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A NEWMETHOD FOR OPTIMAL TRUSS TOPOLOGY DESIGN*
AHARON BEN-TALt Ar4D MARTIN P. BENDSCE

Abstract. Truss topology optimization formulated in terms of displacements and bar volumes results in
a large, nonconvex optimization problem. For the case of maximization of stiffness for a prescribed volume,
this paper presents a new equivalent, an unconstrained and convex minimization problem in displacements
only, where the function to be minimized is the sum of terms, each of which is the maximum of two convex,
quadratic functions. Existence of solutions is proved, as is the convergence of a nonsmooth steepest descent-
type algorithm for solving the topology optimization problem. The algorithm is computationally attractive and
has been tested on a large number of examples, some of which are presented.
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1. Introduction. Recent years have seen a revived interest in methods for finding
optimal topologies of structures [9]. Most work in optimal design of structures is related
to optimization of sizes or boundary curves even though it is recognized that optimiza-
tion of a structural layout (geometry and topology) has an immense impact on the per-
formance of a structure. Analytical methods have been established for the study of fun-
damental properties of gridlike continua and this field goes back to the work of Michell
[12], and is described in monographs by Hemp [8] and Rozvany [17]. Applications of
numerical methods to discrete models, especially truss problems, are more recent, with
initial studies by Dorn, Grornory, and Greenberg [5]; Fleron [6]; and Pedersen [13]. The
last couple ofyears have seen the development of the so-called homogenization method
for generating optimal topologies of structural elements (cf. Bendsce and Kikuchi [3]
and Suzuki and Kikuchi [19]), again emphasizing the great importance of topology de-
sign for the performance of a structure.

In this paper, we will consider the problem of finding the stiffest truss which is car-
tying a given load and which consists of perfect, slender bars of a given total volume.
The bars of the truss are a subset of bars connecting all of a number of a priori chosen
nodal points, this basic set of bars being the ground structure (cf. Fig. 1), and the topol-
ogy of the truss is generated by varying the cross-sectional areas of the truss, allowing
for zero cross-sectional areas. The truss is subject to an external nodal force vector f
and the deformation of the truss is described by the vector z of nodal displacements.
Figure 2 shows a simple three-bar truss with four nodes, of which three are fixed in all
directions. The deformation is thus described by the displacement at the node Z and
this displacement is controlled via the equation of equilibrium at this node.

Let ai, i denote the cross-sectional area and length of bar number i, respectively,
and assume that all bars are made of the same linear elastic material with Young’s mod-
ulus E. In order to define equilibrium and to compute bar elongations, construct the
compatibility matrix B, which is a projection matrix that relates nodal forces f and bar
forces q by
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FIG. l(a). A ground structure with allpossible node connections.

>

FIG. l(b). A ground structure with only neighboring nodes connected.
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324 AHARON BEN-TALAND MARTIN E BENDSOE

1 3

Fit. 2. A three-bar truss.

and which relates nodal displacements x and bar elongations A by

Bz= A.

For the truss in Fig. 2,

cosa sinaiB= 0 1

cos/ sin/

as we have three bars and two degrees of freedom. Generally B is an m x nb matrix,
being the number of bars and nb the degrees of freedom; nb= (n no. of nodes)
(dim dimension of space 2 or 3) /(b no. of support conditions).

With a member elongation A the member force q is

Ea---A A,(1.1) qi= t
so with D diag (Ea/.), equilibrium is expressed as

f BTq BTDA BTDBx Kx,

where K BTDB is called the stiffness matrix. The volume of the truss is given as
m

Vol a,
i=1

andwe thus introduce the volume ofeach bar, t a, as a more natural variable. Now
setting (with 6k denoting the Kronecker index)

E
(D) ,

Ki BTDB,
the stiffness matrix is written as

m

K tiKi,
i=1
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TRUSS TOPOLOGY DESIGN 325

where tK is the element stiffness matrix for element i. For the structure in Fig. 2, the
matrices K are

E ( cos2a cosasina)Kx=e\cosasina sin2a

E( cos / cos/sin/)K3 /- COS/ sin/ sin2

Clearly the matrices K are all positive semidefinite. Moreover, it is standard to
assume that B has full rank (this depends on the geometry only), so as to exclude rigid
body motion or mechanisms. This assumption implies that K is positive definite if all t
satisfy t > 0.

The number fTz, called the compliance of the structure, is a measure of the work
done by the external forces and is thus inversely related to the stiffness of the truss. Find-
ing the stiffest truss for a given total material volume v is thus covered by the formulation

(P1) min 1/2fTz

subject to

m

EtAx f,
i=1

m

Eti :v,
i=1

0 < L < t < U < ,
where the design variables t and the deformation variables x appear as independent
variables, and whereA are positive semidefinite matrices satisfying the assumption that
tA is positive definite if t > 0 for all i 1,..., m.
If the truss is supposed to carry a set of different loads, fx,..., fk, a so-called multi-

loadproblem can be formulated for the minimization of a weighted average of the com-
pliances for these loads:

k

(Pro) minE 1/2Wvfl’xv
p--1

subject to

m

EtiKixV fv, p 1,..., k,
i=1

m

Eti =v,
i=1

0 < L < t < U < ,
where Wv, p 1,..., k, denote suitable weights on the individual compliance val-
ues, and xv are the displacements corresponding to load case fl’. This problem is of
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326 AHARON BEN-TALAND MARTIN P. BENDSOE

a form similar to problem (P1); by introducing an extended displacement vector z
(zx,..., zk), an extended, weighted force vector f ((Wt)/:F,..., (W)t/2f), and
extended unit element stiffness matrices A as the block-diagonal matrices with k copies
of Ki in the diagonal, problem (Pro) takes the form of problem (P1). In typical appli-
cations, the number of loads k is not great, in the order of 2 to 10.

In this paper our main interest is topology design, so we will typically allow for zero
cross-sectional areas, i.e., 0 for all i. Also, we are primarily seeking to solve prob-
lems with a large number of nodal points (e.g., 100) and truss bars, typically taking all
connecting bars in the ground structure. With n nodes, we can have up to m 1/2n(n- 1)
connecting bars, with the total number of variables being (rib + m) (or k.nb + m for
multiload problems). Thus, for example, a successive quadratic programming (SQP).
method typically will not be a suitable method for solving problem (P1) and one should
seek to exploit the special structure of the problem, as done in this paper.

