# Finalize project presentation structure and content _Exported on 10/9/2025 at 05:35:34 EDT from Cursor (1.5.11)_ --- **User** read through @https://academy.cba.mit.edu/classes/project_presentation/index.html and check my finalproject.html page to make sure it addresses everything required add a section to the table of contents for Answering questions then create a section its linked to with the questions and placeholder answers for now: Document a final project masterpiece that integrates the range of units covered, answering: What does it do? Who's done what beforehand? What sources did you use? What did you design? What materials and components were used? Where did they come from? How much did they cost? What parts and systems were made? What tools and processes were used? What questions were answered? What worked? What didn't? How was it evaluated? What are the implications? add a new section under vision board (link it in table of contents) called Project Presentation to download project files, and put placeholders for Prepare a summary slide and a one minute video showing its conception, construction, and operation add a new section called Design with two subsections 2D Design and 3D Design (link it from table of contents) and put placeholders for Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging make a section called Bill of Materials (linked from table of contents) with two subsections Bill of Materials and Make vs Biu and put placeholders for Where possible, you should make rather than buy the parts of your project make a section for Individual Mastery and Independent Operation (linked from table of contents) and put placeholders for Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable make a section for Course Presentation (linked from table of contents) with a placeholder for Present your final project, weekly and group assignments, and documentation in the vision board section draw final project spirals for minimal project for class scope -> expansions (see @https://en.wikipedia.org/wiki/Spiral_model and also add image finalproject/Spiral_model_(Boehm,_1988).png explaining the logic go through the whole page and make sure its organized, aethetically pleasing, simple, while hitting all the project requirements in @https://academy.cba.mit.edu/classes/project_presentation/index.html (while still keeping the information I put there) --- **Cursor** I'll help you update your final project page to address all the requirements from the MIT Academy project presentation guidelines. Let me first read your current finalproject.html file to understand what you already have. Now I'll create a comprehensive todo list to organize all the required updates based on the MIT Academy project presentation guidelines: Now I'll start implementing the updates. First, let me add the "Answering Questions" section to the table of contents and create the corresponding section: ```html
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
[Design process documentation placeholder.]
[Video caption placeholder]
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
[Design process documentation placeholder.]
[Video caption placeholder]
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
[Design process documentation placeholder.]
[Video caption placeholder]
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
[Design process documentation placeholder.]
[Video caption placeholder]
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.
[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]
[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]
[Placeholder: Research papers, open-source projects, and reference materials]
[Placeholder: Custom hardware, software, and integration systems designed]
[Placeholder: Complete list of materials, sensors, microcontrollers, and components]
[Placeholder: Suppliers, vendors, and sourcing information]
[Placeholder: Detailed cost breakdown and budget analysis]
[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]
[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]
[Placeholder: Research questions addressed and hypotheses tested]
[Placeholder: Successes, challenges, and lessons learned]
[Placeholder: Testing protocols, validation methods, and evaluation criteria]
[Placeholder: Impact on aging research, clinical applications, and future development]
[Design process documentation placeholder.]
[Video caption placeholder]
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.
[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]
[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]
[Placeholder: Research papers, open-source projects, and reference materials]
[Placeholder: Custom hardware, software, and integration systems designed]
[Placeholder: Complete list of materials, sensors, microcontrollers, and components]
[Placeholder: Suppliers, vendors, and sourcing information]
[Placeholder: Detailed cost breakdown and budget analysis]
[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]
[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]
[Placeholder: Research questions addressed and hypotheses tested]
[Placeholder: Successes, challenges, and lessons learned]
[Placeholder: Testing protocols, validation methods, and evaluation criteria]
[Placeholder: Impact on aging research, clinical applications, and future development]
Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.
2D design work for the multimodal intrinsic capacity assessment system:
Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma
3D design work for device components and integration:
Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.
[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]
[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]
[Placeholder: Research papers, open-source projects, and reference materials]
[Placeholder: Custom hardware, software, and integration systems designed]
[Placeholder: Complete list of materials, sensors, microcontrollers, and components]
[Placeholder: Suppliers, vendors, and sourcing information]
[Placeholder: Detailed cost breakdown and budget analysis]
[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]
[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]
[Placeholder: Research questions addressed and hypotheses tested]
[Placeholder: Successes, challenges, and lessons learned]
[Placeholder: Testing protocols, validation methods, and evaluation criteria]
[Placeholder: Impact on aging research, clinical applications, and future development]
Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.
