
19 Filtering and State Estimation

Our study of estimating parameters from observations has presumed that there are un-

changing parameters to be estimated. For many (if not most) applications this is not so:

not only are the parameters varying, but finding their variation in time may be the goal of

the data analysis. This chapter and the next bring time back into the picture. Here we will

look at the problem of estimating a time-dependent set of parameters that describe the

state of a system, given measurements of observable quantities along with some kind of

model for the relationship between the observations and the underlying state. For exam-

ple, in order to navigate, an airplane must know where it is. Many relevant signals arrive

at the airplane, such as radar echoes, GPS messages, and gyroscopic measurements. The

first task is to reduce these raw signals to position estimates, and then these estimates must

be combined along with any relevant past information to provide the best overall estimate

of the plane’s position. Closely related tasks are smoothing, noise reduction, and signal

separation, using the collected data set to provide the best estimate of previous states

(given new measurements, where do we think the airplane was?), and prediction, using

the data to forecast a future state (where is the airplane going?). These tasks are often

described as filtering problems, even though they really are general algorithm questions,

because they evolved from early implementations in analog filters.

We will start with the simple example of matched filters to detect a known signal,

extend that to Wiener filters to separate a signal from noise, and then turn to the much

more general, useful, and important Kalman filters. Much of estimation theory is based

on linear techniques; since the world is not always obligingly linear, we will next look at

how nonlinearity makes estimation more difficult, and simpler. The chapter closes with

the use of Hidden Markov Models to help find models as well as states.

19.1 MATCHED FILTERS

Consider a signal x(t) passed through a linear filter with impulse response f (t) (go back to
Chapter 3 if you need a review of linear systems theory). The frequency domain response

of the output Y (ω) will be the product of the Fourier transforms of the input and the
filter

Y (ω) = X(ω)F (ω) , (19.1)

238 Filtering and State Estimation DRAFT

and the time domain response will be the convolution

y(t) = x(t) ∗ f (t) =

∫ T

0

x(t− u)f (u) du , (19.2)

where the limits of the integral are the interval during which the signal has been applied

to the filter. The magnitude of the output can be bounded by Schwarz’s inequality:

y2(t) =

∣
∣
∣
∣
∣

∫ T

0

x(t− u)f (u) du

∣
∣
∣
∣
∣

2

≤

∫ T

0

|x(t− u)|2 du

∫ T

0

|f (u)|2 du . (19.3)

By inspection, this bound will be saturated (reach its maximum value) if

f (u) = A x∗(t− u) (19.4)

for any constant A. The filter will produce the maximum output for a given input signal
if the impulse response of the filter is proportional to the complex conjugate of the signal

reversed in time. This is called a matched filter, and is used routinely to detect and time

known signals. For example, to measure the arrival time of radar echoes, the output from

a filter matched to the transmitted pulses goes to a comparator, and the time when the

output exceeds a preset threshold is used to determine when a pulse has arrived.

19.2 WIENER FILTERS

Next, consider a time-invariant filter with impulse response f (t) that receives an input
x(t) + η(t) and produces an output y(t), with x(t) a desired signal and η(t) noise added
to the signal (such as from the front end of an amplifier). In the time domain the output

is the convolution

y(t) =

∫ ∞

−∞

f (u)[x(t− u) + η(t − u)] du , (19.5)

for now assuming that the signals are defined for all time. How should the filter be

designed to make y(t) as close as possible to x(t)? One way to do this is by minimizing
the mean square error between them (in Chapter 12 we saw that this implicitly assumes

Gaussian statistics, but is an assumption that is commonly and relatively reliably used

more broadly). This problem was solved for a linear filter by Norbert Wiener at MIT’s

Radiation Laboratory in the 1940s, therefore the solution is called aWiener filter.

The expected value of the error at time t is

〈E2〉 = 〈[x(t + α)− y(t)]2〉 , (19.6)

where the average is over an ensemble of realizations of the noise process. An offset α
has been added to cover the three cases of:

• α < 0 : smoothing the past

• α = 0 : filtering the present

• α > 0 : predicting the future

DRAFT 19.2 Wiener Filters 239

Substituting in equation (19.5),

〈E2〉 = 〈x2(t + α)〉 − 2

∫ ∞

−∞

f (u) 〈x(t + α)[x(t− u) + η(t − u)]〉
︸ ︷︷ ︸

≡ Cx,x+η(α + u)

du (19.7)

+

∫ ∞

−∞

∫ ∞

−∞

f (u)f (v) 〈[x(t − u) + η(t − u)][x(t− v) + η(t − v)]〉
︸ ︷︷ ︸

≡ Cx+η,x+η(u− v)

du dv .

Wemust find the f (t) that minimizes the sum of these integrals over the correlation func-
tions. Since the first term does not depend on the filter function f (t) it can’t contribute
to the minimization and we will drop it. Because of the double integral we can’t use

the Euler–Lagrange equation derived in Chapter 5, but we can use a similar argument.

