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The Gameplan

• Constrained Optimization

• Convexity

• Duality

• Applications/Taxonomy
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Constrained Optimization

minimize f(x)
subject to gj(x) ≤ 0 j = 1, . . . , J

hk(x) = 0 k = 1, . . . , K
x ∈ Ω ⊂ Rn

Exercise: formulate the halting problem as an optimization
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Equivalence of Feasibility and Optimization

From a complexity point of view

minimize f(x)
subject to gj(x) ≤ 0

hk(x) = 0
x ∈ Ω ⊂ Rn

⇐⇒

find x and t
subject to f(x)− t ≥ 0

gj(x) ≤ 0
hk(x) = 0
x ∈ Ω ⊂ Rn

If you solve the RHS, you get a solution for the LHS. If you do

bisection on t for the LHS, you solve the RHS.
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Convexity: Overview

• Phrasing a problem as an optimization generally buys you

nothing

• However, solving a Convex Program is generically no harder

than least squares.

• The hard part is formulating the problem.
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Convex Sets

• If x1, . . . ,xn ∈ Ω, a convex combination is a linear combina-

tion
∑N

i=1 pixi where pi > 0 and
∑N

i=1 pi = 1

• The line segment between x and y is given by (1− t)x + ty.

This is a convex combination of two points.

• A set Ω ⊂ Rn is convex if it contains all line segments between

all points. That is, x,y ∈ Ω implies (1− t)x+ ty ∈ Ω for all t.
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Examples of Convex Sets

• Rn is convex. Any vector space is convex.

• Any line segment is convex.

• Any line is convex.

• The set of psd matrices is convex. Q � 0 and P � 0 implies

tQ + (1− t)P � 0.
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Examples of Non-convex Sets

• The integers are not convex.

• The set of bit strings of length n is not convex.

• The set of vectors with norm 1 is not convex.

• The set of singular matrices is not convex. The set of in-

vertible matrices is not convex.
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Operations that preserve convexity

• If Ω1, . . . ,Ωm are convex, then
⋂m

i=1 Ωi is convex.

• If Ω1 is convex. Then Ω2 = {Ax + b|x ∈ Ω1} is convex.

• If Ω1 is convex. Then Ω2 = {x|Ax + b ∈ Ω1} is convex.
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Convex Functions

• A function f : Ω → Rn is convex if the set

epi(f) = {(x, f(x))|x ∈ Ω}

is convex

• For functions f : Rn → Rm, f is convex iff for all x,y ∈ Rn

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y)
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Checking Convexity with Derivatives

f : Rn → R

• If f is differentiable f is convex iff f(y) ≥ f(x)+∇f(x)>(y−x)

for all y

• If f is twice differentiable f is convex iff ∇2f is positive semi-

definite.

• These facts will be useful next week when we discuss opti-

mization algorithms
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Operations that preserve convexity

• If f(x) is convex then f(Ax + b) is convex.

• If f1, . . . , fn are convex, then so is a1f1 + · · ·+ anfn for any

scalars ai.

• If f1, . . . , fn are convex, then maxi fi(x) is convex.

• If for all y, f(x,y) is convex in x, then supy f(x,y) is convex
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Examples of Convex Functions

• Any affine function f(x) = Ax + b is convex.

• − log(x) is convex. exp(x) is convex.

• ‖x‖2 is convex.

• A quadratic form x>Qx with Q = Q> is convex if and only if

Q � 0.
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Quadratic Forms

A quadratic form Q = Q> is convex if and only if Q � 0.

Proof Q � 0 implies Q = A>A for some A. Then

x>Qx = x>A>Ax = ‖Ax‖2

Conversely, if Q is not psd, let v be a norm 1 eigenvector corre-

sponding to eigenvalue λ < 0. Then

0 = (−v + v)>Q(−v + v) > (−v)>Q(−v) + (v)>Q(v) = 2λ
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Examples of Non-Convex Functions

• sin(x), cos(x), and tan(x) are not convex.

• x3 is not convex

• Gaussians p(x) = exp(−x>Λ−1x/2) are not convex. However,

− log(p) is convex!
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Examples of Convex Constraint Sets

Ω1 = {x|g(x) ≤ 0} is convex if g is convex.

Proof Let x,y ∈ Ω1, 0 ≤ t ≤ 1. If f is convex,

f(tx + (1− t)y) ≤ tf(x) + (1− t)y ≤ 0

proving tx + (1− t)y ∈ Ω.

Ω2 = {x|h(x) = 0} is convex if h(x) = Ax + b.

Proof Let x,y ∈ Ω2, 0 ≤ t ≤ 1. If h is affine,

h(tx + (1− t)y) = A(tx + (1− t)y) + b

= t(Ax + b) + (1− t)(Ay + b) = 0

proving tx + (1− t)y ∈ Ω.
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The Hahn-Banach Theorem

• A hyperplane is a set of the form {a>x = b} ⊂ Rn. A half-

space is a set of the form {a>x ≤ b} ⊂ Rn

• Theorem If Ω is convex and x 6∈ cl(Ω) then there exists a

hyperplane separating x and Ω.