2D design work for the multimodal intrinsic capacity assessment system:
Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma
3D design work for device components and integration:
Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer
Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.
Complete list of materials and components:
[Placeholder: Detailed cost analysis and budget tracking]
Strategic decisions on fabrication vs. purchasing:
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.
[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]
[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]
[Placeholder: Research papers, open-source projects, and reference materials]
[Placeholder: Custom hardware, software, and integration systems designed]
[Placeholder: Complete list of materials, sensors, microcontrollers, and components]
[Placeholder: Suppliers, vendors, and sourcing information]
[Placeholder: Detailed cost breakdown and budget analysis]
[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]
[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]
[Placeholder: Research questions addressed and hypotheses tested]
[Placeholder: Successes, challenges, and lessons learned]
[Placeholder: Testing protocols, validation methods, and evaluation criteria]
[Placeholder: Impact on aging research, clinical applications, and future development]
Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.
2D design work for the multimodal intrinsic capacity assessment system:
Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma
3D design work for device components and integration:
Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer
Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.
Complete list of materials and components:
[Placeholder: Detailed cost analysis and budget tracking]
Strategic decisions on fabrication vs. purchasing:
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable.
Demonstration of individual skills across all course units:
Project operates independently without external dependencies:
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.
[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]
[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]
[Placeholder: Research papers, open-source projects, and reference materials]
[Placeholder: Custom hardware, software, and integration systems designed]
[Placeholder: Complete list of materials, sensors, microcontrollers, and components]
[Placeholder: Suppliers, vendors, and sourcing information]
[Placeholder: Detailed cost breakdown and budget analysis]
[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]
[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]
[Placeholder: Research questions addressed and hypotheses tested]
[Placeholder: Successes, challenges, and lessons learned]
[Placeholder: Testing protocols, validation methods, and evaluation criteria]
[Placeholder: Impact on aging research, clinical applications, and future development]
Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.
2D design work for the multimodal intrinsic capacity assessment system:
Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma
3D design work for device components and integration:
Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer
Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.
Complete list of materials and components:
[Placeholder: Detailed cost analysis and budget tracking]
Strategic decisions on fabrication vs. purchasing:
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable.
Demonstration of individual skills across all course units:
Project operates independently without external dependencies:
Present your final project, weekly and group assignments, and documentation.
Complete presentation of the multimodal intrinsic capacity assessment system:
Integration of weekly work into final project:
Collaborative work and individual contributions:
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Bioprinting & Aging Biomarker Device · HTMAA 2025
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.
[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]
Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.
[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]
[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]
[Placeholder: Research papers, open-source projects, and reference materials]
[Placeholder: Custom hardware, software, and integration systems designed]
[Placeholder: Complete list of materials, sensors, microcontrollers, and components]
[Placeholder: Suppliers, vendors, and sourcing information]
[Placeholder: Detailed cost breakdown and budget analysis]
[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]
[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]
[Placeholder: Research questions addressed and hypotheses tested]
[Placeholder: Successes, challenges, and lessons learned]
[Placeholder: Testing protocols, validation methods, and evaluation criteria]
[Placeholder: Impact on aging research, clinical applications, and future development]
Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.
2D design work for the multimodal intrinsic capacity assessment system:
Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma
3D design work for device components and integration:
Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer
Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.
Complete list of materials and components:
[Placeholder: Detailed cost analysis and budget tracking]
Strategic decisions on fabrication vs. purchasing:
[Fabrication process documentation placeholder.]
[Testing and validation documentation placeholder.]
Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable.
Demonstration of individual skills across all course units:
Project operates independently without external dependencies:
Present your final project, weekly and group assignments, and documentation.
Complete presentation of the multimodal intrinsic capacity assessment system:
Integration of weekly work into final project:
Collaborative work and individual contributions:
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
[Week 0 progress and contributions to final project placeholder]
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
[Week 1 progress and contributions to final project placeholder]
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
[Week 2 progress and contributions to final project placeholder]
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
[Week 3 progress and contributions to final project placeholder]
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
[Week 4 progress and contributions to final project placeholder]
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
[Week 5 progress and contributions to final project placeholder]
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
[Week 6 progress and contributions to final project placeholder]
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
[Week 7 progress and contributions to final project placeholder]
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
[Week 8 progress and contributions to final project placeholder]
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
[Week 9 progress and contributions to final project placeholder]
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License