Assume that f (t) is the optimal filter that we are looking for, and let g(t) be any arbitrary
filter added to it, giving a new filter f (t) + ǫg(t). In terms of this the new error is

〈E2〉 =

∫ ∞

−∞

∫ ∞

−∞

[f (u) + ǫg(u)][f (v) + ǫg(v)]Cx+η,x+η(u− v) du dv

−2

∫ ∞

−∞

[f (u) + ǫg(u)]Cx,x+η(α + u) du . (19.8)

We can now differentiate with respect to ǫ and look for the minimum at ǫ = 0:

∂〈E2〉

∂ǫ

∣
∣
∣
∣
ǫ=0

= 0

=

∫ ∞

−∞

∫ ∞

−∞

g(u)f (v)Cx+η,x+η(u− v) du dv

+

∫ ∞

−∞

∫ ∞

−∞

f (u)g(v)Cx+η,x+η(u− v) du dv

+2ǫ

∫ ∞

−∞

∫ ∞

−∞

g(u)g(v)Cx+η,x+η(u− v) du dv

−2

∫ ∞

−∞

g(u)Cx,x+η(α + u) du . (19.9)

The first two terms are the same (interchanging dummy integration variables and using

the symmetry of the correlation functions), and the third one vanishes at ǫ = 0, so we’re
left with

∫ ∞

−∞

g(τ)

[

−Cx,x+η(α + τ) +

∫ ∞

−∞

f (u)Cx+η,x+η(u− τ)

]

du dτ = 0 (19.10)

Since g(τ) is arbitrary, the only way this can be equal to zero for all choices of g is if the
term in brackets vanishes

∫ ∞

−∞

f (u)Cx+η,x+η(u− τ) du = Cx,x+η(α + τ) . (19.11)

This is now a simpler integral equation to be solved for f , but there is a crucial subtlety
in equation (19.11). If we solve it for all τ , positive and negative, then it will require that
the filter function f be defined for both positive and negative times. This is a noncausal
filter. The only way that the filter can have access to the signal at all times (other than

240 Filtering and State Estimation DRAFT

xt

xt+1 yt+1

yt

p x x()t+ t1|

p y x()t t|

p y x()t+ t+1 1|

Figure 19.1. Update of an internal state and an external observable.

by being psychic) is if it is applied after the full time record has been recorded, which

is fine for off-line applications. If we don’t mind a noncausal filter, the convolution in

equation (19.11) is easily solved by taking (two-sided) Laplace transforms

F (s)Cx+η,x+η(s) = Cx,x+η(s)e
αs (19.12)

and so

F (s) =
Cx,x+η(s)e

αs

Cx+η,x+η(s)
. (19.13)

This has a simple interpretation: the Wiener filter rolls the response off when the signal

is much smaller than the noise, and sets the gain to unity if the signal is much larger

than the noise. Prediction or smoothing is done simply by the complex phase shift of a

linear system.

If a causal filter is needed so that the Wiener filter can be used in real-time then f (τ)
must vanish for negative τ , and equation (19.11) must be solved only for τ ≥ 0. In this

case it is called theWiener–Hopf equation, and is much more difficult to solve, although

there are many special techniques available for doing so because it is so important [Brown

& Hwang, 1997]. Beyond Wiener filters, signal separation for nonlinear systems requires

the more general time series techniques to be introduced in Chapter 20.

19.3 KALMAN FILTERS

Wiener filters are impressively optimal, but practically not very useful. It is important to

remember that everything is optimal with respect to something. In the case of Wiener

filters we found the “best” linear time-invariant filter, but by design it is therefore linear

time-invariant. The result is an almost trivial kind of signal separation, simply cutting

off the response where the signal is small compared to the noise. Furthermore, it does

not easily generalize to more complex problems with multiple degrees of freedom.

Now consider the general system shown in Figure 19.1. There is an internal state ~x, for
example, the position, velocity, and acceleration of an airplane as well as the orientations

of the control surfaces. Its state is updated in discrete time according to a distribution

function p(~xt+1|~xt), which includes both the deterministic and random influences. For the

airplane, the deterministic part is the aerodynamics, and the random part includes factors

such as turbulence and control errors. The internal state is not directly accessible, but

rather must be inferred from measurements of observables ~y (such as the airplane’s pitot
tube, GPS receiver, and radar returns), which are related to ~x by a relation p(~y|~x) that

DRAFT 19.3 Kalman Filters 241

can include a random component due to errors in the measurement process. How should

the measurements be combined to estimate the system’s state? Further, is it possible

to iteratively update the state estimate given new measurements without recalculating it

from scratch? Kalman filters provide a general solution to this important problem.

To start, let’s assume that there are just two random variables, x and y, that have a joint
probability distribution p(x, y). Given a measurement of y, what function x̂(y) should
we use to estimate x? Once again, we will do this by picking the estimate that minimizes
the mean square error over the distribution. This means that we want to minimize

〈[x− x̂(y)]2〉 =

∫ ∫

[x− x̂(y)]2 p(x, y) dx dy

=

∫ ∫

[x2 − 2xx̂(y) + x̂2(y)] p(x, y)
︸ ︷︷ ︸

p(x|y)p(y)

dx dy

=

∫

x2
∫

p(x, y) dy
︸ ︷︷ ︸

p(x)

dx− 2

∫

x̂(y)

∫

x p(x|y)dx
︸ ︷︷ ︸

≡ 〈x|y〉

p(y) dy

+

∫

x̂2(y)

