
6 Random Systems

So far we have been studying deterministic systems. But the world around us is not

very deterministic; there are fluctuations in everything from a cup of coffee to the global

eclonomy. In principle, these could be described from first principles, accounting for the

actions of every molecule in the cup or every person on the planet. This is hopeless of

course, for even if we could determine the initial condition of the whole system, any

tiny errors we made would rapidly grow so that our model would no longer be exact.

Even if that wasn’t a problem, such an enormous model would offer little insight beyond

observing the original system.

Fortunately, random (or stochastic) systems can be as simple to understand as deter-

ministic systems, if we’re careful to ask the right questions. It’s a mistake to try to guess

the value of the toss of a fair coin, because it is completely uncertain. But we can quite

precisely answer questions about the likelihood of events such as seeing a particular string

of heads and tails, and easily model a typical sequence of tosses. In fact, simple stochastic

systems are as straightforward as simple deterministic ones. Just as deterministic sys-

tems get harder to understand as they become more complex, stochastic systems become

harder to understand as they become less ideally random, and approximation methods

are needed to describe this deviation.

Different problems lie at different ends of this continuum. For a bridge builder, the

bridge had better remain standing with near-certain probability, so the uncertainty is

≈ 1 − ǫ, where ǫ is very small. For a financial trader, markets are nearly random, and
so any (legal) trading strategy must start with the assuption of near-random uncertainty.

There, the probabilities are ≈ 0.5 + ǫ. The representations appropriate to 1 − ǫ are
different from the ones aimed at 0.5 + ǫ, but they do share the central role of variables
that are random rather than deterministic.

Our first step will be to look at how to describe the properties of a random variable,

and the inter-relationships among a collection of them. Then we will turn to stochastic

processes, which are random systems that evolve in time. The chapter closes by looking

at algorithms for generating random numbers.

6.1 RANDOM VARIABLES

The most important concept in all of stochastic systems is the idea of a random variable.

This is a fluctuating quantity, such as the hiss from an amplifier, that is described by

governing equations in terms of probability distributions. The crucial distinction between
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random variables and ordinary deterministic variables is that it is not possible to predict

the value of a random variable, but it is possible to predict the probability for seeing a

given event in terms of the random variable (such as the likelihood of observing a value

in a particular range, or the functional form of the power spectrum). An ensemble of

identical stochastic processes will generate different values for the random variables, but

each member of the ensemble (or realization) will obey these same distribution laws.

It is important to distinguish between the random variables that appear in distribution

functions and the particular values that are obtained in a single realization of a stochastic

process by drawing from the distribution.

The simplest random system consists of values x taken from a distribution p(x). For
example, in a coin toss x can be heads or tails, and p(heads) = p(tails) = 1/2. In this
case x takes on discrete values; it is also possible for a random variable to come from a
continuous distribution. For a continuous variable, p(x) dx is the probability to observe
a value between x and x + dx, and more generally

∫ b

a

p(x) dx (6.1)

is the probability to observe x between a and b. For a continuous variable, remember that
p(x) must always appear with a dx if you want to make a statement about the likelihood
of an observable event – a common mistake is to try to evaluate the likelihood of an

event by using the value of the density p(x) alone without integrating it over an interval.
That is meaningless; among many problems it can easily lead to the impossible result of

probabilities greater than 1.

Now consider a string (x1, x2, . . . , xN ) of N x’s drawn from a distribution p(x), such
as a series of coin tosses. The average value (or expectation value) of a function f (x) is
defined by

〈f (x)〉 = lim
N→∞

1

N

N∑

i=1

f (xi) (6.2)

=

∫ ∞

−∞

f (x) p(x) dx .

(in the statistical literature, the expectation is usually written E[f (x)] instead of 〈f (x)〉).
The equivalence of these two equations can be taken as an empirical definition of the

probability distribution p(x). This is for a continuous variable; here and throughout this
chapter, for a discrete variable the integral is replaced by a sum over the allowed values.

If p(x) is not defined from −∞ to∞ then the integral extends over the values for which

it is defined (this is called its support). A trivial example of an expectation value is

〈1〉 =
∫ ∞

−∞

1 p(x) dx = 1 (6.3)

(since probability distributions must be normalized). An important expectation is the

mean value

x̄ ≡ 〈x〉 =
∫ ∞

−∞

x p(x) dx . (6.4)

The mean value might never actually occur (for example p(x) might be a bimodal dis-
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tribution with two peaks that vanish at p(x̄)). Therefore, another useful quantity is the
value of x at which p(x) is a maximum, the maximum likelihood value.

The mean value tells us nothing about how big the fluctuations in x are around it. A
convenient way to measure this is by the variance σ2x, defined to be the average value of
the square of the deviation around the mean

σ2x ≡ 〈(x− x̄)2〉
= 〈x2 − 2xx̄ + x̄2〉
= 〈x2〉 − 2〈x〉x̄ + x̄2

= 〈x2〉 − 2x̄2 + x̄2

= 〈x2〉 − 〈x〉2 (6.5)

(remember that x̄ = 〈x〉 is just a constant). The square root of the variance is called the
standard deviation σx. To calculate the variance, we need to know the mean value, and

the second moment

〈x2〉 =
∫ ∞

−∞

x2 p(x) dx . (6.6)

It is similarly possible to define the higher-order moments 〈xn〉.