The standard approach in structural optimization for a solution procedure for (P1)
(see Haftka, Kamat, and Giirdal [7]; and Rozvany and Zhou [18]) is to assume that
Li > 0, for all i, so that the state variable z can be eliminated by solving Az f. The
derivatives of frz are obtained through an adjoint equation, as in optimal control, or
through implicit differentiation of the equilibrium equation, and we have

cg
(fTx) --zTAiz.

The problem is then a problem in the design variables t only, but with topology design
in mind this is only a very modest reduction in problem size. For many other structural
design problems, the number of state variables is much larger than the number of design
variables. This is the case in boundary shape optimization with a finite element state
model and a boundary defined through a rather small set of spline control points. For
such problems, the matrix A is also typically sparse and banded. Again, for topology
design, the situation is different because A will typically be neither banded nor sparse,
as all nodes are connected.

Note that the topology optimization problem could also be formulated as a discrete
optimization problem, but this has mostly been attempted in connection with material
selection and cross-section-type selection problems (cf. Kitsch [9]). In addition, the ho-
mogenization method developed for topology design ofcontinuum structures has turned
out to be capable of generating truss-like thin structures; cf. Suzuki and Kikuchi [19].
This latter method automatically generates the nodal points of the truss and has a dis-
cretized formulation analogous to problem (P1), but with A and volume depending
nonlincarly on the design parameters. Finally, a natural extension of problem (P1) is
to consider the geometric location of the nodal points as design variables as well. These
variables would enter the problem through the stiffness matrix A or, rather, through the
compatibility matrix B. Such a combination has attracted a great deal of attention (see
Kirsh [9], Topping [20], and Vanderplaats [21]), but the resulting problem is extremely
difficult to solve. With efficient methods for solving high-dimensional problems of type
(P1) in its present form, it may be more attractive to introduce a high number of nodal
points in the ground structure, and in this way allow for the prediction of the optimal
geometric location of nodes.

2. Summary of results. In this paper, we show that the nonconvex optimization
problem (P1) can be formulated in terms of an equivalent convex problem in the vari-
ables z only, thus achieving a considerable reduction in problem size. The new prob-
lem is an unconstrained problem and consists of the minimization of a nondiffercntiablc
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TRUSS TOPOLOGY DESIGN 327

function F(x), where F(x) itself is the sum of terms, each of which is the maximum of
two convex quadratic functions. For the special case of a problem (Pl) with only a zero
lower bound on the ti’s (denoted (P1),), the new formulation is

(P2) v xTAix_ fTx}min max {
xER i=l,...,m

where each term xTAix is the energy of the bar number i. Note that the optimality
conditions for problem (P1), are

xTAix= A if ti > O,

(2.1)
xTAix _< A if t O,

tAix f,

where/x is the constant (positive) Lagrange multiplier for the volume constraint. We thus
see that for the optimal truss topology, no more than n + 1 active bars (i.e., bars with
ti > 0) are needed. (This follows from the optimality conditions (2.1) and Caratheodory
Theorem; see, e.g., [14].) Moreover, the active bars all have the same specific energy
XTAx, and that energy level A is the maximum of the energies in all of the bars. This is
reflected in problem (P2),, as is the fact that the conditions

(2.2) tAaix fly, tA 1
v v

imply that a convex combination of the gradients of the energies of active bars equals
the load fly; equation (2.2) thus expresses the fact that the subgradient of the objective
function in problem (P2), contains zero. As problem (P1), is not convex, this equiva-
lence of necessary conditions does not in itself imply equivalence of (P1)8 and (P2)8,
but this stronger result is proven in 3, where existence of solutions is also proved. In 4
we present a nonsmooth "steepest descent" algorithm for problem (P2), which simul-
taneously solves the original truss topologyproblem (P1). Section 5 contains the proof of
the convergence of this algorithm. In 6 the algorithm is specialized to problems (P2).
For this special case, the algorithm is very similar to minmax algorithms, as in Demyanov
and Malozemov [4] and Pshenichny and Danilin [14].

Each step of the algorithm consists of a computation of a subset J of bars which for
the current estimate of z have a certain fixed energy level. The descent direction can
then be computed from a quadratic programming problem with nb variables and with
the number of constraints controlled by J. This QP problem is thus of the same size as
the equilibrium equation Az f, but the data of the problem only involves the bars
of the set J, which typically contains many fewer than the total number of bars. Al-
ternatively, the dual to this QP can be solved. This dual is also a QP problem, being a
least-squares problem in the design variables t, i E J, that will generate equilibrium in a
least-squares sense for the current estimate of deformation z. It is advantageous to solve
the dual problem, as the cardinality of J is usually considerably smaller than rib. With the
descent direction in hand, the steplength of the descent can be computed by an inexact
linesearch of the Armijo-Goldstein type. For problem (P2), we, in fact, derive an an-
alyticalformula for the stepsize. Alternatively an exact linesearch (e.g., golden section)
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328 AHARON BEN-TALAND MARTIN P. BENDStDE

can be performed, taking advantage of the fact that in most cases only "almost active"
bars will influence the search. In 7 we present a number of computational examples
and discuss implementation.

The algorithm is computationally very attractive because the values zrAz require
only a few additions and multiplications, and because we avoid assembly of the entire
stiffness matrix A tiA at any stage. The algorithm thus never requires a solution
of Az f, and equilibrium is actually first achieved when the algorithm has converged.

For the case of a single load, the matrices Ai of problem (P1) are the element stiff-
ness matrices K, which can be written as

E T(2.3) K, 7b,bi,

where bT is the ith row of the compatibility matrix B. In this case, it can be shown (see
1]) that (P2), is equivalent to a linearprogramming problem:

rain fx

(LPx) subject to

i= 1,...,m,

and this equivalence follows from the nontrivial equivalence between problems (P1)8
and (P2). Problem (LPx) has a rather low number ofvariables, but a very high number
of constraints. It should be noted that for multiple load cases and/or upper (and/or
lower) bounds on the bar volumes, a similar equivalence to linear programs does not
hold.

Traditionally, truss topology optimization problems have been formulated in terms
of member forces (el. (1.1)) as a linear programming problem:

(LPq)

m

min ti
q,t

i=1

subject to

STq f,

-tia < iqi < tia,

t>O

i= 1,...,m,

for minimizing the weight, subject to equilibrium and stress constraints, a being the limit
stress value (see Dorn, Gromory, and Greenberg [5]; Fleron [6]; Kirsch [9], [10]; Peder-
sen [13]; Ringertz [15]; Topping [20]; and Vanderplaats [21]). Problem (LPq) is the dual
ofproblem (LPx), written in terms of the variables
where q/+, q- are the dual variables of (LPx).