∫

p(x, y) dx
︸ ︷︷ ︸

p(y)

dy

=

∫

x2 p(x) dx +

∫

[x̂2(y)− 2x̂(y)〈x|y〉] p(y) dy

=

∫

x2 p(x) dx

+

∫

[x̂2(y)− 2x̂(y)〈x|y〉 + 〈x|y〉2 − 〈x|y〉2] p(y) dy

=

∫

x2 p(x) dx

−

∫

〈x|y〉2 p(y) dy +

∫

[x̂(y)− 〈x|y〉]2 p(y) dy . (19.14)

All integrals are over the limits of the distribution, and in the last line we completed

the square. The first two terms don’t depend on the unknown estimator x̂(y), and so
are irrelevant to the minimization. The last term is the product of two non-negative

functions, which will be minimized if the left hand one vanishes:

x̂(y) = 〈x|y〉 =

∫

x p(x|y) dx . (19.15)

In retrospect, this is perhaps an obvious result: the minimum mean square estimator

simply is the expected value. This result easily generalizes to multi-dimensional distri-

butions.

Now let’s assume that the system’s update rule is linear, with additive noise ~η

~xt = At−1 · ~xt−1 + ~ηt (19.16)

(we will later relax the assumption of linear updates), and assume a linear relationship

242 Filtering and State Estimation DRAFT

Et t-1| -1

Et t|

Et t| -1

xt t-1| -1

xt t| -1

xt t|

yt t| -1

At-1

yt

Kt

Bt

Figure 19.2. Steps in Kalman filtering.

between the state and the observable with additive noise ~ǫ

~yt = Bt · ~xt +~ǫt . (19.17)

The noise sources are assumed to be uncorrelated in time, but can have correlations

among the components, as measured by the noise covariance matrices Nx and Ny

N
x = 〈~η~ηT 〉 〈ηi(t)ηj (t

′)〉 = Nx
ijδtt′

N
y = 〈~ǫ~ǫT 〉 〈ǫi(t)ǫj (t

′)〉 = Ny
ijδtt′ (19.18)

(where as usual ~ǫT is the transpose of ~ǫ). The two noise sources are taken to be uncor-
related with each other

〈~η~ǫT 〉 = ~0 (19.19)

and to have zero mean

〈~η〉 = 〈~ǫ〉 = ~0 . (19.20)

The elements of Kalman filtering are shown in Figure 19.2. ~xt is the true (but inac-

cessible) state of the system at time t, ~yt the observable, and Et is the covariance matrix

of the error in the estimate of ~x. The notation ~xn|m represents the best estimate for ~xn

given the record of measurements up to time m

~xn|m = 〈~xn|~xm, ~xm−1, . . .〉 =

∫

~xn p(~xn|~xm, ~xm−1, . . .) d~xn . (19.21)

The first step in Kalman filtering is to use the best estimate of the previous system state,

~xt−1|t−1, to predict the new state ~xt|t−1. This is then used to predict the observable

~yt|t−1. Then, when the true new observable ~yt is measured, it and the estimate ~yt|t−1
are combined to estimate the new internal state ~xt|t. There are two very important and

perhaps nonobvious elements of this figure. First, the state estimate updates are done on

just the previous state, without needing the full record, but (given the assumptions of the

model) this provides just as good an estimate. Second, this estimate will be much better

than if the new observable alone was used to estimate the internal state. Kalman filtering

is an example of recursive estimation: to determine the present estimate it is necessary

to know the previous one, which in turn depends on the one before that, and so forth

back to the initial conditions.

DRAFT 19.3 Kalman Filters 243

To do the first prediction step, recall that if two variables a and b with probabilities
pa(a) and pb(b) are added, then the distribution for their sum c = a+b is the convolution

p(c) =

∫

pb(b)pa(c− b) db . (19.22)

Since ~xt depends only on the previous value ~xt−1 plus the noise term, the expected value

will depend only on the previous expected value ~xt−1|t−1:

~xt|t−1 =

∫

~xt p(~xt|~xt−1) d~xt . (19.23)

The conditional distribution p(~xt|~xt−1) consists of the deterministic distribution δ(~xt −
At · ~xt−1) convolved by the (zero mean) noise distribution pη, so

~xt|t−1 =

∫

~xt pη(~xt − At−1 · ~xt−1) d~xt , (19.24)

and since the noise distribution is zero mean

~xt|t−1 = At−1 · ~xt−1|t−1 . (19.25)

Similarly,

~yt|t−1 = Bt · ~xt|t−1 . (19.26)

This gives us the estimates for the new internal state and observable. To update the

internal state estimate, these can be linearly combined with the new observation ~yt

~xt|t = ~xt|t−1 +Kt · (~yt − ~yt|t−1) . (19.27)

The matrix Kt is called the Kalman gain matrix; we will derive the optimal form for it.

Given this estimate we can define the error covariance matrix in terms of the (inaccessible)

true state ~xt by

Et|t = 〈(~xt − ~xt|t)(~xt − ~xt|t)
T 〉 . (19.28)

The difference between the true state and the estimate is

~xt − ~xt|t = ~xt − ~xt|t−1 −Kt · (~yt − ~yt|t−1) , (19.29)

and the difference between the predicted and the true observation is

yt − yt|t−1 = Bt · ~xt +~ǫt − Bt · ~xt|t−1 . (19.30)

Combining these,

~xt − ~xt|t = ~xt − ~xt|t−1 −KtBt · (~xt − ~xt|t−1)−Kt ·~ǫt (19.31)

= (I− KtBt) · (~xt − ~xt|t−1)−Kt ·~ǫt .

