

• • • • • • • • • • • • • •

Electronics Production and Design

Slides: brian plancher@g.harvard.edu, Fall 2021 Recitation: Jake Read, Fall 2022

The road ahead

This week

Electronics Production

• Mill and stuff a circuit board

The road ahead

This week2 weeks from nowElectronics
ProductionElectronics
Design

 Mill and stuff a circuit board

- Design your own circuit board
- Mill and stuff it

The road ahead

 Mill and stuff a circuit board

- Design your own circuit board
- Mill and stuff it

- Design your own circuit board
- Mill and stuff it
- Program it

1. Learn (or recall) basic electrical engineering

- 1. Learn (or recall) basic electrical engineering
- 2. Use it to design a custom circuit board in a new software program

- 1. Learn (or recall) basic electrical engineering
- 2. Use it to design a custom circuit board in a new software program
- 3. Mill it and solder on all the parts properly

- 1. Learn (or recall) basic electrical engineering
- 2. Use it to design a custom circuit board in a new software program
- 3. Mill it and solder on all the parts properly
- 4. Learn (or recall) some programming: "Arduino" i.e. C++

- 1. Learn (or recall) basic electrical engineering
- 2. Use it to design a custom circuit board in a new software program
- 3. Mill it and solder on all the parts properly
- 4. Learn (or recall) some programming
- 5. Write a new program to test your custom board

- 1. Learn (or recall) basic electrical engineering
- 2. Use it to a new software Seems like a lot !
- 3. Mill it an
- 4. Learn (or recall) some programming
- 5. Write a custom program to test your board

Why do I even need to know anything about electrical engineering?

Why do I even need to know anything about electrical engineering?

Why do I even need to know anything about electrical engineering?

We are going to learn how to make our own custom circuit boards that connect inputs and outputs to our own microcontrollers!

V = I * R

Voltage (measure in volts) I: Current (measure in amps) Resistance (measured in ohms)

https://learn.sparkfun.com/tutorials/voltage-current-resistance-and-ohms-law/all

Voltage

Measures the difference in electrical potential between two points – often an input voltage (vcc) and ground (gnd)

Current

Measures the rate of flow of electrons in a circuit

Resistance

Measures how hard it is for electrons to move through a circuit

More resistance

Triplets

Voltage: potential to do work (electron pressure)

Current: work (electron flow)

• Resistance: ... friction (electron resistance)

How much current goes through this resistor?

52 Resistor

Voltage (measure in volts) I: Current (measure in amps) Resistance (measured in ohms)

*

 $\overrightarrow{\mathbf{V}} = \mathbf{I} \times \mathbf{R} \qquad \overrightarrow{\mathbf{I}} = \frac{\mathbf{V}}{\mathbf{R}} \qquad \overrightarrow{\mathbf{R}} = \frac{\mathbf{V}}{\mathbf{I}}$

How much current goes through this resistor?

5 R Resistor

1A

Voltage (measure in volts) I: Current (measure in amps) Resistance (measured in ohms)

*

How about these resistors?

• Resistance in series adds

 To learn more about series and parallel check out this link: <u>https://en.wikipedia.org/wiki/Se</u> <u>ries_and_parallel_circuits</u>

How about these resistors?

1A

How about these resistors?

1A

3r

- Resistance in series adds
- To learn more about series and parallel check out t +3V here!
 https://en.wikipedia.org/wiкi/Se ries_and_parallel_circuits

What about this LED?

LED

What about this LED?

LED

Trick Question – 0A All diodes are one way!

Ok so what about this (correct direction) LED?

Ok so what about this (correct direction) LED?

Trick Question Again – ∞A Diodes have 0 resistance!

Ok so what about this t direction) LED?

Voltage (I: Current Resistance (

Infinite

current... the

part will melt

Trick Question Again – ∞A Diodes have 0 resistance!

Ok so what about this (correct direction) LED with a current limiting resistor!

e D

Ok so what about this (correct direction) LED with a current limiting resistor!

er.

1A

Ok so what about this (correct direction) LED with a current limiting resistor!