The equivalence mentioned above (and in other studies [1]) shows that for any so-
lution (t, q) to (LPq) there exists a displacement field x so that (t, x) is a minimum com-
pliance design, i.e., a solution to problem (P1), as it is readily seen that for the member
forces t corresponding to x, (t, t) is a solution to problem (LPq). From a design point
of view, the variables of primary interest are the bar volumes t, so (LPq) is a suitable
formulation for plastic as well as elastic design.
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TRUSS TOPOLOGY DESIGN 329

3. A displacement-based formulation for truss topology design. The mixed formu-
lation (simultaneous analysis and design) of the truss topology design problem is the
following)

PROBLEM (P1).

rain

subject to
_
tiA f,

i=1

m

(3.2) -ti v,
i=1

(3.3) L < t < U, i 1, 2,..., m.

The assumptions on the problem data are
(A1) 0<L<U<v, i=l,2,...,m;
(A2) Eim__lLi<v<Eim__l
(A3) for every i, the matrix Ai is n x n symmetric positive semidefinite;
(A4) if ti > 0, i 1,..., m, then the matrix ’]im=l tiAi is positive definite;
(A5) fen, f#0.
Problem (P1) has a large number of variables (m / n), and is nonconvex in the

variables (, ) due to the constraint (3.1). The main result of this section (Theorem 4)
shows that Problem (P1) can be solved by considering an equivalent convex program-
ming problem (Problem (P2) below), which has only n + 1 variables. Since typically m
is much larger than n, Problem (P2) offers an attractive way to solve the truss topology
design problem. The formulation of Problem (P2) is as follows.

PROBLEM (P2).

The objective function F(z, A) is a nonsmooth convex function; in fact, it is a piece-
wise quadratic function, thus of"mild" nonsmoothness. The relation between Problems
(P1) and (P2) is given in the following theorem and in Theorem 4 below.

THEOREM 1.

min(P1 min(P2).

Proof. Problem (P1) can be written as

(3.4)

where

(3.5)

min(P1) =mtin {g(t) ’.t, v, L <_t _< U},

g(t) "= min{1/2fx -tiAix f}.
TO simplify notation, we omit in the sequel the transpose symbol in inner products, matrix multiplications,
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330 AHARON BEN-TALAND MARTIN P. BENDSE

We first derive an equivalent expression for (t). Let (t) be a solution of (3.5), so
that

Consider the convex problem

g(t) 1/2f(t).

(3.6) h(t) "= max{fx- 1/2xA(t)x}, A(t) "= t,A,.

The set of optimal solutions of (3.6), X(t), is

and since (t) E X(t),

X(t) (t) + N(A(t))

where N denotes "null space." Now h(t) can be computed as

h(t) max
zeN(A(t))

f- 1/2A(t), + max {x(f A(t)) 1/2xA(t)x}
eg(A(t))

-f since A(t) f, A(t)x 0 (x e N(A(t)))2

Thus

g(t) h(t) max{fx- z1/2xA(t)x};

and substituting this into (3.4),

min(P1) min max fx- 1/2 ti(xA,x)
E ti=v En i=1
L<t<U

This is a minmax problem, which is convex (in fact, linear) in t and concave (quadratic)
in x. Moreover, the constraint set of t is compact; hence a minmax theorem (Rockafellar
[16, Cor. 37.3.2]) implies

(3.7) min(P1) max min fx- 1/2 ti(xAix) ti v
xE L<t<U

i=1 i--1

By Lagrange duality, the inner minimization is equal to

fx + max rain -1/2 t,(xA,x) + t, v
AR L<t<U

i=1

Ix + max max {t,(1/2xA,x- A)} Av
AR Li<ti<Ui

A
i=1
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TRUSS TOPOLOGY DESIGN 331

Substituting the latter into (3.7),

rain(P1) max fx Av Emax { (1/2xA,x ) Ui, (1/2xA,x ) L,}
x,)

i=1

m,a,{-F(x, A)} min(P2).

The next result shows that for Problem (P2) an optimal solution always exists.
THEOREM 2. There exist ’, and A R such that

(3.8) F(., A) min F(x,

Proof. Let to E ’ be a vector such that

t>0, L<t<U,

and let x E ’ be the unique solution of

(3.9) tA,x f,

m

i=1

(E,,a,)
(Recall that by assumption (A4), tAi is positive definite and hence nonsingular.)

Let A R be fixed but arbitrary. Consider the set

(3.10)

Then

So {(, A) e " R F(, A) < F(, Ao)}.

min F(x,A) min F(x,A).
’,,R (,,X)So

The function F(x, A) is continuous, and so to prove the existence of a solution (, A), it
remains to show that So is bounded. Now

So,

(3.11)

F(x’A) Av- fx +Emax{(1/2xAix A)Ui’ (1/2xoAixo Ao)Li}
i--1

> Av- fx + t(1/2xA,x A) (since L, < t < Ui)

O- O- 1/2fx.
ao := F(x, A) > -1/2fx.D
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332 AHARON BENoTALAND MARTIN P. BENDSOE

Let (z, A) So; then

ao >_ F(x, A) >_ Av .fx +E ti 1/2xA’x

_> -Ilfll I111 / 1/2o I111,
where 0 < ro is the minimum eigenvalue of the (positive definite) matrix Y tAi. The
above showed that if (x, A) So then

1/2o1111- Ilfll IIll- o _< oo(3.12)

Consider the polynomial

Its discriminant A is

by (3.11),

p() TO" CE
2 --Ilfll ao.

A :-- [Ifl[ + 2roao >_ Ilfl[ 2 rofx

Ilfll(llfll- ollll)
by Cauchy-Sehwartz inequality, but

o > rolloll,

hence Ilfll -> ollzll, and so, from the above,

A>0.

Therefore, p(a) has real roots, the larger of which, p, is

1 (11$11 + AX/) > 0.P=o
Now, since p(.) is a convex (quadratic) function (To > 0), the inequality p(a) < 0 implies
that

a<_p<oo.

This shows that (3.12) implies that

To derive a bound for A, whenever (z, A) So, we use the two inequalities

ao >_ Av- fx + E L,(1/2xAix- A),

o > ,- + u,(]A,- ).

By assumption (), these inequalities imply

-ao fx + UixA,x ao + fx- n,xA,x
U -v v- Li
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TRUSS TOPOLOGY DESIGN 333

which further imply

0 + Ilfllp <_ <_ 0 + Ilfllp

Next we derive the necessary and sufficient conditions for (,)) to be a solution of
Problem (P2).