Therefore the error matrix is updated by

Et|t = (I−KtBt) 〈(~xt − ~xt|t−1)(~xt − ~xt|t−1)
T 〉 (I−KtBt)

T

+ Kt〈~ǫt~ǫ
T
t 〉K

T
t

= (I−KtBt) Et|t−1 (I−KtBt)
T +KtN

y
tK

T
t (19.32)

(there are no cross terms because the measurement noise ~ǫt is independent of the state
estimation error ~xt − ~xt|t−1). The diagonal terms of the error covariance matrix are the

244 Filtering and State Estimation DRAFT

state errors; we want to choose the Kalman gain matrix K to minimize the sum of the

diagonal terms of the matrix, i.e., minimize the trace

Tr(Et|t) =
〈
|~xt − ~xt|t|

2
〉

. (19.33)

To do this minimization, we will use two matrix identities

d Tr(AB)

dA
= BT (if AB is square) (19.34)

and

d Tr(ACAT)

dA
= 2AC (if C is symmetric) , (19.35)

where
(
df

dA

)

ij

≡
df

dAij

(19.36)

(these can be proved by writing out the components). Equation (19.32) can be expanded

out as

Et|t = Et|t−1 −KtBtEt|t−1 − Et|t−1B
T
t K

T
t

+Kt(BtEt|t−1B
T
t +N

y
t)K

T
t (19.37)

(recalling that (AB)T = BT
A

T). Applying the two matrix identities to take the deriva-

tive of the trace of this equation with respect to K, and using the fact that the trace

is unchanged by taking the transpose Tr(Et|t−1B
T
t K

T
t) = Tr([Et|t−1B

T
t K

T
t]

T) =

Tr(KtBtEt|t−1), gives

d Tr(Et|t)

d Kt

= −2(BtPt|t−1)
T + 2Kt(BtEt|t−1B

T
t +N

y
t) = 0 . (19.38)

This equation defines the Kalman gain matrix that makes the error extremal; check-

ing the second derivative shows that this is a minimum. Solving for the optimal gain

matrix,

Kt = Et|t−1B
T
t

(
BtEt|t−1B

T
t +N

y
t

)−1
. (19.39)

Substituting the gain matrix back into equation (19.37), the third and fourth terms cancel,

leaving

Et|t = Et|t−1 − Et|t−1B
T
t (BtEt|t−1B

T
t +N

y
t)

−1
BtEt|t−1 (19.40)

or

Et|t = (I−KtBt)Et|t−1 . (19.41)

This gives the update rule for the error matrix given a new measurement of the observ-

able.

The last piece that we need is the predicted error after the state prediction step

~xt+1|t = At · ~xt|t, which will be

Et+1|t = 〈(~xt+1 − ~xt+1|t)(~xt+1 − ~xt+1|t)
T 〉

= 〈(At · ~xt + ~ηt − At · ~xt|t)(At · ~xt + ~ηt − At · ~xt|t)
T 〉

= 〈(At · (~xt − ~xt|t) + ~ηt)(At · (~xt − ~xt|t) + ~ηt)
T 〉

DRAFT 19.4 Nonlinearity and Entrainment 245

= 〈At · (~xt − ~xt|t)(~xt − ~xt|t)
T · AT 〉 + 〈~ηt~η

T
t 〉

= AtEt|tA
T
t +N

x
t . (19.42)

This completes the derivation of the Kalman filter, the linear estimator with the min-

imum square error. Recapping, the procedure starts with an initial estimate for the state

~xt|t−1 and error Et|t−1, and then the sequence is:

• Estimate the new observable

~yt|t−1 = Bt · ~xt|t−1 .

• Measure a new value for the observable

~yt .

• Compute the Kalman gain matrix

Kt = Et|t−1B
T
t

(
BtEt|t−1B

T
t +N

y
t

)−1
.

• Estimate the new state

~xt|t = ~xt|t−1 + Kt · (~yt − ~yt|t−1) .

• Update the error matrix

Et|t = (I− KtBt) Et|t−1 .

• Predict the new state

~xt+1|t = At · ~xt|t .

• Predict the new error

Et+1|t = AtEt|tA
T
t +N

x
t .

Remarkably, the iterative application of this recursive algorithm gives the best estimate of

~x(t) from the history of ~y(t) that can be made by a linear estimator; it cannot be improved
by analyzing the entire data set off-line [Catlin, 1989].

Stepping back from the details of the derivation, these equations have very natural

limits. If B→ 0 (the observable ~y does not depend on the internal state ~x) or Ny → ∞
(the observable is dominated by measurement noise) then K → 0 and the measurements

are not used in the state estimate. Conversely, if Ny → 0 and B → I (there is no noise

in the observable, and the transformation from the internal state reduces to the identity

matrix) then the update replaces the internal state with the new measurement. Problem

19.1 looks at the suggestive form of these equations for the case of small measurement

noise.