- 500 to 1K ohm resistors work well (for me)
- The order of the resistor and LED does NOT matter

1A

Our second equation - Capacitance

Capacitance

Energy is stored in an *electric* field

C = I * dv/dt

Capacitance (measured in farads) I: Current (measure in amps) dV/dt: Change in Voltage over time (measure in volts/second)

Capacitance

The science here can get a little complicated but/and I like to think of a capacitor as a **filter** for changes in voltage

https://learn.sparkfun.com/tutorials/capacitors/application-examples

The science here can get a little complicated but/and I like to think of a capacitor as a **filter** for changes in voltage

https://learn.sparkfun.com/tutorials/capacitors/application-examples

Capacitance

The science here can get a little complicated but/and I like to think of a capacitor as a **filter** for changes in voltage

https://learn.sparkfun.com/tutorials/capacitors/application-examples

Inductance

di v(t) =Inductance (measured in "henry"s) v(t): voltage induced by inductor at this instant di/dt: Change in Current over time (measure in volts/second)

Inductance

Energy is stored in a magnetic field (!)

Triplets

Resistance / Resistors: resists voltage, "does work"

Capacitance / Capacitors: resists change in voltage

Inductance / Inductors: resists change in current

Triplets

everything has *some* resistance, inductance, and capacitance; resistors are inductors, capacitors are resistors, inductors are capacitors, etc...
we can largely ignore this inconvenience until we hit high powers, high frequencies, and high precision

But how will I know if my component needs a capacitor? And how big of a capacitor will I need? (and what are all of those labels?)

http://academy.cba.mit.edu/classes/embedded_programming/doc8183.pdf

Features

- High Performance, Low Power AVR[®] 8-bit Microcontroller
- Advanced RISC Architecture
- 120 Powerful Instructions Most Single Clock Cycle Execution
- 32 x 8 General Purpose Working Registers
- Fully Static Operation
- High Endurance, Non-volatile Memory Segments
- 2K/4K/8K Bytes of In-System, Self-programmable Flash Program Memory
 Endurance: 10,000 Write/Erase Cycles
- 128/256/512 Bytes of In-System Programmable EEPROM
 Endurance: 100,000 Write/Erase Cycles
- = 128/256/512 Bytes of Internal SRAM
- Data Retention: 20 years at 85°C / 100 years at 25°C
- Programming Lock for Self-programming Flash & EEPROM Data Security
- Peripheral Features
 - One 8-bit and One 16-bit Timer/Counter with Two PWM Channels, Each
 10-bit ADC
 - 8 Single-ended Channels
 - + 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
- Universal Serial Interface
- Special Microcontroller Features
 - debugWIRE On-chip Debug System
 - In-System Programmable via SPI Port
- Internal and External Interrupt Sources
 - Pin Change Interrupt on 12 Pins
- Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes
- Enhanced Power-on Reset Circuit
- Programmable Brown-out Detection Circuit with Software Disable Function
- Internal Calibrated Oscillator
- On-chip Temperature Sensor
- VO and Packages
- Available in 20-pin QFN/MLF/VQFN, 14-pin SOIC, 14-pin PDIP and 15-ball UFBGA
- Twelve Programmable I/O Lines
- Operating Voltage:
- = 1.8 = 5.5V
- Speed Grade:
- = 0 = 4 MHz @ 1.8 = 5.5V
- = 0 = 10 MHz @ 2.7 = 5.5V
- = 0 = 20 MHz @ 4.5 = 5.5V
- Industrial Temperature Range: -40°C to +85°C
 Low Power Consumption
- Low Power Const
- Active Mode:
- 210 µA at 1.8V and 1 MHz
- Idle Mode:
- 33 µA at 1.8V and 1 MHz
- Power-down Mode:
 0.1 µA at 1.8V and 25°C

8-bit AVR[®] Microcontroller with 2K/4K/8K Bytes In-System Programmable Flash

ATtiny24A ATtiny44A ATtiny84A

Sometimes: read the datasheet

Often: follow design patterns

Rev. 8183F-AVR-06/12

Oh hey look at Neil's hello world board – it looks like the programming 6 pin header has all of it's named things connected to the ports on the Attiny with those names!

Oh and the clock too (XTAL)!

"EDA" Electronic Design Automation "ECAD" Electronics Computer Aided Design

Schematic

Board File

Schematic

Board File

Schematic

Board File

"Footprint"

"Footprint"

Tips for board schematics and routing:

- **1. Do the schematic first** (and finish it before moving on to routing) (Neil's examples lack schematics)
- 2. Use lots of names to keep the schematic clean
- **3.** Triple check the schematic before moving onto routing (and have someone else check it)
- 4. Copy the routing patterns Neil or others use
- 5. Add 0 ohm resistors if you get stuck routing

Design Patterns in Practice

- Bypass Capacitors
- Current-Limiting Resistors
- Buttons, Pull-Up Resistors
- Voltage Regulators
- RC Filters
- Low-Side Switches

EDA Basics

- Adding / Finding Components
- Modifying "Net Lists"
- Moving, Routing, etc