
10 Cellular Automata and Lattice Gases

We started our discussion of partial differential equations by considering how they arise

as continuum approximations to discrete systems (such as cars on a highway, or masses

connected by springs). We then studied how to discretize continuum problems to develop

numerical algorithms for their solution. In retrospect this might appear silly, and it can

be: why bother with the continuum description at all, if the goal is to solve the problem

with a digital computer rather than an analog pencil?

Consider a gas. Under ordinary circumstances, it can be described by the continu-

ous distribution of pressure, temperature, and velocity. However, on short length scales

(for example, when studying the head of a disk drive flying a micron above the platter),

this approximation breaks down and it becomes necessary to keep track of the indi-

vidual gas molecules. If the energy is high enough (say, in a nuclear explosion) even

that is not enough; it’s necessary to add the excited internal degrees of freedom in the

molecules. Or if the gas is very cold, quantum interactions between the molecules become

significant and it’s necessary to include the molecular wave functions. Such molecular

dynamics calculations are done routinely, but require a great deal of effort: for the

full quantum case, it’s a challenge to calculate the dynamics for as long as a picosec-

ond.

Any gas can be described by such a microscropic description, but that is usually

too much work. Is it possible to stop between the microscopic and macroscopic levels,

without having to pass through a continuum description? The answer is a resounding

yes. This is the subject of lattice gases, or more generally, of cellular automata (CA),

which in the appropriate limits reduce to both the microscopic and the macroscopic

descriptions. The idea was developed by Ulam [Finkel & Edelman, 1985], von Neumann

[von Neumann, 1966], and colleagues [Shannon & McCarthy, 1956] in the 1950s, and

has since flourished with the development of the necessary theoretical techniques and

computational hardware.

A classic example of a CA is Conway’s Game of Life [Gardner, 1970], in which

occupied sites on a grid get born, survive, or die in succeeding generations based on the

number of occupied neighboring sites. Any CA has the same elements: a set of connected

sites, a discrete set of states that are allowed on the sites, and a rule for how they are

updated. We will start by studying a slighly more complicated system that recovers the

Navier-Stokes fluid equations, and then will consider the more general question of how

cellular automata relate to computation.



120 Cellular Automata and Lattice Gases DRAFT

a  =  1a  =  4

a  =  5 a  =  6

a  =  2a  =  3y

x

Figure 10.1. Direction indices for a triangular lattice.

10.1 LATTICE GASES AND FLUIDS

Hydrodynamics was one of the early successes of the theory of cellular automata, and

remains one of the best-developed application areas. A cellular automata model of a fluid

(traditionally called a lattice gas) is specified by the geometry of a lattice, by the discrete

states permitted at each site, and by an update rule for how the states change based on

their neighbors. Both partial differential equations and molecular dynamics models use

real numbers (for the values of the fields, or for the particle positions and velocities). A

lattice gas discretizes everything so that just a few bits describe the state of each site on

a lattice, and the dynamics reduce to a simple look-up table based on the values of the

neighboring sites. Each site can be considered to be a parcel of fluid. The rules for the

sites implement a “cartoon” version of the underlying microscopic dynamics, but should

be viewed as operating on a longer length scale than individual particles. We will see that

the conservation laws that the rules satisfy determine the form of the equivalent partial

differential equations for a large lattice, and that the details of the rules set the parameter

values.

A historically important example of a lattice gas is the FHP rule (named after its

inventors, Frisch, Hasslacher, and Pomeau [Frisch et al., 1986]). This operates in 2D on

a triangular lattice, and the state of each site is specified by six bits (Figure 10.1). Each

bit represents a particle on one of the six links around the site, given by the unit vectors

α̂. On each link a particle can either be present or absent, and all particles have the
same unit velocity: in the absence of collisions, they travel one lattice step ahead in one

time step. The simple update rule proceeds in two stages, chosen to conserve particle

number and momentum (Figure 10.2). First, collisions are handled. At the beginning

of the step a particle on a link is considered to be approaching the site, and after the

collision step a particle on a link is taken to be leaving the site. If a site has two particles

approaching head-on, they scatter. A random choice is made between the two possible

outgoing directions that conserve momentum (always choosing one of them would break

the symmetry of the lattice). Because of the large number of sites in a lattice gas it is

usually adequate to approximate the random decision by simply switching between the

two outgoing choices on alternate site updates. If three particles approach symmetrically,

they scatter. In all other configurations not shown the particles pass through the collision



DRAFT 10.1 Lattice Gases and Fluids 121

o r
t w o - b o d y

t h r e e - b o d y

t r a n s p o r t

c o l l i s i o n

c o l l i s i o n

Figure 10.2. Update rules for an FHP lattice gas.

unchanged. After the collision step there is a transport step, in which each particle moves

by one unit in the direction that it is pointing and arrives at the site at the far end of the

link. While these rules might appear to be somewhat arbitrary, it will turn out that the

details will not matter for the form of the governing equations, just the symmetries and

conservation laws.