19.4 NONLINEARITY AND ENTRAINMENT

The derivation of the Kalman filter has assumed linearity in two places: linear observables

and dynamics, and linear updates of the state following a new measurement. The former

can be relaxed by local linearization; we’ll return to the latter in the next chapter.

246 Filtering and State Estimation DRAFT

The nonlinear governing equations now are

~xt = ~f (~xt−1) + ~ηt ~yt = ~g(~xt) +~ǫt . (19.43)

The system governing equation is needed to predict the new state ~xt = ~f (~xt−1), and to

predict the new error

Et+1|t = 〈(~xt+1 − ~xt+1|t)(~xt+1 − ~xt+1|t)
T 〉

= 〈[~f (~xt) + ~ηt − ~f (~xt|t)][~f (~xt) + ~ηt − ~f (xt|t)]
T 〉 . (19.44)

If the prediction error is not large (i.e., the noise ~η is small), then ~f can be replaced by
its local linearization

~f (~xt)− ~f (~xt|t) ≈
∂ ~f

∂~x

∣
∣
∣
∣
∣
~xt|t

· (~xt − ~xt|t)

≡ At · (~xt − ~xt|t) . (19.45)

With this revised definition for A then equation (19.42) can be used as before. Similarly,

the observable equation appears in the derivation of the Kalman gain matrix as

~yt − ~yt|t−1 = ~g(~xt) +~ǫt − ~g(~xt|t−1)

≈
∂~g

∂~x

∣
∣
∣
∣
~xt|t−1

· (~xt − ~xt|t−1) +~ǫt

≡ Bt · (~xt − ~xt|t−1) +~ǫt . (19.46)

Once again, by taking B to be the local linearization this is the same as equation (19.30).

Redefining the Kalman filter to use local linearizations of nonlinear observables and dy-

namics in the gain and error calculations gives the extended Kalman filter (the nonlinear

functions can be retained in the the state and observable predictions). As with most things

nonlinear it is no longer possible to prove the same kind of optimality results about an

extended Kalman filter, a liability that is more than made up for by its broader applica-

bility.

The magic of Kalman filtering happens in the step

~xt|t = ~xt|t−1 +Kt · (~yt − ~yt|t−1) . (19.47)

A correction is added to the internal state based on the difference between what you

predicted and what you observed, scaled by how much you trust your predictions versus

the observations. Officially, to be able to apply this you must know enough about the

system to be able to calculate the noise covariances in both the dynamics and the measure-

ments. In practice this is often not the case, particularly since the “noise” represents all

aspects of the system not covered by the model. Then the noise terms become adjustable

parameters that are selected to give satisfactory performance (Problem 19.2 provides an

example of this trade-off).

The success of Kalman filtering even when it is not formally justified hints at the power

of equation (19.47). Many nonlinear systems share the property that a small interaction

with an independent copy of the system can cause their states to become synchronized.

This process is called entrainment. For example, let d~x/dt = ~f (~x), and take d~x′/dt =
~f (~x′) to obey the same governing equation but have different initial conditions. Then if

DRAFT 19.4 Nonlinearity and Entrainment 247

we couple one of the degrees of the freedom of the two systems with a linear correction

that seeks to drive those variables to the same value,

dxi

dt
= fi(xi) + ǫ(x′

i − xi) , (19.48)

then for most choices of f , ǫ, and i, ~x will approach ~x′ as long as xi interacts with the

other components of ~x and there is dissipation to damp out errors. Because dissipation
reduces the dimension of the subspace of a system’s configuration space that it actually

uses [Temam, 1988], it’s needed to separate the tugs from the coupling between the

systems from the internal evolution of the system. ǫ is a small parameter that controls
the trade-off between responding quickly and ignoring noise.

Entrainment requires that the largest Lyapunov exponent associated with the coupling

between the systems is negative [Pecora et al., 1997]; this does not even require the

systems to be identical [Parlitz et al., 1997]. A formerly-familiar example is provided by

mechanical clocks on the wall of a clock shop; the vibrations coupled through the wall

could entrain the clock mechanisms so that they would tick in synchrony.

Entrainment can be used to design systems whose simple dynamics replaces compli-

cated algorithms for the job of state estimation. An example is spread spectrum acqui-

sition, a very important task in engineering practice. A transmitter that seeks to make

optimal use of a communications channel uses a linear feedback shift register (LFSR,

Chapter 6) to generate ideal pseudo-random noise as a modulation source. To decode the

message, the receiver must maintain a copy of the transmitter’s shift register that remains

faithful even if there is noise in the transmission or the two system’s clocks drift apart.

This is conventionally done by a coding search for the best setting of the receiver’s shift

register [Simon et al., 1994].

An LFSR uses a binary recursion

xn =

N∑

i=1

aixn−i (mod 2) , (19.49)

with the ai’s chosen to make the z-transform irreducible. It’s possible to add small

perturbations to this discrete function if the LFSR is replaced by an analog feedback

shift register (AFSR) [Gershenfeld & Grinstein, 1995],

xn =
1

2

[

1− cos

(

π
N∑

i=1

aixn−i

)]

. (19.50)

This analog function matches the value of the LFSR for binary arguments. Because the

magnitude of the slope of the map is less than 1 at the digital values, these are stable

fixed points [Guckenheimer & Holmes, 1983] that attract an arbitrary initial condition of

the register onto the LFSR sequence. If we now add to this a small correction

xn =
1

2

[

1− cos

(

π
N∑

i=1

aixn−i

)]

+ ǫ(x′
n − xn) , (19.51)

where x′
n is a signal received from another shift register, then the two systems can entrain.