6.1.1 Joint Distributions

Now let’s consider two random variables x and y, such as the result from throwing a pair
of dice, that are specified by a joint density p(x, y). The expected value of a function that
depends on both x and y is

〈f (x, y)〉 =
∫ ∞

−∞

∫ ∞

−∞

f (x, y) p(x, y) dx dy . (6.7)

p(x, y) must be normalized, so that
∫ ∞

−∞

∫ ∞

−∞

p(x, y) dx dy = 1 . (6.8)

It must also be normalized with respect to each variable, so that

p(x) =

∫ ∞

−∞

p(x, y) dy (6.9)

and

p(y) =

∫ ∞

−∞

p(x, y) dx . (6.10)

Integrating a variable out of a joint distribution is called marginalizing over the variable.

For joint random variables a very important quantity is p(x|y) (“the probability of x
given y”). This is the probability of seeing a particular value of x if we already know the
value of y, and is defined by Bayes’ rule

p(x|y) = p(x, y)

p(y)
, (6.11)
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which takes the joint probability and divides out from it the known scalar probability.

This is easily extended to combinations of more variables,

p(x, y, z) = p(x|y, z) p(y, z)
= p(x|y, z) p(y|z) p(z)
= p(x, y|z) p(z) , (6.12)

manipulations that will recur in later chapters.

If x and y are independent, p(x, y) = p(x) p(y). The probability of seeing two in-
dependent events is the product of the probabilities of seeing each alone. For inde-

pendent variables, the conditional distribution will then depend on just one variable,

p(x|y) = p(x). This provides a convenient way to remember the form of Bayes’ rule,

because for independent variables p(x|y) = p(x)p(y)/p(y) = p(x). For uncorrelated vari-
ables, 〈xy〉 = 〈x〉〈y〉. Independent variables are always uncorrelated, but the converse
need not be true (although it often is).

Bayes’ rule has an almost mystical importance to the (frequently vocal) community

of Bayesians, who object to any distribution that is not conditional. Equation (6.2)

represents a frequentist viewpoint, in which probabilites are defined by observed fractions

of events. If you are told that the probability of flipping a coin and seeing a head is 50%,

you can perform a series of trials to check that. But, if you’re told that the chance of

rain on a particular day is 50%, you can’t check that in the same way. The day will

happen only once, so it doesn’t make sense to discuss an ensemble of that day. This kind

of probability is really a conclusion drawn from a collection of models and prior beliefs.

Since you almost always believe something, when you announce to the world a probability

p(observation) you are really reporting p(observation|prior beliefs). From Bayes’ rule, we
know that these are related by

p(observation|prior beliefs) = p(observation, prior beliefs)

p(prior beliefs)

=
p(prior beliefs|observation) p(observation)

p(prior beliefs)
. (6.13)

A term p(prior beliefs) is called a prior, and no well-equipped Bayesian would be caught
without one. While this insistence can be dogmatic, it has helped guide many people

to recognize and clearly state their procedure for handling advance knowledge about a

system and how it gets updated based on experience. We’ll have much more to say about

this in Chapter 12.

To work with random variables we must understand how their distributions change

when they are transformed in mathematical expressions. First, if we know a distribution

p(x), and are given a change of coordinates y(x), then what is the distribution p(y)? This
is easily found by remembering that probabilities are defined in terms of the value of the

distribution at a point times a differential element, and locally equating these:

p(y) |dy| = p(x) |dx|

⇒ p(y) = p(x)

∣
∣
∣
∣

dy

dx

∣
∣
∣
∣

−1

. (6.14)

In higher dimensions, the transformation of a distribution is done by multiplying it by
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the Jacobian, the absolute value of the determinant of the matrix of partial derivatives

of the change of coordinates (Problem 6.2).

If we take p(y) = 1 in the unit interval and integrate both sides of equation (6.14), this
relationship has a useful implication

∫ x

−∞

p(x′) dx′ =

∫ x

−∞

1
dy(x′)

dx
dx′

P (x) = y(x) . (6.15)

This means that if we choose the transformation y(x) to be the integral P (x) of a given
distribution p(x) (P is called the cumulative distribution), and pick random values of

y from a uniform distribution, then the corresponding values of x will be distributed
according to p.

The next question is how to combine random variables. The simplest operation is

adding two independent random variables, x1 drawn from p1, and x2 drawn from p2, to
create a new random variable y = x1 + x2. To find the probability distribution p(y) for
y, we must add up the probabilities for each of the different ways that x1 and x2 can add
up to that value of y. The probability of seeing a particular pair of x1 and x2 is given by
the product of their probabilities, and so integrating we see that

p(y) =

∫ ∞

−∞

p1(x)p2(y − x) dx

= p1(x) ∗ p2(x) . (6.16)

The probability distribution for the sum of two random variables is the convolution of

the individual distributions. Now consider the average of N variables

yN =
x1 + x2 + · · · + xN

N
(6.17)

that are independent and identically distributed (often abbreviated as iid), and let’s look

at what happens as N → ∞. The distribution of y is equal to the distribution of x
convolved with itself N times, and since taking a Fourier transform turns convolution

into multiplication, the Fourier transform of the distribution of y is equal to the product
of the N transforms of the distribution of x. This suggests an important role for Fourier
transforms in studying random processes.