A simpler rule related to FHP is HPP (named after Hardy, de Pazzis, and Pomeau

[Hardy et al., 1976]), which operates on a square lattice. Each site is specified by four

bits, and direction-changing collisions are allowed only when two particles meet head-on

(unlike FHP, here there is only one possible choice for the exit directions after scattering).

Wewill see that HPP and FHP, although apparently quite similar, behave very differently.

Let’s label time by an integer T , the lattice sites by a vector ~X , and the lattice directions
by a unit vector α̂. If we start an ensemble of equivalent lattices off with the same update
rule but different random initial conditions, we can define fα( ~X, T ) to be the fraction of
sites ~X at time T with a particle on link α̂. In the limit of a large ensemble, this fraction
becomes the probability to find a particle on that link. Defining this probability will let

us make a connection between the lattice gas and partial differential equations.

At each time step, in the absence of collisions, the fraction of particles at site ~X at

time T pointing in direction α̂ will move one step in that direction:

fα( ~X + α̂, T + 1) = fα( ~X, T ) . (10.1)

Let’s introduce new rescaled variables ~x = δx ~X and t = δtT in terms of the (small) space



122 Cellular Automata and Lattice Gases DRAFT

step δx and time step δt. Substituting in these variables, collision-free transport becomes

fα(~x + δxα̂, t + δt)− fα(~x, t) = 0 . (10.2)

If the probability fα varies slowly compared to δx and δt, we can expand equation (10.2)
in δx and δt:

∂fα(~x, t)

∂t
δt + α̂ · ∇fα(~x, t) δx +O(δ2) = 0 . (10.3)

Choosing to scale the variables so that δx = δt, to first order this becomes

∂fα(~x, t)

∂t
+ α̂ · ∇fα(~x, t) = 0 . (10.4)

This equation says that the time rate of change of the fraction of particles at a point is

equal to the difference in the rate at which they arrive and leave the point by straight

transport (remember equation (8.6)). If collisions are allowed, the time rate of change of

fα will depend on both the spatial gradient and on a collision term Ωα scattering particles

in or out from other directions

∂fα(~x, t)

∂t
+ α̂ · ∇fα(~x, t) = Ωα(~x, t) . (10.5)

fα is the distribution function to find a particle. The collision term Ωα will in general

depend on the distribution function for pairs of particles as well as the one-particle

distribution function, and these in turn will depend on the three-particle distribution

functions, and so forth. This is called the BBGKY hierarchy of equations (Bogolyubov,

Born, Green, Kirkwood, Yvon [Boer & Uhlenbeck, 1961]). The Boltzmann equation

approximates this by assuming that Ωα depends only on the single-particle distribution

functions fα.

We derived equation (10.5) by making use of the fact that particles travel one lattice site

in each time step, and then assuming that fα varies slowly. Now let’s add the conservation
laws that have been built into the update rules. The total density of particles ρ at a site
~x is just the sum over the probability to find one in each direction

∑

α

fα(~x) = ρ(~x) , (10.6)

and the momentum density is the sum of the probabilities times their (unit) velocities
∑

α

α̂fα = ρ~v . (10.7)

Since our scattering rules conserve particle number (the particles just get reoriented), the

number of particles scattering into and out of a site must balance
∑

α

Ωα(~x) = 0 . (10.8)

And since the rules conserve momentum, the net momentum change from scattering

must vanish
∑

α

α̂Ωα = 0 . (10.9)



DRAFT 10.1 Lattice Gases and Fluids 123

Therefore, summing equation (10.5) over directions,

∑

α

[

∂fα(~x, t)

∂t
+ α̂ · ∇fα(~x, t)

]

=
∑

α

Ωα (10.10)

∂

∂t

∑

α

fα +
∑

α

α̂ · ∇fα = 0

∂ρ

∂t
+∇ · (ρ~v) = 0 . (10.11)

This is the familiar equation for the continuity of a fluid, and has arisen here because we’ve

chosen scattering rules that conserve mass. A second equation comes from momentum

conservation, multiplying equation (10.5) by α̂ and summing over directions

∂

∂t

∑

α

α̂fα +
∑

α

α̂(α̂ · ∇fα) = 0 . (10.12)

The ith component of this vector equation is

∂

∂t

∑

α

α̂ifα +
∑

α

∑

j

α̂iα̂j

∂fα
∂xj

= 0 . (10.13)