This is shown in Figure 19.3. If ǫ is large the receiver locks quickly but it will also try
to follow any modulation and noise in the signal; if ǫ is small it will take longer to lock
but will result in a cleaner estimate of the transmitter’s state.

248 Filtering and State Estimation DRAFT

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Figure 19.3. Entrainment of an analog feedback shift register (◦) with a

linear feedback shift register (+).

19.5 HIDDEN MARKOV MODELS

The job of a Kalman filter is to provide an estimate of the internal state given a history

of measurements of an external observable. It presumes, however, that you already know

how to calculate the transition probabilities, and further that you’re not interested in

the probability distribution for the internal state. A Hidden Markov Model (HMM)

addresses these limitations.

For example, consider coin flipping done by a corrupt referee who has two coins, one

biased and the other fair, with the biased coin occasionally switched in surreptitiously.

The observable is whether the outcome is heads or tails; the hidden variable is which coin

is being used. Figure 19.4 shows this situation. There are transition probabilities between

the hidden states A and B, and emission probabilities associated with the observables 0
and 1. Given this architecture, and a set of measurements of the observable, our task is

to deduce both the fixed transition probabilities and the changing probabilities to see the

internal states. This is a discrete HMM; it’s also possible to use HMMs with continuous

time models [Rabiner, 1989].

Just as with the relationship between AR and MA models (Section 20.1), an HMM can

be approximated by an ordinary Markov model, but the latter might require an enormous

order to capture the behavior of the former because the rules for dynamics in the present

can depend on a change of models that occurred a long time ago.

We’ll assume that the internal state x can take on N discrete values, for convenience

taken to be x = {1, . . . , N}. Call xt the internal state at time t, and let {y1, . . . , yT}

DRAFT 19.5 Hidden Markov Models 249

p(B|A)

A B

0

p(A|B)

p(B|B)p(A|A)

p(0|A)

1 p(1|A) p(1|B)

p(0|B)

1

0

Figure 19.4. A Hidden Markov Model.

be a set of measurements of the observable. An HMM is specified by three sets of

probabilities: p(xt+1|xt), the internal transitions, p(yt|xt), the emission of an observable

given the internal state, and p(x1), the initial distribution of the internal states.
The key quantity to estimate is p(xt, xt+1, y1, . . . , yT), the probability to see a pair of

internal states along with the observations. From this we can find the probability to see

a transition given the observations,

p(xt+1|xt, y1, . . . , yT) =
p(xt, xt+1, y1, . . . , yT)

p(xt, y1, . . . , yT)

=
p(xt, xt+1, y1, . . . , yT)

∑N

xt+1=1
p(xt, xt+1, y1, . . . , yT)

, (19.52)

and then the absolute transition probability can be estimated by averaging over the record

p(xt+1 = j|xt = i) ≈
1

T

T∑

t′=1

p(xt′+1 = j|xt′ = i, y1, . . . , yT) . (19.53)

Similarly, the probability of seeing an internal state is

p(xt|y1, . . . , yT) =
p(xt, y1, . . . , yT)

p(y1, . . . , yT)

=

∑N

xt+1=1
p(xt, xt+1, y1, . . . , yT)

∑N

xt=1

∑N

xt+1=1
p(xt, xt+1, y1, . . . , yT)

, (19.54)

which can be used to estimate the observable probability by another sum over the data

p(yt = j|xt = i) ≈

∑

t′|yt′=j
p(xt′ = i|y1, . . . , yT)

∑T

t′=1 p(xt′ = i|y1, . . . , yT)
, (19.55)

as well as the absolute probability of an internal state

p(x = i) ≈
1

T

T∑

t=1

p(xt = i|y1, . . . , yT) . (19.56)

There is a problem lurking in the estimation of these quantities. Consider the proba-

bility of the model to produce the observations p(y1, . . . , yT). Since we don’t know the
sequence of internal states we have to sum over all of the possibilities

p(y1, . . . , yT) =
N∑

x1=1

· · ·
N∑

xT=1

p(x1, . . . , xT , y1, . . . , yT) . (19.57)

250 Filtering and State Estimation DRAFT

x
1

x i

x N

y
1

y t y T - 1 y T

Figure 19.5. Hidden Markov Model trellis.

This is a set of T sums over N terms, requiring NT operations. That’s a a big number!

A model with 10 internal states and an observed sequence of 100 points requires adding

10100 terms, which is larger than the number of atoms in the universe (∼1070). The
problem may be seen in Figure 19.5. The observed outputs are written across the top,

with the possible internal states under them. The exponential explosion comes in the

number of different paths through this trellis.