6.1.2 Characteristic Functions

The Fourier transform of a probability distribution is called the characteristic function,

and is equal to the expectation value of the complex exponential

〈eikx〉 =
∫ ∞

−∞

eikxp(x) dx . (6.18)

For a multivariate distribution, the characteristic function is

〈ei~k·~x〉 =
∫ ∞

−∞

· · ·
∫ ∞

−∞

ei
~k·~xp(~x) d~x . (6.19)
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Now let’s look at the characteristic function for the deviation of yN , the average of N iid

random numbers x1, . . . , xN , from the average value x̄:

〈eik(yN−x̄)〉 = 〈eik(x1+x2+···+xN−Nx̄)/N 〉
= 〈eik[(x1−x̄)+···+(xN−x̄)]/N 〉
= 〈eik(x−x̄)/N 〉N

=

〈

1 +
ik

N
(x− x̄)− k2

2N 2
(x− x̄)2 +O

(
k3

N 3

)〉N

=

[

1 + 0− k2σ2x
2N 2

+O
(
k3

N 3

)]N

≈ e−k2σ2
x
/2N . (6.20)

In deriving this we have used the fact that the xi are independent and identically dis-

tributed, and done a Taylor expansion around the average value. The last line follows

because

lim
N→∞

[

1 +
x

N

]N

= ex (6.21)

(which can be verified by comparing the Taylor series of both sides), and we can neglect

higher-order terms in the limit N → ∞. To find the probability distribution for y we
now take the inverse transform

p(yN − x̄) =
1

2π

∫ ∞

−∞

e−k2σ2
x
/2Ne−ik(y−x̄) dk

=

√

N

2πσ2x
e−N (yN−x̄)2/2σ2

x . (6.22)

Something remarkable has happened: in the limit N → ∞, the sum of N variables ap-

proaches a Gaussian distribution, independent of the distribution of the variables! This

is called the Central Limit Theorem, and explains why Gaussians are so important in

studying random processes. The Gaussian distribution is also called the normal distri-

bution, because it is so, well, normal. Since the standard deviation is σx/
√
N , which

vanishes as N → ∞, equation (6.22) also contains the Law of Large Numbers: the
average of a large number of random variables approaches the mean, independent of the

distribution.

The characteristic function takes on an interesting form if the complex exponential is

expanded in a power series:

〈ei~k·~x〉 =
∫

ei
~k·~x p(~x) d~x

=

∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nd=0

(ik1)
n1

n1!

(ik2)
n2

n2!
· · · (ikN )

nN

nN !
〈xn1
1 xn2

2 · · ·xnN

N 〉 . (6.23)

This provides a relationship between the moments of a distribution and the distribution

itself (via its Fourier transform). For this reason, the characteristic function is also called

the moment generating function. If the characteristic function is known, the moments
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can be found by taking derivatives of the appropriate order and evaluating at ~k = 0 (only
one term will be nonzero).

Another important object is the logarithm of the characteristic function. If we choose

to write this as a power series in k of the form (for the 1D case)

log〈eikx〉 =
∞∑

n=1

(ik)n

n!
Cn , (6.24)

this defines the cumulants Cn (note that the sum starts at n = 1 because log 1 = 0 and so
there is no constant term). The cumulants can be found by comparing this to the power

series expansion of the characteristic function,

exp

(
∞∑

n=1

(ik)n

n!
Cn

)

=

∞∑

n=0

(ik)n

n!
〈xn〉 , (6.25)

expanding the exponential as

ex = 1 + x +
x2

2
+
x3

6
+ · · · , (6.26)

and grouping terms by order of k. The cumulants have an interesting connection to
Gaussianity (Problem 6.1).

6.1.3 Entropy

In the next Section we’ll relate the Fourier transform of a random process to its correlation

function, but in Chapter 20 we’ll see that signals from even simple nonlinear systems can

have broadband power spectra and hence featureless correlation structure. Information-

theoretic quantities provide an elegant alternative that captures the essential features of a

correlation function, and more. Let’s start by assuming that we have an observable that

can take on one of M values

x ∈ {1, . . . ,M} . (6.27)

From a series of samples of x we can estimate the probability distribution; naively this
can be done by binning, taking the ratio of the number of times a value x was seen Nx

to the total number of points N

p(x) ≈ Nx/N . (6.28)

Chapter 16 discusses the limitations of, and alternatives to, this simple estimator.

