Finite differences: ODEs

Problem 6.1

In analogy to Eq. (6.10), we evaluate

d
f[x + h,y(x) + hf(x,y(x))] = f(x,y(x)) + hﬁf[x + h,y(x) + hf(x,y(x))”h:O + 0(h?)
0 0
= F(y(0)) +h [é + f%] + O(h?)

Inserting this into Eq. (6.33), we obtain

h2[af 9
y(e+ ) = y() + hf (x,y(0) + = [é + f%] +0(h?)

Thus, the Heun method is second-order accurate.

Problem 6.2
Firstly, for future reference, the exact solution to the harmonic oscillator equation
y+y=0 (0.1)
with initial conditions
y©0)=1, y(0)=0 (0.2)
is
y(t) = cost. (0.3)

Defining y; = y and y, = y, the second-order ODE (0.1) can be written as a system of first-order
ODEs

V1= Y2 Y2 =—)1 (0.4)
with initial conditions
y1(0) =1, y2(0) = 0. (0.5)

The interval on which we wish to obtain a numerical solution is [0, T], with T = 1007. We shall
divide this interval into N sub-intervals and define the mesh size At = T /N further, we shall define

t, = nAt, n=0,1,...,N. (0.6)

Euler method
The Euler method can then be formulated recursively

V1(tns1) = Y1 (&) + At -y, (8y), (0.7)
yz(tn+1) = yz(tn) —At- yl(tn)



with starting conditions y, (t,) = 1, y,(t,) = 0 in accordance with Eq. (0.5).

We have implemented this method using the Matlab function Euler listed below.
function [yl,e,eT,eTd]=Euler (N, T)

dt=T/N;
yl=zeros (1l,N+1); y2=zeros(l,N+1); % pre-allocation

yl(1l)=1; y2(1)=0; % initial conditions

for n=1:N
vyl (n+l)=yl (n)+dt*y2(n);
y2 (n+1)=y2 (n) -dt*yl(n);
end

t=(0:N) *dt;

Yl=cos (t); Y2=-sin(t):;
e=sum(abs (Y1-y1l))/ (N+1);
eT=abs (Y1 (N+1)-y1 (N+1));
eTd=abs (Y2 (N+1) -y2 (N+1)) ;

o\

exact solutions

average error at over the interval

error in the value at the last point
error in the derivative at the last point

o o

o

The function Euler uses as input the number of points N, and the output time T, and outputs the
average error over the interval e and the errors in the value and derivative at the end point, e; and

eT'd.

After some numerical experimentation, it became clear that the amount of memory required to get e
below 0.001 for T = 1007 was in excess of 8 X 107, causing Matlab to throw “out of memory”
errors on the computer used (which has 3 Gb RAM).

Therefore, we reduced the interval by a factor 10 to T = 10m. In order to find out how many points
were necessary to attain and average error e < 0.001, we used a trial-and-error method employing a
while loop which incremented N with various step sizes until the above condition was fulfilled.

T=10*pi;
N=157200;

[y,e,eT,eTd]=Euler (N, T);

while e>0.001
N=N+1;
[yv,e,eT,eTd]=Euler(N,T);
end

107w
157,245
For this same step size, the error at the last point was e; = 0.003 and the error in the derivative at

the last point ep 4 =~ 4 X 1077.

The loop ended at N, 991 = 157,245. Hence, the required step size is At = ~2.0x 1074,

Runge-Kutta method
Equations (0.4) can be written in the general form



1 =f6ynLy2) =Y

. 0.8
Y2 =9t y1,Y2) = =) ©8)
The Runge-Kutta method for this system is as follows'. Defining
ky = At - f(tn':)"l(tn)'YZ(tn)) = At -y, (tn)
Ly = At g(tn, y1(tn), y2(tn)) = —At - y1(ty)
At kq l l
ko = 8t £ (6 + 23 () + 2,y (60) +—1) = 8¢ (72t +—1)
A k
= 8t~ g (n + =0 71 (6) + 2 2(6) + ) = 8t () + )
ks = At - t+A— (t)+k (t)+ = At (t)+ (0.9)
3 f > »Y1lln 2 »Y2In 2 Yalln
At k,
by =8t g (tn + 5 () + 2 ,y2<tn) ' ) ¢ (1) + )
A
ky = At - f(t + ;}’1(tn)+ »3’2(tn)+ 23> At()’ (tn) + )
A k
ly = At- g(t +— ;Y1(tn)+ ;}’Z(tn)"' ) At( 1(t) + )
and
1
k = _(kl + 2k2 + 2k3 + k4,),
6 (0.10)
l = g(ll + 2l2 + Zl3 + l4_)
we have the following recursive equations:
Y1(tne1) =21 () + k, (0.11)

V2(tni1) = y2(tn) + L.

We have implemented in this into the following Matlab code:
function [yl,e,eT,eTd]=RK4 (N, T)

dt=T/N;
yl=zeros (1,N+1); y2=zeros(l,N+1); % pre-allocation

yl(l)=1; y2(1)=0; % initial conditions

for n=1:N
kl=dt*vy2(n);
11=-dt*yl(n);
k2=dt* (y2 (n)+11/2) ;
12=-dt* (y1l (n) +k1/2
k3=dt* (y2 (n +12/2);
13=—dt*(yl(n)+k2/2);
k4=dt* (y2 (n)+13/2);
14=-dt* (y1(n)+k3/2);
k=1/6* (k1l+2*k2+2*k3+k4) ;
1=1/6*(11+2*124+2*13+14) ;
vyl (n+l)=yl(n)+k;
y2 (n+l)=y2 (n)+1

end

Thttp://www.nsc.liu.se/~boein/f77t090/rk.htmi]



http://www.nsc.liu.se/~boein/f77to90/rk.html

t=(0:N) *dt;

Yl=cos (t); Y2=-sin(t);
e=sum (abs (Y1-y1l))/ (N+1);
eT=abs (Y1 (N+1)-y1 (N+1));
eTd=abs (Y2 (N+1) -y2 (N+1)) ;

o\

exact solutions

average error at over the interval

error in the value at the last point
error in the derivative at the last point

o o

o°

Using an interval of T = 107 and the same trial-and-error / brute force method as before — to be
specific, with the following code —

T=10%pi;
N=26200;

dt=T/N;
t=(0:N) *dt;
[v,e,eT,eTd]=RK4 (N, T);

while e>0.001
N=N+1;
[v,e,eT,eTd]=RK4 (N, T);
end

we found that the average error over the interval e dropped below 0.001 first for N = 26,208, which

T 10w
corresponds to At = — =
N 26,208

the error in the derivative at the last point e 4 =~ 2 x 107°.

~ 0.0012. The error in value at the last point was e = 0.003, and

Problem 6.3

Since the RK4 method is fourth-order accurate, we expect the local error to decrease by a factor of
10* for each reduction in the step size by a factor of 10.