The trellis also points to a solution: each column depends only on the previous column,

and so we are doing far too much work by recalculating each column over and over for

every path that passes through it. Let’s start with the last step. Notice that it can be

written as a sum over the internal states,

p(y1, . . . , yT) =
N∑

xT=1

p(xT , y1, . . . , yT) (19.58)

=

N∑

xT=1

p(yT |xT , y1, . . . , yT−1) p(xT , y1, . . . , yT−1) .

Because the output probability depends only on the internal state this can be simplified

to

p(y1, . . . , yT) =
N∑

xT=1

p(yT |xT) p(xT , y1, . . . , yT−1) . (19.59)

Factored again over the previous step,

p(y1, . . . , yT) =
N∑

xT=1

p(yT |xT)

N∑

xT−1=1

p(xT , xT−1, y1, . . . , yT−1)

=

N∑

xT=1

p(yT |xT)

N∑

xT−1=1

p(xT |xT−1, y1, . . . , yT−1) p(xT−1, y1, . . . , yT−1)

=

N∑

xT=1

p(yT |xT)

N∑

xT−1=1

p(xT |xT−1) p(xT−1, y1, . . . , yT−1) , (19.60)

DRAFT 19.5 Hidden Markov Models 251

dropping the dependence of the internal transition probability on anything but the pre-

vious state. Continuing in this fashion back to the beginning we find that

p(y1, . . . , yT) =
N∑

xT=1

p(yT |xT)

N∑

xT−1=1

p(xT |xT−1) p(yT−1|xT−1) (19.61)

· · ·
N∑

x2=1

p(x3|x2) p(y2|x2)
N∑

x1=1

p(x2|x1) p(y1|x1) p(x1) .

The x1 sum has N terms and must be done for all values of x2, a total of N
2 opera-

tions. Since there are T of these, the cost of the calculation drops to O(N 2T) – quite a
saving over NT . As in so many other areas, a hard problem becomes easy if it is written

recursively. For an HMM this is called the forward algorithm.

The same idea works in reverse. Start with the probability to see a sequence of ob-

servables given a starting initial state, and factor it over the first step:

p(yt, . . . , yT |xt) =

N∑

xt+1=1

p(xt+1, yt, . . . , yT |xt)

=

N∑

xt+1=1

p(yt|xt, xt+1, yt+1, . . . , yT) p(xt+1, yt+1, . . . , yT |xt)

= p(yt|xt)

N∑

xt+1=1

p(yt+1, . . . , yT |xt, xt+1) p(xt+1|xt)

= p(yt|xt)

N∑

xt+1=1

p(xt+1|xt) p(yt+1, . . . , yT |xt+1) . (19.62)

Continuing on to the end,

p(yt, . . . , yT |xt) = p(yt|xt)

N∑

xt+1=1

p(xt+1|xt) p(yt+1|xt+1)

×
N∑

xt+2=1

p(xt+2|xt+1) p(yt+2|xt+2) · · ·
N∑

xT−1=1

p(xT−1|xT−2) p(yT−1|xT−1)

×
N∑

xT=1

p(xT |xT−1) p(yT |xT) . (19.63)

This is called (can you guess?) the backwards algorithm.

Now return to the probability to see a pair of internal states and the observations. This

can be factored as

p(xt, xt+1, y1, . . . , yT) = p(xt, y1, . . . , yt) p(xt+1|xt, y1, . . . , yt)

p(yt+1, . . . , yT |xt, xt+1, yt, . . . , yT) , (19.64)

or dropping irrelevant variables,

p(xt, xt+1, y1, . . . , yT) = p(xt, y1, . . . , yt) p(xt+1|xt) p(yt+1, . . . , yT |xt+1) .

There are three factors on the right. The first is what we find from the forward algorithm,

252 Filtering and State Estimation DRAFT

the middle one is the transition probability specified by the HMM, and the last is the

result of the backward algorithm. Therefore this quantity can be calculated for all points

by a linear-time pass through the data.

Once that’s been done the resulting distributions can be used to update the transi-

tion probabilities according to equations (19.53) and (19.55). This procedure can then

be iterated, first using the transition probabilities and the observables to update the

estimate of the internal probabilities, then using the internal probabilities to find new

values of the transition probabilities. Going back and forth between finding probabilities

given parameters and finding the most likely parameters given probabilities is just the

Expectation-Maximization (EM) algorithm that we saw in Section 16.3, which in the

context of HMMs is called the Baum–Welch algorithm. It finds the maximum likelihood

parameters starting from initial guesses for them. For a model with continuous parame-

ters the M step becomes a maximization with respect to the parameterized distribution

of internal states.

The combination of the forward-backward algorithm and EM finds the parameters

of an HMM but it provides no guidance into choosing the architecture. The need to

specify the architecture is the weakness, and strength, of using HMMs. In applications

where there is some a priori insight into the internal states it is straightforward to build

that in. A classic example, which helped drive the development of HMMs, is in speech

recognition. Here the outputs can be parameters for a sound synthesis model, say ARMA

coefficients (Section 20.1), and the internal states are phonemes and then words. It’s hard

to recognize these primitives from just a short stretch of sound, but the possible utterances

are a strong function of what has preceeded them. The same thing applies to many other

recognition tasks, such as reading handwriting, where a scrawled letter can be interpreted

based on its context. An HMM provides the means to express these ideas.