The entropy of this distribution is given by

H(x) = −
M∑

x=1

p(x) log2 p(x) . (6.29)

It is the average number of bits required to describe a sample taken from the distribution,

i.e., the expected value of the information in a sample. The entropy is a maximum if the

distribution is flat (we don’t know anything about the next point), and a minimum if the

distribution is sharp (we know everything about the next point).

The information is the minimum number of bits a code can use to communicate a

value [Shannon & Weaver, 1949], and the entropy is the expected number of bits for a
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sample drawn from the distribution. If a code designed for a distribution q is used, but
the samples are actually drawn from p, then the expected number of bits is

−
M∑

x=1

p(x) log2 q(x) = H(p) +
M∑

x=1

p(x) log2
p(x)

q(x)
(6.30)

≡ H(p) +D(p||q) .

D(p||q) is the Kullback–Leibler distance or relative entropy. It’s nonnegative, because
H(p) is the most efficient coding possible. It is not a true distance, because it’s not
symmetrical in p and q and there isn’t a triangle inequality relating distances among three
points, however it appears widely in areas including inference and statistical physics as a

way to measure how similar two distributions are.

Consider now a sample drawn from a continuous distribution. The probability to see a

value between x and x+dx is p(x)dx, and the information this provides is log2[p(x)dx] =
log2 p(x) + log2 dx. As dx → 0 this diverges! That’s in fact what it should do, because

there can be an infinite amount of information in an infinite-precision real number. The

differential entropy of a continuous distribution is the part that does not diverge:

h(x) = −
∫

p(x) log2 p(x) dx . (6.31)

(where the integral is over the support of p). Because we’ve ignored the diverging part
the value of the differential entropy is not meaningful; it can be be positive or negative.

However differences between differential entropies are meaningful, because the diverging

parts will cancel.

For a sequence of samples, we can ask for the number of times N~x a particular set of

values ~x = (x1, x2, . . .) was seen in N observations of ~x:

p(~x) = N~x/N , (6.32)

and from this measure the block entropy

H(~x) = −
M∑

x1=1

M∑

x2=1

· · · p(~x) log2 p(~x) (6.33)

which gives the average number of bits needed to describe the sequence.

The mutual information is defined to be the difference in the expected information

between two samples taken independently and taken together

I(x, y) = H(x) +H(y)−H(x, y) (6.34)

= −
M∑

x=1

p(x) log2 p(x)

−
M∑

y=1

p(y) log2 p(y)

+

M∑

x=1

M∑

y=1

p(x, y) log2 p(x, y) . (6.35)
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If the points don’t depend on each other then the mutual information is zero:

p(x, y) = p(x)p(y) ⇒ I(x, y) = 0 , (6.36)

and if they are completely dependent then the mutual information is equal to the bits in

one sample:

p(x, y) = p(y) ⇒ I(x, y) = H(x) . (6.37)

Here then is an alternative to correlation functions, measuring the connection between

two variables without assuming any functional form other than what is needed to estimate

a probability distribution. Chapter 20 will develop the deep connection between entropy

and dynamics.

6.2 STOCHASTIC PROCESSES

It is now time for time to appear in our discussion of random systems. When it does,

this becomes the study of stochastic processes. We will look at two ways to bring in time:

the evolution of probability distributions for variables correlated in time, and stochastic

differential equations.

If x(t) is a time-dependent random variable, its Fourier transform

X(ν) = lim
T→∞

∫ T/2

−T/2

ei2πνtx(t) dt (6.38)

is also a random variable but its power spectral density S(ν) is not:

S(ν) = 〈|X(ν)|2〉 = 〈X(ν)X∗(ν)〉 (6.39)

= lim
T→∞

1

T

∫ T/2

−T/2

ei2πνtx(t) dt

∫ T/2

−T/2

e−i2πνt′x(t′) dt′

(where X∗ is the complex conjugate of X , replacing i with −i). The inverse Fourier
transform of the power spectral density has an interesting form,

∫ ∞

−∞

S(ν)e−i2πντ dν

=

∫ ∞

−∞

〈X(ν)X∗(ν)〉e−i2πντ dν

= lim
T→∞

1

T

∫ ∞

−∞

∫ T/2

−T/2

ei2πνtx(t) dt

∫ T/2

−T/2

e−i2πνt′x(t′) dt′ e−i2πντ dν

= lim
T→∞

1

T

∫ ∞

−∞

∫ T/2

−T/2

∫ T/2

−T/2

ei2πν(t−t′−τ ) dν x(t)x(t′) dt dt′

= lim
T→∞

1

T

∫ T/2

−T/2

∫ T/2

−T/2

δ(t− t′ − τ )x(t)x(t′) dt dt′

= lim
T→∞

1

T

∫ T/2

−T/2

x(t)x(t − τ ) dt

= 〈x(t)x(t − τ )〉 , (6.40)
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found by using the Fourier transform of a delta function
∫ ∞

−∞

e−i2πνtδ(t) dt = 1 ⇒ δ(t) =

∫ ∞

−∞

ei2πνt dt , (6.41)

where the delta function is defined by
∫ ∞

−∞

f (x)δ(x− x0) dx = f (x0) . (6.42)

This is the Wiener–Khinchin theorem. It relates the spectrum of a random process to

its autocovariance function, or, if it is normalized by the variance, the autocorrelation

function (which features prominently in time series analysis, Chapter 20).