Defining the momentum flux density tensor by

Πij ≡
∑

α

α̂iα̂jfα , (10.14)

this becomes

∂ρvi
∂t

+
∑

j

∂Πij

∂xj

= 0 . (10.15)

We now have two equations, (10.11) and (10.15), in three unknowns, ρ, ~v, and Π. To
eliminate Π we can find the continuum form of the momentum flux density tensor by

using a Chapman–Enskog expansion [Huang, 1987], a standard technique for finding

approximate solutions to the Boltzmann equation. We will assume that fα depends only
on ~v and ρ and their spatial derivatives (and not on time explicitly), and so will do an
expansion in all possible scalars that can be formed from them. The lowest-order terms

of the deviation from the equilibrium uniform configuration are

fα =
ρ

6

(

1 + 2α̂ · ~v + A

[

(α̂ · ~v)2 −
1

2
|~v|2

]

+ B

[

(α̂ · ∇)(α̂ · ~v)−
1

2
∇ · ~v

]

+ · · ·

)

. (10.16)

The terms have been grouped this way to guarantee that the solution satisfies the density

and momentum equations (10.6) and (10.7) (this can be verified by writing out the com-

ponents of each term). In this derivation the only features of the FHP rule that we’ve used

are the conservation laws for mass and momentum, and so all rules with these features

will have the same form of the momentum flux density tensor (to this order), differing

only in the value of the coefficients A and B.



124 Cellular Automata and Lattice Gases DRAFT

The Navier–Stokes governing equation for a d-dimensional fluid is

∂ρ~v

∂t
+ µρ(~v · ∇)~v = −∇p + η∇2~v + (ζ +

η

d
)∇(∇ · ~v) , (10.17)

where p is the pressure, η is the shear viscosity, ζ is the bulk viscosity, and µ = 1

for translational invariance [Batchelor, 1967]. Using the Chapman-Enskog expansion to

evaluate the momentum flux density tensor in equation (10.15) and comparing it with

the Navier–Stokes equation shows that they agree if ζ = 0, η = ρν = −ρB/8 (ν is the
kinematic viscosity), µ = A/4, and p = ρ/2. Further, in the Boltzmann approximation it
is possible (with a rather involved calculation) to find the values of A and B for a given

CA rule [Wolfram, 1986].

The simple conservation laws built into our lattice gas have led to the full Navier–

Stokes equation; the particular rule determines the effective viscosity of the fluid. While

the details of this calculation are complicated, there are some simple and important

conclusions. The viscosity for the square lattice (HPP model) turns out to depend on

direction and hence is not appropriate for most fluids, but the viscosity of the triangular

lattice (FHP model) is isotropic. The simulations in Problems 10.1 and 10.2 will show

just how striking the difference is. This profound implication of the lattice symmetry

was not appreciated in the early days of lattice gas models, and helped point the way

towards the realization that a simple lattice gas model could in fact be very general. In

3D the situation is more difficult because there is not a 3D lattice that gives an isotropic

viscosity. However, it can still be achieved by using a quasiperidoic tiling that is not

translationally periodic [Boghosian, 1999], or a cut through a higher-dimensional lattice

such as the 4D Face-Centered Hyper-Cubic (FCHC) rule [Frisch et al., 1987]. It is not

possible to reduce the viscosity in a simple model like FHP (an attribute that is needed

for modeling a problem such as air flow), but this can be done by adding more than one

particle type or by increasing the size of the neighborhood used for the rule [Dubrulle

et al., 1991].

Lattice gas models have not displaced conventional numerical hydrodynamics codes,

which are much more mature, and which make it easier to adjust the numerical param-

eters. But with much less effort they can be surprisingly competitive, they are easier to

apply to more complex geometries, and the required hardware, software, and theory are

all advancing rapidly [Rothman & Zaleski, 2004].

10.2 CELLULAR AUTOMATA AND COMPUTING

Simulating a cellular automata is an particularly simple type of computation. Rather than

the many kinds of memory, instructions, and processors in a conventional computer, it

requires just storage for the bits on the lattice, and an implementation of the local update

rule. This is an extreme form of a SIMD (Single Instruction Multiple Data) parallel

computer. The update can be performed by using the bits at each site as an index into

a look-up table, so the architecture reduces to memory cycling through a look-up table

(where the sequence of the memory retrieval determines the lattice geometry). This means

that relatively modest hardware can match or exceed the performance of a supercomputer

for CA problems [Toffoli & Margolus, 1991].



DRAFT 10.2 Cellular Automata and Computing 125

ShearShear

Figure 10.3. Rotation by three shears.