• It follows that Ω is the intersection of all half-spaces which

contain it.
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Duality

minimize f(x)
subject to gj(x) ≤ 0

x ∈ Ω

The Lagrangian for this problem is given by

L(x, µ) = f(x) +
J∑

j=1

µjgj(x)

with µ ≥ 0. The µj and are called Lagrange multipliers. In
calculus, we searched for values of µ by using ∇xL(x, µ) = 0.
Here, note that solving the optimization is equivalent to solving

min
x

max
µ≥0

L(x, µ)
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Duality (2)

min
x

max
µ≥0

L(x, µ) ≥ max
µ≥0

min
x
L(x, µ)

The right hand side is called the Dual Program

Proof Let f(x,y) be any function with two arguments. Then

f(x,y) ≥ minx f(x,y). Taking the max w.r.t. y of both sides

shows maxy f(x,y) ≥ maxy minx f(x,y). Now take the min of

the right hand side w.r.t. x to prove the theorem.
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Duality (3)

The dual program is always concave. To see this, consider
the dual function

q(µ) ≡ min
x
L(x, µ) = min

x
f(x) +

J∑
j=1

µjgj(x)

Now, since minx(f(x) + g(x)) ≤ (minx f(x)) + (minx g(x)), we
have

q(tµ1 + (1− t)µ2) = min
x

t

f(x) +
J∑

j=1

µ1jgj(x)


+ (1− t)

f(x) +
J∑

j=1

µ2jgj(x)


≥ tq(µ1) + (1− t)q(µ2)
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Duality (4)

• The dual may be interpreted as searching over half spaces

which contain the set {(f(x), g(x)) ∈ RJ+1|x ∈ Ω}. This is

illustrated in the figures.

• When the problem is convex and strictly feasible, the dual of

the dual returns the primal.
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Duality Gaps

We know that the solution to the primal problem is greater than
or equal to the solution of the dual problem. The duality gap is
defined to be

min
x∈Ω

max
µ≥0

L(x, µ)−max
µ≥0

min
x∈Ω

L(x, µ)

• When f and gj are convex functions, Ω is a convex set, and
there is a point strictly inside Ω with gj(x) < 0 for all j then
the duality gap is zero.

• Otherwise, estimating the duality gap is quite hard. In many
cases, this gap is infinite. Later classes will examine how to
analyze when the gap is small.
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Linear Programming

minimize c>x
subject to Ax ≥ b

x ≥ 0

Sometimes you will have equality constraints as well. Sometimes

you won’t have x ≥ 0.
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Equivalence of Representations

To turn unsigned variables into nonnegative variables:

x = x+ − x− x± ≥ 0

To turn equality constraints into inequalities:

Ax = b ⇐⇒ Ax ≤ b and Ax ≥ b

To turn inequalities into equalities

Ax ≤ b ⇐⇒ Ax + s = b and s ≥ 0

Such s are called slack variables
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Linear Programming Duality

Set up the Lagrangian

L(x, µ) = c>x + µ>(b−Ax)

= (c−A>µ)>x + b>µ

Minimize with respect to x

inf
x≥0

L(x, µ) =

µ>b c> − µ>A ≥ 0

−∞ otherwise
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Linear Programming Duality

The dual program

maximize b>µ

subject to A>µ ≤ c
µ ≥ 0

The dual of a linear program is a linear program. It has the

same number of variables as the primal has constraints. It has

the same number of constraints as the primal has variables.
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Basic Feasible Solutions

Consider the LP

min c>x
s.t. Ax = b

x ≥ 0

where A is m× n and has m linearly independent columns.

Let B be an m×m matrix formed by picking m linearly indepen-

dent columns from A basic solution of the LP is given by

xj =

[B−1b]k j is the kth column of B

0 aj 6∈ B

If x is feasible, it is called a basic feasible solution (BFS).
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The Simplex Algorithm

FACT: If an optimal solution to an LP exists, then an optimal
BFS exists.

Simplex Algorithm (sketch):

• Find a BFS

• Find a column which improves the cost or break

• Swap this column in and find a new BFS

• Goto step 2
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Chebyshev approximation

min
x

max
i=1,...,N

|a>i x− bi|

Is equivalent to the LP

min t

s.t. a>i x− bi ≤ t i = 1, . . . , N

−a>i x + bi ≤ t i = 1, . . . , N
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L1 approximation

min
x

N∑
i=1

|a>i x− bi|

Is equivalent to the LP

min
∑N

i=1 ti
s.t. a>i x− bi ≤ ti i = 1, . . . , N

−a>i x + bi ≤ ti i = 1, . . . , N
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Probability

The set of probability distributions forms a convex set. For

example, the set of probabilities for N events is

N∑
i=1

pi = 1 pi ≥ 0

The entropy is a concave function of a probability distribution

H[p] ≡ −
N∑

i=1

pi log pi
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Maximum Entropy Distributions

Let f be some random variable. Then the problem

maxp H[p]
s.t. Ep[f ] = f̄

is a convex program. This is the maximum entropy distribution

with the desired expected values.