THEOREM 3. A pair (, )), E n, R is an optimal solution ofProblem (P2) if
and only ifthere exist multipliers { i 1,..., m} such that

(3.13)

(3.14)

(3.15)

t-=Li ifieJ-:={j’1/2Aj<},

t-/=Ui /fieJ+:={j’1/2A>},

L,_<t-/<_Ui ifieJ’={j’1/2Aj=},

m

(3.16) A, f,
i=1

m

(3.17) Z t- v,
i=1

Proof. Since F(x, )) is a convex function, (, ) solves (P2) if and only if

(3.18) 0 e OF(, ),

where OF is the subgradient set of F. From well-known results on the subgradient of a
sum and of max-functions (see, e.g., Rockafellar [16]), condition (3.18) becomes here

j_ LA,I EUA

+ conv
-L -U

The latter inclusion holds if and only if numbers {Ti i E d) exist such that

0_< <_ 1,

d- d+ d

d- d+ d

is system is equivalent to (3.13)-(3.17) th

t rL + (1 r)u, i d.

The main result follows.
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334 AHARON BEN-TALAND MARTIN P. BENDSE

THEOREM 4. Let (, A) be an optimal solution ofproblem (P2), with a corresponding
multiplier vector m (see Theorem 3). Then (, t-) is a (global) optimal solution of
Problem P1).

Proof. Clearly, by (3.13)-(3.17), the pair (, t-) is a feasible solution of (P1). More-
over, by Theorem 1,

rain(P1) rain(P2) -F(, A)

-v + f: max{(1/2:A,: )U,, (1/2A,:
/=1

+
j- j+

(1/2A# ).
J

(The last summation is equal to zero by the definition of J.)

j- j+ J

-2-!f: v + 1/2: f A: (by (3.13), (3.14))
i=1 i=1

--if (by (3.16), (3.17))

So, (, t-) is feasible for (P1) and attains the minimal value: min(P1) 1/2f; hence it is
globally optimal. I]

The optimality condition for (, A) to solve (P2) (Theorem 3) reveals that A is a
threshold energy level. All truss members i with ener_gy level 1/2Ai below have the
minimal volume Li; all those with energy level above A have the maximal volume U; all
the rest have the same energy level A. We now show how to obtain the threshold value
A A(z) for a given displacement vector z, i.e.,

A(x) arg In}n F(x, A).

The derivation is based on the following lemma.
LEMMA 1. Let > 0, T _> 0, a R (i 1, 2,..., m) be numbers such that

ai <_a2 <".

m

T > e.
i--1

Let K be the largest integer such that

e<T
i--K

(K <_ m).
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TRUSS TOPOLOGY DESIGN 335

Then, the optimal solution A of

(3.19) min A + (czi A)+Ti
AER

i=1

/$ A OK

Proof. Since

m m

i=K+I i=K

we may write

m m

9=OETi+(1-O) E Ti
i=K i=K+I

for some 0 < 0 < 1.

Now,

rnn(9 + E(ci )+Ti} tn}n OET/+ (I 0) E Ti
1 K K+I

+(,-
1

k 0min A Ti + (oi- A)+Ti
)t

K

{ m m }+(I --O)mn A E Ti + E(c,- A)+Ti
K+I

}> 0min A Ti + (ozi- A)Ti
A

K K

{ m m }+(i --/9) mn E Ti + E (ozi
K+I K+I

m m

0E ciTi + (i 0) E ciTi
K K+I

m

O0KTK -’F- E oT "= 7"
K+I
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336 AHARON BEN-TALAND MARTIN P. BENDSOE

Substituting A A ar in the objective function of (3.19) we get

CK 0ETi+(1-0) ETi +E(oi--CeK)+Ti
K K+I /=1

m m

K+I K+I
m

OOKTK "t- E tiTi "3[,
K+I

so A ar achieves the lower bound 7. Hence, it is optimal.
THEOREM 5. Let ’ be given, and let

A argmnF(, A).

Let {ix, i2,..., ira} be a permutation of {1, 2,..., m} such that

and let K be the largest integer such that

m K--1

j--K j=l

(K < m);

then

Proof. F(x, A) can be written as

Hence

Define

j= l,...,m,

V’=v-ELi,

j l,...,m;

thus the conclusion in the theorem follows immediately from Lemma 1.D
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TRUSS TOPOLOGY DESIGN 337

4. An algorithm for solving Problems (P2) and (P1). We describe an algorithm for
solving the nonsmooth problem (P2)

min F(x, ,k) "= )v- fx + F(x ))
(P2) -,,x

"=

F(x,)) "= max{(1/2xAx ))U, (1/2xAx )L}.

The algorithm will find the optimal solution (., A) and will simultaneously generate an
optimal solution pair (, t-) for Problem (P1). The basic iteration step is

+a g 0,1,2,...,

where (d, h) is a direction ofdescent of F at (x, A), and ae 0 is the stepsize. e
direction vector (d, 6) is generated by solving a quadratic programming problem.

At a given point (x, A), the directionaldevative ofF in the direction (d, 6), denoted
by F’ (xe, A, d, 6), is given (using well-o results on the directional derivative of a
m-nction) by

(4.1)

F’(x,);d, 5) v5- fd /EL(dAix -) /EU(dAx )

+Emax{Ui(dAix )’ Li(dAix 6)},
J

where the index sets e-, -, and fit are defined by

[ "= {i" 1/2xAix < A},
.= {i. >

Asteepest descent direction of F at (x, Ae) is a vector (, t), which solves the minima-
tion problem

(4.2) min (xt, Ae 62de.,{F’ d, 6) + (ldl2 + )}.

e second term in the objective nction is added to bound the length of the direction
vector (d, ). t

Then, by (4.1),

F’(x, ), d, 6) fd +E #’’
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338 AHARON BEN-TALAND MARTIN P. BENDSOE

where

i max{U(dAix ), L,(dA,x )}.

Then, problem (4.2) can be written as a quadratic program in the variables d E ’, 6 E
R,{#i "i e Je}"

subject to

# >_ UidAix U8,

#i > LidAixe- Li6,

One can obtain the optimal solution of (P), (de), by solving the dual problem of (P),
which is as follows (we omit the details):

(De) II )
L < ti < Ui, i

From the primal-dual relations between (Pt,)-(Dt,), if -t, is the optimal solution of (De,),
then the optimal solution of (Pc) is

J

It is easy to verify, from the optimality conditions in Theorem 3, and the result of Theo-
rem 4, that the following result holds.

