= (1<