The most important application of an HMM comes not on the training data but in

applying the resulting model to deduce the hidden states given new data. To do this we

want to find the most likely sequence of states given the data,

argmax
x1...xT

p(x1, . . . , xT |y1, . . . , yT) =argmax
x1...xT

p(x1, . . . , xT , y1, . . . , yT)

p(y1, . . . , yT)

=argmax
x1...xT

p(x1, . . . , xT , y1, . . . , yT) (19.65)

(the denominator can be dropped because it doesn’t affect the maximization). argmaxxf (x)
is defined to be the argument x that gives f the maximum value, as compared to maxxf (x)
which is the value of f at the maximum.

Naively this requires checking the likelihood of every path through the trellis, an

O(NT) calculation. Not surprisingly, the same recursive trick that we used before also

works here. Start by factoring out the final step and dropping terms that are irrelevant

to the distribution,

max
x1...xT

p(x1, . . . , xT , y1, . . . , yT)

= max
x1...xT

p(xT , yT |x1, . . . , xT−1, y1, . . . , yT−1) p(x1, . . . , xT−1, y1, . . . , yT−1)

= max
x1...xT

p(xT , yT |xT−1) p(x1, . . . , xT−1, y1, . . . , yT−1) (19.66)

DRAFT 19.6 Problems 253

= max
x1...xT

p(yT |xT , xT−1) p(xT |xT−1) p(x1, . . . , xT−1, y1, . . . , yT−1)

= max
xT

p(yT |xT) max
x1...xT−1

p(xT |xT−1) p(x1, . . . , xT−1, y1, . . . , yT−1) .

Continuing in this fashion back to the beginning,

max
x1...xT

p(x1, . . . , xT , y1, . . . , yT)

= max
xT

p(yT |xT) max
xT−1

p(xT |xT−1) p(yT−1|xT−1) (19.67)

· · · max
x2

p(x3|x2) p(y2|x2) max
x1

p(x2|x1) p(y1|x1) p(x1) .

This is now once again an O(N 2T) calculation. It is called the Viterbi algorithm, and is
very important beyond HMMs in decoding signals sent through noisy channels that have

had correlations introduced by a convolutional coder [Sklar, 1988]. There is one subtlety

in implementing it: each maximization has a set of outcomes based on the unknown value

of the following step. This is handled by using the maximum value for each outcome and

keeping track of which one was used at each step, then backtracking from the end of the

calculation once the final maximization is known.

Figures 19.1 and 19.5 were used to help explain Kalman filtering and HMMs by

drawing the connections among the variables. It’s possible to go much further with such

diagrams, using them to write down probabilistic models with more complex dependen-

cies than what we’ve covered, and applying graphical techniques to arrive at the kinds of

simplifications we found to make the estimation problems tractable [Jordan, 1999]. Such

architectural complexity is useful when there is advance knowledge to guide it; the next

chapter turns to the opposite limit.

factor graphs

mxi→fi (xi) =
∏

fj (∼fi)

mfj→xi
(xi)

mfi→xi
(xi) =

∑

∼xi

fi({~x}i)
∏

xj (∼xi)

mxj→fi (xj) (19.68)

m•→xi
(xi) = 1

19.6 SELECTED REFERENCES

[Brown & Hwang, 1997] Brown, Robert Grover, & Hwang, Patrick Y.C.(̇1997).
Introduction to Random Signals and Applied Kalman Filtering. 3rd edn.
New York, NY: Wiley.

A good practical introduction to estimation theory.

[Catlin, 1989] Catlin, Donald E. (1989). Estimation, Control, and the Discrete Kalman
Filter. Applied Mathematical Sciences, vol. 71. New York, NY: Springer
Verlag.

The rigorous mathematical background of Kalman filtering.

[Honerkamp, 1994] Honerkamp, Josef (1994). Stochastic Dynamical Systems: Concepts,

254 Filtering and State Estimation DRAFT

Numerical Methods, Data Analysis. New York, NY: VCH. Translated by
Katja Lindenberg.

The connection between estimation theory and the theory of stochastic
dynamical systems.

19.7 PROBLEMS

(19.1) What is the approximate Kalman gain matrix in the limit of small measurement

noise? How is the error matrix updated in this case?

(19.2) Take as a test signal a periodically modulated sinusoid with noise added,

yn = sin[0.1tn + 4 sin(0.01tn)] + η ≡ sin(θn) + η , (19.69)

where η is a Gaussian noise process with σ = 0.1. Design an extended Kalman
filter to estimate the noise-free signal. Use a two-component state vector ~xn =

(θn, θn−1), and assume for the internal model a linear extrapolation θn+1 = θn +
(θn−θn−1). Take the system noise matrixN

x to be diagonal, and plot the predicted

value of y versus the measured value of y if the standard deviation of the system
noise is chosen to be 10−1, 10−3, and 10−5. Use the identity matrix for the initial

error estimate.

(19.3) (a) Given an HMM trellis (Figure 19.5), work out the probability to see an internal

state given the observations p(xt|y1, . . . , yT) in terms of forward and backward
terms.

(b) Generate observations from the model in Figure 19.4, with a fair and a biased

coin as the internal states, and probabilities to switch between them.

(c) Use knowledge of this model and those observations to estimate the probabil-

ities for which coin was used when, and compare with the correct values.