THEOREM 6. dt 0, t 0 ifand only if (xt, At) solves Problem (P2) and (x
solves Problem P1).

The last result is of theoretical value since an algorithm based on the iteration step

xt’+ xt’ d- at,J1t’,

does not necessarily converge. Indeed, unlike the smooth case, for which the steepest
descent algorithm is convergent, this is not the case for nonsmooth problems such as
(P2) (see, e.g., Lemarechal 11]).

The cure is to introduce a perturbation of the "active constraint set" Je. This will
prevent the solution ofproblem (Pc) or (De) to change discontinuouslywhen a constraint
becomes inactive. The specific way this perturbation is chosen here is described next. In
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TRUSS TOPOLOGY DESIGN 339

what follows, e > 0 is a fixed parameter controlling the "activity" index sets defined
below:

& {i 11/2zeA,ze Ael < e/(U L,)},

Je+ {i 1/2xAx- > e/(U L,)},

J[ {i 1/2x*Aize Ae < -e/(U L,)}.

Also let

An -steepest descent direction (d,) for (P2) at (x, A) is the solution of the quadratic
program (P):

( 1 1}min ve6- ge + .i + Ildll 2 + N

() subject to

u dAx a + pf m O, i &
L(dAx + Pf) m O,

where

pf 1/2xeAixe Ae.
Note that problem (Pc) is a perturbation of problem (Pc). Indeed IPfl e/(U L) for
i E Je, and J, . de for e small; the problems coincide for e 0.

A dual problem of (Pe) is the following quadratic program:

IItiAixe femax tipz- II 2 )Eti
Je

Li < ti < Ui, i Je.

If te is the solution of (/)e), then the solution (de, 5e) of (/Se) is given by

(4.3)

de ( E tfAixe- fe )
iJe

We now demonstrate that a result similar to Theorem 6 holds for problems (/se)
and(/).
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340 AHARON BEN-TALAND MARTIN P. BENDSOE

THEOREM 7. de 0, 6t 0 ifand only if (xt, At) solves Problem (P2) and (xt, tt)
solves Problem (P1).

Proof. The optimality conditions for (de, 6t) to solve problem (Pt) are

(4.4) Etf-6t =vt,

(4.5) E tiA’xt + de ft,

(4.6) (t L,) (U(h + Pi) #) O, i Jr,

(4.7) (Ui tel) (L,(hei + p) #) O, i Jr,

(4.8) Li < t < Ui,

(4.9) # max {U(h + p),

where

pe "= 1/2xtAxt At, h := dtAixt 6t.

Define

t= Li, # Li(h + p), iJ-,

Then, using the definition of vt and ft, the system (4.4)-(4.9) can be written as follows:

m

(4.10) E te 6t v,
i=1

m

(4.11) E teA’xt + de f
i-1

(4.12) (t L,) (Ui(h + p) #) O, i 1,..., m,

(4.13) (Ui te) (L,(h + p) #i) O, i 1,..., m,

(4.14)
Li < ti <_ Ui i 1,..., m

with

tel=L,, i e J[,

D
ow

nl
oa

de
d 

04
/0

3/
18

 to
 1

28
.3

1.
36

.3
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



TRUSS TOPOLOGY DESIGN 341

# max{Ui(h + p), L,(h + p)},

(4.15)

The optimality condition at (, A) for Problem (P2) can be written as the system

m

(4.16) E t-i v,
i=l

m

(4.17) iAi: f,
i=1

(4.18) ( L,)[Uo,- 2] 0, i 1,..., m,

(4.19) (Ui -i)[Li/3i 2i] 0, i 1,..., m,

(4.20) L < t- < U, i 1,..., m,

(4.21) z- max{U05i, Lii}, i 1,..., m,

where

:= 1/2A#- X.

Let de 0, 8e 0. Then h 0. Also i e Je- = P$ < 0 and i e Je+ = p$ > 0 and
therefore (4.15) reduces to

#$ max{Uip$, L,pei }, i 1,..., m.

It is easily seen, by comparing the systems (4.10)-(4.15) with (4.16)-(4.21), that

" xe, Ae, lzei, i l,...,m

is an optimal solution of (P2).
Conversely, let 5c xe, Ae be a solution of (P2). Then p =/i and it follows

from (4.21) that

z-i Uipei ifp > 0, in particular, if i Je+;
z Lipei ifp < 0, in particular, if i Je-.

Hence, de O, 8e 0 (which makesh 0) with corresponding multipliers t , #
z-/satisfy the optimality condition (4.10)-(4.15) for (Pc).

Once an e-steepest descent direction (de, 6e) has been computed, the stepsize ce can
be computed by

at arg min F(xe + cde At + a6e).
o>0
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342 AHARON BEN-TALAND MARTIN P. BENDSE

Here, we employ an inexact linesearch of the Armijo-Goldstein type. The stopping rule
for the algorithm is based on Theorem 7.

ALGORITHM A [For solving Problems (P2) and (P1)]
Parameters: e > 0 ("activity" parameter), 6 > 0 (for the stopping rule), 0 < 0 < 1/2 (for
the stepsize rule).
Initialization

(0.1) Choose an initial design vector to

t>0, L<t<U,

(0.2) Solve the linear system

m

i=1

m

i=I

to obtain its (unique) solution z.
(0.3) Compute A as follows (see Theorem 5). Compute a permutation (i, i2,..., i,)

of {1, 2,..., m} such that

xAix0 <_ xAi.x0 <_... <_ xAixO.
Let K be the largest integer such that

m K-1

j--K j=l

Then

/0 1/2xAir xO.
Step (xe, Ae given)

(L1) Generate the index sets Je, J+, Je-, compute ve and ft.
(L2) Solve (/Se) to obtain (de, 6e) [OR: solve (be) to obtain te and then compute

by the formula (4.3)].
(L3) If max(lldell, ISel) < 5 stop, else go to (/?.4).
(e.4) Compute the stepsize ae as the largest a > 0 such that

(4.22) F(xe + tde, Ae + c6) < F(xe, Ae) -0(lldell + ).
Note: An approximation of ce can be computed as follows. Let K(g) smallest
integer K such that a (1/2)K satisfies (4.22), then

(1/2

(e.6) e - e + 1, go to (L1).

ATM Ae +
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TRUSS TOPOLOGY DESIGN 343

5. Convergence of Algorithm A. In this section we show that convergent subse-
quences generated by Algorithm A produce an optimal solution of (P2) and simultane-
ously (by Theorem 3), an optimal solution of the original truss topology design Problem
(P1).