6.2.1 Distribution Evolution Equations

A natural way to describe a stochastic process is in terms of the probability to see a sample

value x at a time t (written xt) given a history of earlier values

p(xt|xt1 , xt2 , . . .) . (6.43)

Given starting values for x this determines the probability distribution of the future
values. If the distribution depends only on the time differences and not on the absolute

time,

p(xt|xt−τ1 , xt−τ2, . . .) , (6.44)

then the process is said to be stationary (sometimes qualified by calling it narrow-sense

or strict stationarity). A more modest definition asks only that the means and covariances

of a process be independent of time, in which case the process is said to be weak or

wide-sense stationary.

If the conditional distribution is limited to a finite history

p(xt|xt−τ1 , xt−τ2 , . . . , xt−τN ) (6.45)

this is said to be an N th-orderMarkov process. If it depends on just the previous value

p(xt|xt−τ ) (6.46)

it is simply called a Markov process, and if x and t are discrete variables

p(xt|xt−1) (6.47)

it becomes aMarkov Chain. As with ODEs, an N th-order Markov process for a scalar
variable can always be converted to a first-order Markov process in an N -dimensional
variable.

Given the conditional distribution for one time step p(xt|xt−τ ) we can find the dis-

tribution two time steps ahead p(xt+τ |xt−τ ) by adding up the probabilities for all of the

ways to get from xt−τ to xt+τ through the intermediate value xt. The probability for each

possible path is the product of the probability to get from xt−τ to xt times the probability

to go from xt to xt+τ . For a discrete system this is a sum, and for a continuous system

it is the integral

p(xt+τ |xt−τ ) =

∫ ∞

−∞

p(xt+τ |xt) p(xt|xt−τ ) dxt . (6.48)



66 Random Systems DRAFT

This is called the Chapman–Kolmogorov equation. It can be rewritten by multiplying

both sides by p(xt−τ ) and then integrating over xt−τ :

p(xt+τ |xt−τ ) p(xt−τ ) =

∫ ∞

−∞

p(xt+τ |xt) p(xt|xt−τ ) p(xt−τ ) dxt

p(xt+τ , xt−τ ) =

∫ ∞

−∞

p(xt+τ |xt) p(xt, xt−τ ) dxt

p(xt+τ ) =

∫ ∞

−∞

p(xt+τ |xt) p(xt) dxt

=

∫ ∞

−∞

p(xt+τ , xt) dxt . (6.49)

For a Markov chain with N states x = (1, . . . , N ) this becomes

p(xt+1) =

N∑

xt=1

p(xt+1|xt) p(xt) . (6.50)

If we define anN -component vector of the state probabilities ~pt = {p(xt = 1), . . . , p(xt =

N )}, and a matrix of transition probabilities Pij = p(xt+1 = i|xt = j), then the update
for all of the states can be written as

~pt+1 = P · ~pt
⇒ ~pt+n = P

n · ~pt . (6.51)

The powers of P hence determine the evolution; in particular, if it’s possible to get from

every state to every other state then the system is said to be ergodic [Reichl, 1984].

It’s easy to understand what a Markov model can do. After all, equation (6.51) is a

simple linear first-order finite difference equation (Section 3.5). If P has eigenvectors ~vi
with eigenvalues λi, and the starting distribution is written in terms of the eigenvectors

as

~pt =
∑

i

αi~vi , (6.52)

then

~pt+n = P
n ·
∑

i

αi~vi

=
∑

i

αiλ
n
i ~vi . (6.53)

One of the earliest uses of the Chapman–Kolmogorov equation was in the context of

Brownian motion. When the Scottish botanist Robert Brown in 1827 used a microscope

to look at pollen grains suspended in a solution, he saw them move in a path like the

one shown in Figure 6.1. While he originally thought this was a sign of life, it was

of course due to the fluctuating impacts of the solvent molecules on the pollen grain.

This was a significant piece of evidence for the atomic theory of matter, and in 1905

Einstein developed a quantitative description of Brownian motion that could predict the

distribution for how far a particle would travel in a given time.

For 1D Brownian motion (the generalization from 1D to higher dimensions is straight-

forward), let p(x, t) dx be the probability to find the particle between x and x + dx at
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Figure 6.1. 2D Brownian motion.

time t. Because it is a probability, p must be normalized,
∫∞

−∞
p(x, t) dx = 1. Brownian

motion arises from the many impacts of the fluid molecules on the particle; let τ be a time
that is long compared to these impacts, but short compared to the time for macroscopic

motion of the particle. We can then define pτ (x|x′) dx, which is the probability for the
particle to move from x′ to x in a time τ due to the fluctuating impacts on it. This can
be used in the Chapman–Kolmogorov equation to write an update equation for p:

p(x, t + τ ) dx = dx

∫ ∞

−∞

pτ (x|x′)p(x′, t) dx′ . (6.54)

