Noah Salk

noahsalk.github.io

4540 N. Bernard St. Chicago, IL 60625

EDUCATION

Massachusetts Institute of Technology, Cambridge, MA, PhD, Electrical Engineering (MathWorks Fellow) Advisor: Dr. Chathan Cooke

Massachusetts Institute of Technology, Cambridge, MA, SM, Electrical Engineering (Landsman Fellow, MathWorks Fellow)

Advisor: Dr. Chathan Cooke

Thesis: Design Methodology for an Ultra-High Efficiency Coreless Resonant Power Transformer

University of Illinois at Urbana-Champaign, Urbana, IL,

BS, Electrical Engineering

Awards: 2x MathWorks Fellowship; Landsman EE Fellowship; Robert C. MacClinchie Scholarship; Grainger Power Engineering; IEEE PES Scholarship; 2x Jules D. Falzer Memorial; Edward C. Jordan; Russell E. Berthold; Bronze Tablet

Study Abroad: National University of Singapore

EXPERIENCE

Massachusetts Institute of Technology, Cambridge, MA, Graduate Research Assistant September 2020-Present

- AC loss reduction for a high efficiency, 40 kW air-core resonant power transformer (ProlecGE) •
- Developed a versatile simulation-assisted layered mesh approach to modeling Litz wire in arbitrary configurations
- Created a high accuracy, fast analytical method for estimating losses in air-core, multi-phase coil systems
- Implemented a genetic-algorithm-based optimization for generating maximum efficiency designs of a class of coreless transformers with flux-guiding resonant coils, given desired power, frequency, input voltage, and voltage ratio.

Hinetics LLC, Champaign, IL, Director of Advanced Technologies

- Proposed, negotiated, and secured more than \$10m of small business research grants •
- Managing technical tasks and project deliverables for the largest award in ARPA-E's OPEN 2021 solicitation to develop a 10 MW partially superconducting motor for aircraft propulsion: achieving the world's highest specific power
- Managed a NASA Phase II SBIR project to manufacture and demonstrate a prototype motor for aircraft propulsion
- Leads transient electrical and thermal system modeling efforts for eVTOL load profile optimization (Air Force STTR)
- Wrote a successful NASA Phase I SBIR grant for a magnetics-embedded insulation and cooling architecture, PM •
- Developed a pole-pair test for an offshore wind turbine's actively shielded superconducting field coils (NSF Phase II)
- Designed a new coil mold for form-wound air-core windings with cured resin

Ford Motor Company, Chicago, IL, Power Electronics R&D Intern

- Compared Wide Band Gap (WBG) Semiconductors with conventional Silicon IGBTs for traction inverter applications
- Developed a GUI to visualize performance over various operating biases and temperatures. This includes calculating parameters of interest from test data collected on power modules in Ford's inventory.

Haran Research Group, Urbana, IL, Research Assistant

- Performed multi-objective optimization for the design of superconducting machines for electric aircraft and wind turbine applications; preliminary work for NASA's LH₂, fuel-cell powered commercial aircraft concept (CHEETA)
- Carried out EM FEA for a test rotor to measure ac losses in superconducting coils •
- Aided in the development and application of ac loss models for superconducting machine windings
- Created a 3D model to demonstrate the machine topology for a Pareto-optimal design

Naval Surface Warfare Center, Crane, IN, SSEP Electrical Engineering Intern

- Performed cybersecurity research on vulnerabilities in the Ohio-class submarine's air-gapped fire control systems
- Detected and visualized a Funtenna based side-channel emanating from a monitor using an SDR
- Demonstrated practicality of parallel spectrum scanning for side-channel supervision and automatic detection with DSP
- Completed a project quoted for \$250,000 using a \$20 commercial SDR