THEOREM 8. The sequence {xe, Ae}, generated by Algorithm A, has a convergent
subsequence. The limit point of any such subsequence is an optimal solution ofproblem
(P2).

Proof. In the proof of Theorem it was shown that the set

So {(x, A) F(x, A) _< F(x, A)}

is compact. Since, by (4.22),

F(xe+ Ae+1) <_ F(xe, Ae)
it follows that

for all 0, 1, 2,...,

{x, A*} c So,

and by the compactness of S0, this implies the existence of a convergent subsequence.
For simplicity of notation, we denote this subsequence also by {me, Ae}. Let (, ) be
its limit point. Consider an index i de; then

where

M1-- max {ViAmax(Ai)},
i=l,...,m

/max(Ai) "= maximal eigenvalue of Ai,

and with p, #$, h defined as in the proof of Theorem 7 (see (4.9)).
From the above inequality

(5.1)

where

A := Z F(xe + de’ Ae + a6e)
EJe

_< ( cO F,(xe. ae) + c.+ 1/2c?Mlldellma.
Je J

ma := card (Je).

Note that d O, 6 O, #i Fi(xe Ae)(= max{Uipe eLip }) is a feasible solution of
(/Se). Hence

(5.2) ve6e- defe + y# + 1/211dell + 1/26 <_ Fi(xe, Ae),
J J
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so (5.1) and (5.2) imply

A _< Fi(xt, ,if’) ozvt + ozdtf + 1/2oz(ozMlmA l)lldl12 I2

We now evaluate

B := (t +dt, t + 5)
+

and

First, we obtain a bound on h I. Recall

hi deAixe 6e.

Then, by the Cauchy-Schwartz inequality,

(5.4) Ihl _< IIA,ztll Ildell + 18el;

since

(xt, At) c So

we conclude that (see the proof of Theorem 2)

Ilxtll <_ p < co,

and hence

M2 := m.ax {IIA:tlI} < pm.ax IIA, < .
By (5.4), then,

(5.5) Ihl _< Mlldtll + I6el.
Consider the following implications, valid for all r/ R.

0<a<
(g L)IoI

[

= -aLir/- e _< -aUir/,

-aUirl e <_ -aLirl.

Choose r/= h dtAixe 6t and use the bound (5.5) to obtain, for all i 1,..., m

(5.6)

o<,<,[’=
max (U L)[M2IIdtll + I*tl]

i=l,...,m

=v I -aLihe e <_ -aUhe (a),

-,v,h’, < -,L,h’, (b).

Let i Je+, i.e.,

(5.7) U t L t
iPi > iPi + e,
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TRUSS TOPOLOGY DESIGN 345

and let 0 < a < aex Then

F(xe + ade,,k + a6) max l Up, + aUh, + 1/2aUdAd

+ aLh, + al Ld Ad

a2M1 [Idt[] 2 + m{U,pf + aUih, Uip e + aLih}

by definition of M, (5.7), and the Cauchy-Schwaz inequali,

by (.6b).
Since for i e J, Uipf (x, A) and using the definition of hf, the last inequali

yields

Fi(xe" + ad,Ae" + aS) < 21-a2Mllldll 2 + Fi(xt, A)

+aUidAix aUi5 for all E J.
Summing for all i E Je+ we get

+ 1/22Mllldell2m,

where mB card +(Je). Similarly we can obtain

i6J-

/ 1/2Mlldellem,

where mc card (J[-). Combining the above inequalities for A, B, C, we get

F(xe + ade, Ae + a6e) A + B + C + Aev fxe + a6ev afde

/1/2a(Mxm- 1)l[dell e 50.12

By the definitions of if, v the last inequality is

(5,8) F(x + d, + c) < F(x ,V) + 1/2c(Mlm- 1)lldll 2 l c2--5 ’
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which holds for all 0 < a _< 1, a <_
Let a := ((1 20)/(Mxm)) where 0 < 0 < 1/2. Then for a <

t--oz(MlmOZ- 1) <

1Therefore, by (5.8), for all 0 < c < te, 0 < 0 < ,
(5.9) F(xe + ozde, A + o.6e) < F(x, Ae) Olldell Oa,
where

&e min(1, c{, ce2).

The stepsize ce in the algorithm is chosen to be the largest c > 0 satisfying (5.9). Hence

(5.10)

and

(5.11) F(xe+l,ATM) F(xe +cede,,ke +ae6e) <_ F(xe, Ae) -Ooze (lldell z +6).
As g + o, it follows from (5.11) that

(5.12) ae (lldell = + a) 0.

Now, by (4.3) and the facts

Li <_t <_Ui,

IIAxell <_ M2,

it follows that Ildell and Iel are bounded above. Hence (see definition of c in (5.6)) c1
is bounded away from zero, and hence also &e. It follows from (5.10) and (5.11) that,
when e , 6e 0 and de O.

As , we also have

Also, by (4.15), with #i := lime_+oo #

#i max{Uiffi, Liffi }

fzi LiPi

#i UiPi

Hence

fzi max{Uii, Lii} for all i 1,..., m.

Letting e 0 in (4.10)-(4.15), we see that :, A, i p, [ satisfy the optimality condition
(4.16)-(4.21) for Problem (P2). Hence (:, A) is its optimal solution. [3
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TRUSS TOPOLOGY DESIGN 347

6. Truss topology with free design variables. An important special case of the truss
topology problem is where the design variable {t} is free of the upper and lower bounds
constraints Li <_ t <_ Ui, i.e., is only required to be nonnegative. Problem (P1)
reduces then to

(P1)8 min 1/2fx tAx f, t v, t >_ O
"= i=1

Note that the volume constraint indirectly imposes an upper bound t _< v. Hence prob-
lem (P1)8 is a special case of (P1) with

Li=0, Ui=v, i=l,2,...,m.

The equivalent displacement-based problem (P2) is then

,A
i=1

From Theorem 5, it follows easily that for any given , tile minimizing A in (6.1) is

i=l...m

Substituting this value in (6.1), we see that Problem (P2) reduces to a simple convex
minmax problem invoMng only displacement variables:

(P2) min {F(x)’= =,...,,,max {xAx-fx}}.
For this problem, an e-steepest descent direction d e ’ of F(.) at x is the solution of
the quadratic program.

(6.2)

where

min{# + 1/2lldll}

subject to

dT vAixt. f) + qe I 0,

q ,*A* f

r, := { q*, > F(*)- }.