If the fluid is isotropic and homogeneous, then pτ (x|x′) will depend only on the position

difference x = x′ + δ, so we can then write pτ (x|x′) = pτ (δ), where by symmetry
p(δ) = p(−δ). Then the Chapman-Kolmogorov equation becomes

p(x, t + τ ) dx = dx

∫ ∞

−∞

pτ (δ)p(x + δ, t) dδ . (6.55)

Since τ has been chosen to be very small compared to the time scale for macroscopic
changes in the particle position, we can expand p in a Taylor series in x and t and keep
the lowest-order terms:

[

p(x, t) +
∂p

∂t
τ +O(τ 2)

]

dx

= dx

∫ ∞

−∞

pτ (δ)

[

p(x, t) +
∂p

∂x
δ +

1

2

∂2p

∂x2
δ2 + · · ·

]

dδ

= dx p(x, t)

∫ ∞

−∞

pτ (δ) dδ

︸ ︷︷ ︸

1

+ dx
∂p

∂x

∫ ∞

−∞

pτ (δ) δ dδ

︸ ︷︷ ︸

0

+
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dx
1

2

∂2p

∂x2

∫ ∞

−∞

pτ (δ)δ
2 dδ

︸ ︷︷ ︸

〈δ2〉

+O(δ3) . (6.56)

In the last line, the first integral is 1 because pτ (δ) must be normalized, the second one
vanishes because it is the first moment of a symmetrical function pτ (δ) = pτ (−δ), and
the last integral is the variance. Cancelling out the p(x, t) on both sides, we’re left with

∂p

∂t
=

〈δ2〉
2τ
︸︷︷︸

≡ D

∂2p

∂x2
. (6.57)

We’ve found that the evolution of the probability distribution for Brownian motion is

governed by the familiar diffusion equation. In the context of stochastic processes, this is

called aWiener process. The diffusion equation is a particular case of the Fokker–Plank

PDE which governs the evolution of a probability distribution for an underlying Markov

process.

We obtained the diffusion equation for a system in which time and space are continu-

ous, but for many problems they are discrete. Consider a 1D random walker that at each

time step ti can hop from a site xn one unit to the left or right, xn±1. The change in

probability p(xn, ti) to find it at a point is then equal to the sum of the probabilities for
it to hop into the point, minus the sum of probabilities to hop off the point

p(xn, ti)− p(xn, ti−1) =
1

2
[p(xn+1, ti−1) + p(xn−1, ti−1)]− p(xn, ti−1)

p(xn, ti) =
1

2
[p(xn+1, ti−1) + p(xn−1, ti−1)] . (6.58)

This can be rewritten suggestively by subtracting p(xn, ti−1) from both sides and rear-
ranging:

p(xn, ti)− p(xn, ti−1)

δt
=

δ2x
2δt
︸︷︷︸

≡ D

[
p(xn+1, ti−1)− 2p(xn, ti−1) + p(xn−1, ti−1)

δ2x

]

(6.59)

These are discrete approximations of partial derivatives (Chapter 8). If we take the limit

δt, δx → 0 (keeping D finite), we find once again that

∂p

∂t
= D

∂2p

∂x2
. (6.60)

More generally, the time derivative of the probability to be at a state xn is equal to the

sum over states xm of the probability to be at xm times the rate Wxm→xn
at which

transitions are made from there to xn, minus the probability to be at xn times the rate

at which transitions are made back to xm:

∂p(xn, t)

∂t
=
∑

m

Wxm→xn
p(xm, t)−Wxn→xm

p(xn, t) . (6.61)

This is called theMaster equation. For a stationary solution the transition rate between

two sites is equal in both directions, a condition called detailed balance.



DRAFT 6.2 Stochastic Processes 69

6.2.2 Stochastic Differential Equations

An alternative analysis of Brownian motion was first done by Langevin in terms of a

stochastic differential equation. A particle moving in a fluid feels a drag force, and as

long as the velocity is not too great the force is given by the Stokes drag formula

~F = −6πµa~v , (6.62)

where µ is the viscosity of the fluid, a is the diameter of the particle, and ~v is the velocity
of the particle [Batchelor, 1967]. In addition to this force, we can model Brownian motion

by including a fluctuating force η that is due to the molecular impacts on the particle. In
terms of these forces, ~F = m~a for the particle becomes (in 1D):

m
d2x

dt2
= −6πµadx

dt
+ η . (6.63)

This is an example of what is now called a Langevin equation. Because η is a random
variable, x becomes one, much like the promotion of operator types in a computer pro-
gram. Therefore we cannot solve for x directly; we must instead use this differential
equation to solve for observable quantities that depend on it. To do this, first recognize

that

d(x2)

dt
= 2x

dx

dt
(6.64)

and

d2(x2)

dt2
= 2

(
dx

dt

)2

+ 2x
d2x

dt2
= 2v2 + 2x

d2x

dt2
. (6.65)

Using this, if we multiply both sides of equation (6.63) by x we can rewrite it as

m

2

d2(x2)

dt2
−mv2 = −3πµad(x

2)

dt
+ ηx . (6.66)

