// // // hello.ftdi.44.buttonecho.c // // // If the button is pressed, count time. // If unpressed, wait for 2 second and lights LED same amount of time you pressed the button. // // Adapted from // Neil Gershenfeld's 'hello.ftdi.44.echo.c' (http://academy.cba.mit.edu/classes/embedded_programming/hello.ftdi.44.echo.c) // Julia Elbert's 'hello.ftdi.44.blink.c' (fab.cba.mit.edu/classes/863.17/Harvard/people/julia-ebert/assets/week-7/hello.ftdi.44.blink.c) // // // Joonhaeng Lee / joohaenglee@gsd.harvard.edu // 10/23/19 // // // (c) Massachusetts Institute of Technology 2010 // This work may be reproduced, modified, distributed, // performed, and displayed for any purpose. Copyright is // retained and must be preserved. The work is provided // as is; no warranty is provided, and users accept all // liability. // #include #include #include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define input(direction,pin) (direction &= (~pin)) #define set(port,pin) (port |= pin) // set port pin #define get(port,pin) ((port) & (pin)) #define clear(port,pin) (port &= (~pin)) // clear port pin #define toggle(port,pin)(port ^=pin) // toggle port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set #define bit_delay_time 8.5 // bit delay for 115200 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define char_delay() _delay_ms(10) // char delay #define led_delay() _delay_ms(500) #define serial_port PORTA #define serial_direction DDRA #define serial_pins PINA #define serial_pin_in (1 << PA0) #define serial_pin_out (1 << PA1) // LED #define LED_port PORTA #define LED_direction DDRA #define LED_pin (1 << PA7) uint8_t led_state = 0; uint8_t previous_reading = 0; uint8_t button_was_pressed = 0; uint8_t button_pressed_length = 0; //Button #define button_port PORTB #define button_pins PINB #define button_direction DDRB #define button_pin (1 << PB2) #define button_interrupt (1 << PCIE1) #define button_interrupt_pin (1 << PCINT10) #define max_buffer 25 //this code from Julia's hello.ftdi.44.button-interrupt.c //http://fab.cba.mit.edu/classes/863.17/Harvard/people/julia-ebert/assets/week-7/hello.ftdi.44.button-interrupt.c ISR(TIM0_COMPA_vect) { // // Timer interrupt // if (get(button_pins, button_pin) != previous_reading) { if (!button_was_pressed) // when you start to press button { led_state ++; led_state = led_state % 2; button_was_pressed = 1; button_pressed_length = 0; } else //when you put your hand off from switch { button_was_pressed = 0; } previous_reading = get(button_pins, button_pin); } else { if (button_was_pressed) // while butten is pressed { button_pressed_length ++; } } //#define max_buffer 25 void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte) { // // read character into rxbyte on pins pin // assumes line driver (inverts bits) // *rxbyte = 0; while (pin_test(*pins,pin)); // // wait for start bit // // // delay to middle of first data bit // half_bit_delay(); bit_delay(); // // unrolled loop to read data bits // if pin_test(*pins,pin) *rxbyte |= (1 << 0); else *rxbyte |= (0 << 0); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 1); else *rxbyte |= (0 << 1); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 2); else *rxbyte |= (0 << 2); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 3); else *rxbyte |= (0 << 3); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 4); else *rxbyte |= (0 << 4); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 5); else *rxbyte |= (0 << 5); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 6); else *rxbyte |= (0 << 6); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 7); else *rxbyte |= (0 << 7); // // wait for stop bit // bit_delay(); half_bit_delay(); } void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } void put_string(volatile unsigned char *port, unsigned char pin, char *str) { // // print a null-terminated string // static int index; index = 0; do { put_char(port, pin, str[index]); ++index; } while (str[index] != 0); } int main(void) { // // main // static char chr; static char buffer[max_buffer] = {0}; static int index; // // set clock divider to /1 // CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // // initialize output pins // set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out); //initialize LED pin // clear(LED_port,LED_pin); output(LED_direction,LED_pin); // Set up button set(button_port, button_pin); input(button_direction, button_pin); // Set up timer + interrupt (for button debouncing) TCCR0B |= ((1 << CS02) | (1 << CS00)); // Timer 0 prescaling - divides by 1024 */ TCCR0A |= (1 << WGM01); // Put timer 0 in CTC mode OCR0A = 100; // Count 100 cycles for interrupt TIMSK0 |= (1 << OCIE0A); // enable timer compare interrupt sei(); // Enable global interrupts // // main loop // index = 0; while (1) { if(button_was_pressed) { } else { if(button_pressed_length > 0) { set(LED_port,LED_pin); _delay_ms(1000); clear(LED_port,LED_pin); button_pressed_length = 0; } } } }