The dual problem of (/Se) is here

subject to’ti v, ti > O, i i,.
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348 AHARON BEN-TALAND MARTIN P. BENDSE

ALGORITHM B [For solving (P2),]
Parameters: e > 0 (activity), 6 > 0 (stopping rule), 0 < 0 < 1/2 (stepsize rule),

m toInitialization: Choose to > O, ,= v, compute z, the unique solution of

-tAx f

Step e (xe given)
(L1) Compute qe, F(xt) maxi=l ,{qe} and the index set It.
(/?.2) Compute the search direction de by solving the quadratic program (Pe),,

or by solving the dual (/), to obtain the solution te, and then set

If Ildell < 6 stop, xt is the solution of (P2)8 tt is the solution of (P1)8 e/se,
go to (e.4).
Compute the stepsize ct by the formula

(6.3) ct= min {c},
i=l,...,m

where

t =0 b >0,-/bi if a

t -bei + v/(bi)2-4aei tci=
2a

ifai>O,

ifa=O, bi<_O;

here the numbers ai, bi, c are given by

t deAide > O,o,

be dt(vAxt f) + OIIdell 2,
t t F(zt) < O;ci qi

(L5) xt+l xt +
(g.6) g +-- g + 1, go to (g.1).

To explain the analytic formula (4.3) for the stepsize ct, we first note that the stepsize
rule (4.22) in Algorithm A reduces in our special case to

(6.4) ct is the largest a > 0 such that F(xt + cdt) < F(xt) 011dell 2.

We now prove the following theorem.
THEOREM 9. The stepsize given by (6.3) is the solution of (6.4).
Proof. Inequality (6.4) is specifically

(xt + cdt)A,(xt + cdt) f(xe + cdt) < F(xt) Olidell 2, i 1,..., m,
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TRUSS TOPOLOGY DESIGN 349

which further reduces to

(6.5) 0"d(vAix f) + 0"2dAid + q < F(x) 011d*ll 2, i 1,..., m.

Define, for i 1,..., m,

qoi(0") "= 0.
2 (deAide) + 0" [de(vA,xe f) + Olld*ll] + q F(xe).

Then (6.5) is just

(6.6) qoi(0") < O, i 1,..., m.

Now,

and

oi(O) q F(x) I 0

<0

I(x) := {i" qf F()},

if i e I (x),

other,vise;

qo (0) d" (vAx f) + Olld 112.
Recall that de (together with m) is an optimal solution of (/Se); since d 0,

A max{q} F(x) is a feasible solution of (Pt)8, we have

(6.7) #e / 1/211dell 2 _< F(x).
Therefore, for i E I(xe), it follows from (6.2), (6.7) that

de(vAixe y)+ 1/211dell 2 _< 0,

and since

d(vAixe f)+ 01IdYll 2 < o,

(6.8) (0) < 0 for/e I(xe).
From the above discussion, the stepsize 0"e solving (6.4) is given by

ae argmax{a i(a) < 0, a > 0}.

Each function qoi is convex, and

(6.9)
v,(o) o, v(o) < o, i e z(x),

oi(O) < O, i

_
I(xe).

Thus (see Fig. 3), each i has at most one root a in (0, oo) and

(6.10)
i=l,...,m
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350 AHARON BEN-TALAND MARTIN P. BENDSOE

Fo. 3. Computation ofthe stepsize.

Denote the coefficients of the quadratic function qoi(.) by

deAid > 0,tt--
bti de(vAixe f) + OIIde 2

4 qei F(x) < O.

Then af is given by

t t a 0, 0,-ci/b if b >

-b4-%//(b)2-4ac,( 2 if a O,

if ai O, bi <_ O,

and so (6.10) agrees with (6.3). [3

7. Computational results. In this section, we will present a number of results ob-
tained by using Algorithm B. For clarity, we concentrate on (P1), with free design vari-
ables (ti > 0). Thus, this section will deal with the implementation of Algorithm B.

First, we note that the algorithm only requires computation ofvectors A: and num-
bers /a-Az. Thuswe need not assemble nor store the matrices A, nor mustwe assemble
the entire matrix A at any iteration step. The compatibility matrix should also not be
stored (each column contains at most 2 x dim nonzero elements), but instead one works
with the 2 x m matrix of connectivities, giving the numbers of the nodal points to which
a given bar is connected, as well as a matrix of bar cosines. This means that even though
our primal variables are connected to the nodal points, all computations and storage are
based on bar numbers. In our implementation, the search vector d was always computed
by solving the dual problem (De) (or (De)) in the active bar volumes ti (i.e., J or Ie),
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TRUSS TOPOLOGY DESIGN 351

as it is our experience that the number of (almost) active bars is considerably less than
the number of degrees of freedom for the full truss. Finally, for the linesearch, both
the (analytic) Armijo-Goldstein search and an exact linesearch have been tried. It turns
out that the inexact search is typically very conservative and that the exact linesearch,
especially for larger problems, gives a better performance. In the implementation of the
linesearch (golden section method), in order to save costly function-calls, we do not use
all bars, but only a subset of the -active one ( is larger than e, typically 100. The
full set of bars is used only if such a search does not improve the value of the objective
function.

For the truss topology optimization (with L 0), we are interested in the ultimate
set of active bars

{i: t; > 0).
It is true, however (see similar claims in, e.g., [4]), that for all sufficiently small e > 0,
there exists a neighborhood N* of z* such that

I,(x) Io(z*) for all z N*.

It is thus natural to work with a decreasing sequence of e-values. It was found that it is
important not to choose e too small for the first iterations, and that it is a good strategy
to work with a sequence of alternatingly decreasing values of the e-parameter as well as
the stopping parameter 6. We note here that the final 6 should be at least small enough
that we can accept 6 as an error in the satisfaction of the equilibrium equations.

The special problem (P1), is made up of expressions which are elementwise linear
in all variables, except geometric data. Thus, for a specific choice of ground structure
geometry and load vector direction, the optimal topology only needs to be computed for
one set of assigned values of Young’s modulus E, volume v, load size f, and geometric
scale; for any other values of these variables, the optimal values of the design variables
t, the deformation x, and the compliance fz can be derived by a simple scaling. Thus,
(P1), lends itself to the creation of a "catalogue of optimal topologies" for both single
and multiple loads. The optimal compliance may then conveniently be given in terms of
the nondimensional compliance ,

r (fTc)V E/(llflle),
where is a typical length dimension (horizontal length of truss in the examples that
follow). For Problem (P1), the optimal compliance should also be given in terms of b
and the bounds, L, U, in terms of ratios of the volume v.