Next, let’s take the time expectation value

m

2

d2〈x2〉
dt2

+ 3πµa
d〈x2〉
dt

= m〈v2〉
︸ ︷︷ ︸

kT

+ 〈ηx〉
︸︷︷︸

0

. (6.67)

In the first term on the right hand side, we’ve used the fact that the particle is in thermo-

dynamic equilibrium with the fluid to apply the Equipartition Theorem [Gershenfeld,

2000], which tells us that

1

2
m〈v2〉 = D

2
kT , (6.68)

where D is the dimension (1 in this case), k is Boltzmann’s constant 1.38× 10−23 (J/K),
and T is the temperature (in Kelvin). The second term vanishes because the rapidly

fluctuating noise term is uncorrelated with the slowly moving particle. Therefore,

d2〈x2〉
dt2

+
3πµa

m

d〈x2〉
dt

=
2kT

m
. (6.69)
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This is now an ordinary differential equation for the variance, which can easily be solved

to find

〈x2〉 = Ae−6πµat/m +
kT

3πµa
t . (6.70)

The first term is a rapidly decaying exponential transient, leaving us with

〈x2〉 = kT

3πµa
t . (6.71)

This result agrees with the form of Einstein’s calculation (Problem 6.4), even though

we got here by a very different path. Solving more general stochastic differential equa-

tions, and justifying assumptions such as throwing out the 〈ηx〉 term, requires extending
ordinary calculus to integrals of stochastic functions. This is done by the Ito and the

Stratonovich calculus [Gardiner, 2004].

6.3 RANDOM NUMBER GENERATORS

There is a frequent and apparently paradoxical need to use a computer to generate random

numbers. In modeling a stochastic system it is necessary to include a source of noise, but

computers are (hopefully) not noisy. One solution is to attach a computer peripheral that

performs a quantum measurement (which as far as we know can be completely random),

or perhaps measures the molecular fluctuations in your coffee cup (which are extremely

close to random), but for most people this is not a convenient option. Instead, a more

reasonable alternative is to use an algorithm that produces pseudo–random numbers that

appear to be more random than can be detected by your application. There is a large

difference in what is required to fool a player of a video game and a cryptographic

analyst. There is a corresponding broad range of choices for random number generators,

based on how sensitive your problem is to the hidden order that must be present in any

deterministic algorithm. While these are numerical rather than analytical methods, and

so rightfully belong in the next part of this book, they are so closely connected with the

rest of this chapter that it is more natural to include them here.

Why discuss random number generators when most every programming language has

one built in? There are two reasons: portability and reliability. By explicitly including

an algorithm for generating needed random numbers, a program will be sure to give the

same answer whatever system it is run on. And built-in generators range from being

much too complex for simple tasks to much too simple for complex needs.

6.3.1 Linear Congruential

Linear congruential random number generators, and more sophisticated variants, are the

most common technique used for producing random numbers. The simplest example is

the map

xn+1 = 2xn (mod 1) . (6.72)

Starting with an initial value for x0 (chosen to be between 0 and 1), this generates a
series of new values. The procedure is to multiply the old value by 2, take the part that
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Figure 6.2. 1000 points from the map xn+1 = 2xn (mod 1).

is left after dividing by 1 (i.e., the fractional part), and use this as the new value. This

string of numbers is our first candidate as a random number generator. But how random

are the successive values of x? Not very; Figure 6.2 plots xn+1 versus xn for a series of

1000 points. Two things are immediately apparent: the points lie on two lines rather than

being uniformly distributed (as they should be for two independent random numbers),

and it doesn’t look like there are 1000 points in the figure. The first problem can easily

be explained by looking back at the definition of the map, which shows that successive

pairs of points lie on a line of slope 2, which gets wrapped around because of the mod
operator. To understand the second problem, consider x written in a fractional binary
expansion (where each digit to the right of the binary point stands for 2−1, 2−2, . . .). Each
iteration of this map shifts all the digits one place to the left, and throws out the digit

that crosses the binary point. This means that it brings up all the bits of the starting

position, and finally settles down to a fixed point at x = 0 when all the bits are used up.

This bad example can be generalized to the class of maps

xn+1 = axn + b (mod c) . (6.73)

The value of a determines the slope of the lines that the points are on and how many
lines there will be (a = 2 gave us 2 lines). We want this to be as large as possible, so that
the lines fill the space as densely as possible. Then b and c must be chosen relative to a so
that the period of the map is as long as possible (it doesn’t repeat after a few iterations),

there are no fixed points that it can get stuck at, and the digits are otherwise as random

as they can be. Choosing optimal values for a, b, and c is a surprisingly subtle problem,
but good choices have been worked out as a function of the machine word size used to
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Figure 6.3. 1000 points from the map xn+1 = 8121xn + 28411 (mod 134456).

represent x [Knuth, 1997]. For the common case of a 32-bit integer, with the leading bit
used as a sign bit, an optimal choice is

xn+1 = 8121xn + 28411 (mod 134456) . (6.74)

Iterating this map produces a string of integers between 1 and 134456 (or a fraction

between 0 and 1 if the integer is divided by 134456), shown in Figure 6.3. This now

appears to be much more random, and is adequate when there is a simple need for some

numbers that “look” random.