Using the Lagrangian one can show

pi ∝ exp(λfi)

and the dual is

min
λ

log
N∑

i=1

exp(λfi)− λf̄
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Semidefinite Programming

If A and B are symmetric n× n matrices then

Tr(AB) =
n∑

i,j=1

AijBij

providing an inner product on matrices.

A semidefinite program is a linear program over the positive

semidefinite matrices.

minimize Tr(A0Z)
subject to Tr(AiZ) = ci k = 1, . . . , K

Z � 0
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Semidefinite Programming Duality

Set up the Lagrangian

L(Z, µ) = Tr(A0Z) +
K∑

K=1

µk(Tr(AkZ)− ci)

= Tr

A0 +
K∑

K=1

µkAk

 Z

− c>µ

Minimize with respect to Z

inf
Z�0

L(Z, µ) =

−c>µ A0 +
∑K

K=1 µkAk � 0

−∞ otherwise
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Semidefinite Programming Duality

The dual program

min c>µ

s.t. A0 +
∑K

K=1 µkAk � 0

We can put this back into the standard form by noting that the

constraint set without the positivity condition is an affine set and

hence can be written as an intersection of hyperplanes

C = {W|Tr(WGi) = bi, i = 1, . . . , T}

for some symmetric matrices Gi and scalars bi. But it is impor-

tant to recognize both forms as semidefinite programs.
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Linear Programming as SDPs

min c>x
s.t. Ax ≥ b

x ≥ 0

Let ai denote the ith column of A.

is equivalent to the SDP

min c>x
s.t. diag(a>i x− bi) � 0
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Quadratic Programs as SDPs

A quadratically constrained convex quadratic program is the op-

timization

min f0(x)
s.t. fi(x) ≤ 0

fi(x) = x>Aix− 2b>i x + ci and Ai � 0

Let Q>i Q = Ai. This is equivalent to the semidefinite program

min t

s.t.

[
11 Q0x

x>Q0 2b>0 x− c0 + t

]
� 0[

11 Qix
x>Qi 2b>i x− ci

]
� 0
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Logarithmic Chebyshev Approximation

min
x

max
i=1,...,N

| log(a>i x)− log(bi)|

Is equivalent to the SDP

min t

s.t.

 t− a>i x/bi 0 0
0 a>i x/bi 1
0 1 t

 � 0 i = 1, . . . , N
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Finding the maximum singular value

Let A(x) = A0 + A1x1 + . . .Akxk be an n × m matrix valued

function. Which value of x attains the matrix with the maximum

singular value? Solve with an SDP

min t

s.t.

[
t11 A(x)

A(x)> t11

]
� 0
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Problem 1: Examples of Convex Functions
(Bertsekas Ex 1.5)

Show that the following are convex on Rn

• f1(x) = −(x1x2 · · ·xn)1/n on {x ∈ Rn|xi > 0}

• f2(x) = log
∑N

i=1 exp(xi)

• f3(x) = ‖x‖p with p ≥ 1.

• f4(x) = 1
f(x) where f is concave and positive for all x.
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Problem 2: Zero-Sum Games (Bertsekas Ex 6.6)

Let A be an n ×m matrix. Consider the zero sum game where

player 1 picks a row of A and player 2 picks a column of A. Player

1 has the goal of picking as small an element as possible and

Player 2 has the goal of picking as large an element as possible.

This problem will use duality to prove that the optimal strategy

is independent of who goes first. That is

max
z∈Z

min
x∈X

x>Az = min
x∈X

max
z∈Z

x>Az

where X = {x|
∑

xi = 1xi ≥ 0} ⊂ Rn and Z = {z|
∑

zi = 1zi ≥
0} ⊂ Rm.
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• For a fixed z, show

max
z∈Z

min
x∈X

x>Az = max
z∈Z

min{[Az]1, . . . , [Az]n} = max
z∈Z,[Az]i≥t

t

• In a similar fashion, show

min
x∈X

max
z∈Z

x>Az = min
x∈X,[A>x]i≤u

u

• Finally, show that the linear programs

max
z∈Z,[Az]i≥t

t and min
x∈X,[A>x]i≤u

u

are dual to each other.
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Problem 3: Duality Gaps

Consider the non-convex quadratic program

min x2 + y2 + z2 + 2xy + 2yz + 2zx

s.t. x2 = y2 = z2 = 1

• Show that the dual problem is a semidefinite program (Hint:
write the program in matrix form in terms of quadratic forms.)

• show that the dual optimum is zero

• By trying cases, show that the minimum of the primal is
equal to one.

42