Examples of optimal topologies are shown in Figs. 4-7. In these examples, where
all connections between nodal points are used as the ground structure, overlapping con-
necting bars between two nodal points have been removed so as to avoid a redundancy
in the model and a trivial possibility of subspaces of optimal solutions. In the optimal
topologies, some straight bars appear with intermediate nodal points with no other con-
necting bars. Such bars should be thought of as straight bars without these intermediate
nodal points, as a truss model under the given load will not be able to distinguish between
the two configurations.

The final topology and the performance of the optimal structure depend intimately
on the choice of ground structure, as does the performance of the algorithm. If the opti-
mal topology consists of only a very low number of bars, the algorithm predicts this very
quickly, even though the potential number of bars is large. However, it is also required
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352 AHARON BEN-TALAND MARTIN P. BENDSOE

FIG. 4(a). The optimal tressfor a ground struc-

ture with 2852potentials bars.
FI6. 4(b). The optimal truss for the same

ground structure as in Fig. 4(a) but with upperbounds
on bar volumes.

that "nature’s optimal topology" is indeed a subset of the bars in the ground structure;
if not, the algorithm will find approximations (however, the topologies are optimal for
each choice of ground structure), usually involving many bars. It is well known that the
best structure for carrying a single load which is parallel to a line of possible support
is a two-bar truss with trusses at 45 to the line of support (cf. Rosvany [17]). Such a
situation is mimicked in all the examples shown, but only the structure in Fig. 4 allows
for this optimum as part of its ground structure. The ground structure of Fig. 4 consists
of all 2852 nonoverlapping connections between the equally spaced 6 x 16 nodes in a
10 x 30 rectangle. All left-hand nodes are possible supports and the single vertical force
is at the mid right-hand node. Figure 4(a) shows the optimal, two-bar truss obtained
when no constraints on the bar volumes t are imposed and the optimal nondimensional
compliance is 4.0. In Fig. 4(b), upper bounds on the bar volumes are imposed, as Ui
0.01.e.v, and the compliance b increases to 4.1092. The result in Fig. 4(a) was computed
using Algorithm B and the result in Fig. 4(b) is the result of using Algorithm A; for the
latter example, the deformation field z of Fig. 4(a) was used as the starting point of the
algorithm. Notice that introducing upper bounds on the design variables, as expected,
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TRUSS TOPOLOGY DESIGN 353

FIG. 5(a). The optimal trussfor the ground structure ofFig. l(a).

FIG. 5(b). The optimal mulaload design ofa mss corresponding to the ground structure ofFig. l(a).
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FIG. 6(a). The optimal trussfor the ground structure ofFig. l(b)---single-load case.

FIG. 6(b). The optimal trussfor the ground structure ofFig. 1(b)three-load cases.
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TRUSS TOPOLOGY DESIGN 355

FIt. 6(c). The optimal trussfor the structure ofFig. 6(b) but with upper bounds on bar volumes.

increases the number of bars in the structure as well as increasing the number of bars in
the active set Je.

In Fig. 5(a) we show the optimal, unconstrained truss topology for the ground struc-
ture and loading condition of Fig. l(a). The compliance is 6.0134, i.e., 1.5 times greater
than for the two-bar truss of Fig. 4(a). In Fig. 5(b), an extra, horizontal load has been
added at the loaded node and the figure shows the multiload design obtained for un-
constrained design variables. The horizontal and vertical loads are equal in size and the
weights on the compliances are 1.0 and 2.0, respectively. The average nondimensional
compliance is 4.6943 and the compliances for each of the loads are 6.2541 and 1.5747,
respectively. The multiload problem results in what is in practice a two-bar truss (trusses
at + 30 with horizontal direction), thus giving a simpler geometric layout. This feature
is even more apparent in the example of Fig. 6, wherewe use the ground structure of Fig.
l(b). In Figure 6(a), we have the one-load case corresponding to the ground structure
in Fig. l(b), while in Fig. 6(b), we have three load cases: a horizontal and a vertical load
at the mid, a right-hand node and a vertical load at the mid node, all of equal size and
weighted 1.0, 2.0 and 1.0, respectively. Finally, in Fig. 6(c), we have a design-constrained
(Ui 0.01 .v. i) topology for the same ground structure and set of loads. For the un-
constrained problem, the average compliance is 6.3737 and the individual compliances
are 3.752, 9.4577, and 2.8273; with constraints the values are 7.2108 and 4.1401, 10.5957,
and 3.5117.

In Fig. 7 we illustrate the effect of increasing the number of nodal points (and po-
tential bars) for a ground structure geometry for which "nature’s optimal topology" is
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FIG. 7(a). The optimal trussfor the structure with the same geometry and load as in Fig. l(a), with 11 x 11
nodes (4492potential bars).

a so-called Michell truss [12], [9], i.e., a curve-linear layout of a continuum of unidirec-
tional load-bearing members. In Fig. 7, we have the same geometry and load as in Fig.
l(a). We allow all connections between nodes and have increased the number of nodes
to an 11 x 11 (Fig. 7(a)) and a 15 x 15 (Fig. 7(b)) equidistant layout ofnodes, giving 4492
and 15556 nonoverlapping connections and 5.9646 and 5.9344 nondimensional compli-
ances, respectively. The number of bars in the optimal topology increases dramatically
as the layout tries to mimic the curved layout of the optimum Michell truss, thus approx-
imating a layout which is at the limit of the range of a truss model; similar behavior is
seen in plate optimization and shape design (cf. [3]). The high number of active bars in
the final topology slows the algorithms considerably and indicates that it is important to
make a suitable choice of ground structure when optimizing topology.

Finally, it should be noted that the optimal compliance value fz* is not very sensitive
to variations in the values of the design variables. Small variations in the cross-sectional
areas of the bars in the optimal topology and even the addition or deletion of thin bars
have very little influence on the stiffness of the truss, as measured by compliance. Also,
multiple solutions seem to exist, especially in cases with possible symmetry. These re-
marks are but experimental observations. However, some of them can be substantiated
thoeretically by using results from, e.g., [2].

Acknowledgements. A guest professorship at the Technical University of Denmark
is gratefully acknowledged by A. Ben-Tal.
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Fro. 7(b). The optimal truss for the structure with the same geometry and load as in Fig. l(a), with 15 x 15
nodes (15556potential bars).
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