We’ve seen that a cellular automata computer can simulate fluids. A wide range of

other physical systems also can be modeled by cellular automata rules; an important

example is the rendering of 3D graphics. An obvious possibility is to replace the ray-

tracing calculations used in computer graphics by the propagation of lattice photons.

Less obviously, global rotations in 2D and 3D can be done by shear operations, which

can be implemented efficiently on a CA-style computer (Figure 10.3) [Toffoli & Quick,

1997]. Therefore, by using cellular automata 3D graphics can feasibly be done from a

first-principles description.

Conversely, instead of using a computer to simulate a CA, a CA can be used to

simulate a computer. One way to do this is by implementing Boolean logic in CA rules;

this was used to first prove their computational universality [Banks, 1971]. This approach

is attractive for hardware scaling because it builds in physical constraints; any technology

that can perform the local cell updates can execute the same global programs [Gershenfeld

et al., 2010].

Alternatively, since CAs can model physical systems, and physical systems can com-

pute, CAs can model physical systems that compute [Margolus, 1984]. Consider the

billiard-ball CA in Figure 10.4 (the underlying lattice is not shown). This is similar to

a lattice gas: billiard balls move on a lattice with unit velocity, and scatter off of each

other and from walls. Two balls colliding generates the AND function, and if one of the

streams of balls is continuous it generates the NOT function of the other input. These

two elements are sufficent to build up all of logic [Hill & Peterson, 1993]. Memory can

be implemented by delays, and wiring by various walls to guide the balls. The balls can

be represented by four bits per site (one for each direction), with one extra bit per site

needed to represent the walls.

This kind of computing has many interesting features [Fredkin & Toffoli, 1982]. No

information is ever destroyed, which means that it is reversible (it can be run backwards

to produce inputs from outputs) [Bennett, 1988], and which in turn means that it can

be performed (in theory) with arbitrarily little dissipation [Landauer, 1961]. Reversibility

is also essential for designing quantum cellular automata, since quantum evolution is

reversible. A quantum CA is much like a classical CA, but it permits the sites to be in

a superposition of their possible states [Lloyd, 1993]. This is a promising architecture

for building quantum computers based on short-range interactions [Nielsen & Chuang,

2000].



126 Cellular Automata and Lattice Gases DRAFT

A

B

A  A N D  B

( N O T  A )  A N D  B

A  A N D  ( N O T  B )

A  A N D  B
t r a n s p o r t

s c a t t e r i n g  ( l o g i c )

r e f l e c t i o n

d e l a y  ( m e m o r y )

s h i f t

c r o s s o v e r

Figure 10.4. Billiard ball logic.

For some, cellular automata are much more than just an amusing alternative to tra-

ditional models of computation [Fredkin, 1990]. Most physical theories are based on

real numbers. This means that a finite volume of space contains an infinite amount of

information, since its state must be specified with real numbers. But if there is an en-

ergetic cost to creating information (as there is in most theories), then this implies an

infinite amount of energy in a finite space. This is obviously unacceptable; something

must bound the information content of space. While such a notion can arise in quantum

field theories, CAs start as discrete theories that do not have this problem, and so in many

ways they are more satisfying than differential equations as a way to specify governing

equations. There is nothing less basic about them than differential equations; which is

more “fundamental” depends on whether you are solving a problem with a pencil or a

computer.

10.3 SELECTED REFERENCES

[Hasslacher, 1987] Hasslacher, Brosl (1987). Discrete Fluids. Los Alamos Science,
175–217.

A very good introductory paper for lattice gases.

[Doolen et al., 1990] Doolen, Gary D. Frisch, Uriel, Hasslacher, Brosl, Orszag, Steven, &
Wolfram, Stephen (eds) (1990). Lattice Gas Methods for Partial Differential
Equations. Santa Fe Institute Studies in the Sciences of Complexity. Reading,
MA: Addison-Wesley.



DRAFT 10.4 Problems 127

This collection includes many of the important articles, including [Wolfram,
1986] and [Frisch et al., 1987], which work out the connection between lattice
gases and hydrodynamics.

[Rothman & Zaleski, 2004] Rothman, Daniel H., & Zaleski, Stephane. (2004). Lattice-Gas
Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge:
Cambridge University Press.

Reviews the basic theory and extends it to porous media and fluids with multiple
components.

10.4 PROBLEMS

(10.1) Simulate the HPP lattice gas model. Take as a starting condition a randomly

seeded lattice, but completely fill a square region in the center and observe how it

evolves. Use periodic boundary conditions. Now repeat the calculation, but leave

the lattice empty outside of the central filled square.

(10.2) Simulate the FHP model, with the same conditions as the previous model, and

describe the difference. Alternate between the two possible two-body rules on

alternate site updates.