This is still not a great generator, because there are only 134456 distinct possible

values, and so in a string that long it is possible to detect the predictability. It’s also easy

to see here why the bits of x are not equally random: if xn is even then xn+1 will be

odd, and vice versa, so the lowest order bit of x simply oscillates at each step. Not very
random. To further improve such a simple linear congruential generator, it is possible

to add degrees of freedom by techniques such as running multiple generators in parallel

and using them to shuffle entries in a large array [Press et al., 2007].

6.3.2 Linear Feedback

Linear congruential generators have the problem that all of the bits in each number are

usually not equally random; linear feedback shift registers (LFSRs) provide a power-

ful alternative that can be used to generate truly pseudo–random bits. A binary linear
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Figure 6.4. A linear feedback shift register.

Table 6.1. For an LFSR xn =
∑M

i=1 aixn−i (mod 2), lag i values for
which ai = 1 for the given order M (all of the other ai’s are 0).

M i M i M i
2 1, 2 13 1, 3, 4, 13 24 1, 2, 7, 24
3 1, 3 14 1, 6, 10, 14 25 3, 25
4 1, 4 15 1, 15 26 1, 2, 6, 26
5 2, 5 16 1, 3, 12, 16 27 1, 2, 5, 27
6 1, 6 17 3, 17 28 3, 28
7 3, 7 18 7, 18 29 2, 29
8 2, 3, 4, 8 19 1, 2, 5, 19 30 1, 2, 23, 30
9 4, 9 20 3, 20 31 3, 31
10 3, 10 21 2, 21 32 1, 2, 22, 32
11 2, 11 22 1, 22 33 13, 33
12 1, 4, 6, 12 23 5, 23 34 1, 2, 27, 34

feedback shift register is specified by a recursion relation

xn =

M∑

i=1

aixn−i (mod 2) . (6.75)

This can be viewed as a series of registers through which the bits are shifted, with taps

specified by the ai’s that select the values to be added mod 2 (Figure 6.4).
If the taps are properly chosen, the bits that come out of the end of the shift register

are as random as possible. This means that the power spectrum is flat (up to the repeat

time, which is 2M − 1 for a register with M steps), all possible substrings of bits occur

equally often, and so forth. Such a maximal LFSR is designed by taking the z-transform
of the recursion relation, and finding the taps that make this polynomial have no smaller

polynomial factors [Simon et al., 1994]. Table 6.1 gives a (non-unique) choice for maximal

taps for a range of register lengths. For example, for order 12 the tap values are 1, 4, 6,

12, so the recursion relation is

xn = xn−1 + xn−4 + xn−6 + xn−12 . (6.76)

Because the recurrence time is exponential in the length of the register, a surprisingly

modest LFSR can have an extremely long period and be hard to distinguish from random

(Problem 6.3).

The most sophisticated techniques for making numbers appear random are associated

with cryptography, since detectable deviations from randomness can be used to help

break a code. In fact, the best way of all to improve a random number generator is to run
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its output through a cryptographic encoding scheme [Simmons, 1992], which pass much

more sophisticated tests of randomness than the algorithms we have covered (which are

child’s play for a cryptanalyst). This of course does come at the expense of much more

computational effort.

6.4 RANDOM ALGORITHMS
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6.6 PROBLEMS

(6.1) (a) Work out the first three cumulants C1, C2, and C3.

(b) Evaluate the first three cumulants for a Gaussian distribution

p(x) =
1√
2πσ2

e−(x−x̄)2/2σ2 . (6.77)
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(6.2) (a) If ~y(~x) = (y1(x1, x2), y2(x1, x2)) is a coordinate transformation, what is the area
of a differential element dx1 dx2 after it is mapped into the ~y plane? Recall that
the area of a parallelogram is equal to the length of its base times its height.

(b) Let

y1 =
√

−2 lnx1 sin(x2) y2 =
√

−2 lnx1 cos(x2) . (6.78)

If p(x1, x2) is uniform, what is p(y1, y2)?
(c) Write a uniform random number generator, and transform it by equation (6.78).

Numerically evaluate the first three cumulants of its output.

(6.3) (a) For an order 4 maximal LFSR write down the bit sequence.

(b) If an LFSR has a clock rate of 1 GHz, how long must the register be for the

time between repeats to be the age of the universe (∼ 1010 years)?
(6.4) (a) Use a Fourier transform to solve the diffusion equation (6.57) (assume that the

initial condition is a normalized delta function at the origin).

(b) What is the variance as a function of time?

(c) How is the diffusion coefficient for Brownian motion related to the viscosity of

a fluid?

(d) Write a program (including the random number generator) to plot the position

as a function of time of a random walker in 1D that at each time step has an

equal probability of making a step of ± 1. Plot an ensemble of 10 trajectories,

each 1000 points long, and overlay error bars of width 3σ(t) on the plot.
(e) What fraction of the trajectories should be contained in the error bars?