January 2020-Present

June-August 2020

April 2019-May 2020

Mav-August 2018

Research Area: High Power Electromagnetics GPA: 4.90/5.00

May 2022 Research Area: High Power Electromagnetics GPA: 4.80/5.00

GPA: 3.98/4.00

Expected May 2024

May 2020

Fall 2018 Semester

Email: nsalk@mit.edu Cell: (847) 867-9108

PROJECTS AND LEADERSHIP EXPERIENCE

Illini Air Shuttle, President and Co-founder

- Founded an RSO to develop an electric VTOL air shuttle concept for transportation between Champaign, IL and • Chicago, IL; presented at AIAA EATS 2019
- Modeled a power system for safety analysis; includes dq motor control, power electronics, and machine parameters
- Developed an optimization scheme for aircraft design considering mission profile and weight estimations

CAMPUS INVOLVEMENT

Power and Energy Conference at Illinois (PECI), UIUC, Corporate Relations Co-chair Eta Kappa Nu (HKN) Alpha Chapter, UIUC, Active Member **January 2018-May 2020**

ADDITIONAL EXPERIENCE

Electrical and Computer Engineering Department, Champaign, IL, ECE 385 UA August 2019-May 2020 Electrical and Computer Engineering Department, Champaign, IL, ECE 210 Course Grader January-May 2019 University of Illinois Foundation, Champaign, IL, Research and Portfolio Management **October 2017-May 2018**

SPECIALIZED SKILLS

Programs: MATLAB, FEMM, COMSOL, Altair Flux, LTSpice, KiCad, Simulink, Autodesk Inventor, GOSET Languages: Mandarin (Conversational; "Intermediate")

JOURNAL PUBLICATIONS AND CONFERENCE PAPERS

- N. J. Salk and C. M. Cooke, "Calculation of AC Losses in Multi-phase Litz Coil Systems," in 2022 IEEE Transportation Electrification Conference & Expo (ITEC), 2022.
- S. Sirimanna, T. Balachandran, N. Salk, J. Xiao, and K. S. Haran, "Electric Propulsors for Zero-Emission Aircraft: Partially superconducting machines," in IEEE Electrification Magazine, 2022.
- D. Lee, T. Balachandran, S. Sirimanna, N. Salk, A. Yoon, P. Xiao, J. Macks, Y. Yu, S. Lin, J. Schuh, P. Powell, and K. S. Haran, "Detailed Design and Prototyping of a High Power Density Slotless PMSM," in IEEE Transactions on Industry Applications, 2022.
- T. Balachandran, N. J. Salk, D. Lee, M. D. Sumption, and K. S. Haran, "Methods of Estimating AC Losses in Superconducting MgB₂ Armature Windings with Spatial and Time Harmonics," in IEEE Transactions on Applied Superconductivity, 2022.
- N. J. Salk and C. M. Cooke, "A Versatile Simulation-Assisted Layered Mesh Analysis for Generalized Litz Wire Performance," in IEEE Transactions on Magnetics, vol. 58, no. 6, pp. 1-8, June 2022.
- D. Lee *et al.*, "Design and Prototype of a High Power Density Slotless PMSM for Direct Drive Aircraft Propulsion," 2021 IEEE Power and Energy Conference at Illinois (PECI), 2021
- T. Balachandran, D. Lee, N. Salk, J. Xiao, and K. S. Haran, "Evaluation and Mitigation of AC Losses in a Fully Superconducting Machine for Wind Turbine Applications," in IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, pp. 1-5, June 2020
- T. Balachandran, D. Lee, N. J. Salk, and K. S. Haran, "A fully superconducting air-core machine for aircraft propulsion," IOP Conference Series: Materials Science and Engineering, Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference (CEC) 2019, June 2020
- J. Xiao, N. Salk and K. Haran, "Conceptual Design of an eVTOL Air Shuttle for Rapid Intercity Transport," 2020 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 2020, pp. 1-8

PATENTS

(Pending) N. Salk, T. Balachandran, K. Haran, D. Lee, and P. Powell, "Slotless Electric Motor Having Improved Cooling," US Patent App. 17/661,819.

September 2019-May 2020

August 2019-May 2020