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ABSTRACT
A Study of Action Origami as Systems of Spherical Mechanisms

Landen A. Bowen
Department of Mechanical Engineering, BYU
Master of Science

Origami, the Japanese art of paper folding, has been used previously to inspire engineering
solutions for compact, deployable designs. Action origami, the subset of origami dealing with
models designed to move, is a previously unexplored area for engineering design solutions that are
deployable and have additional motion in the deployed state.

A literature review of origami in engineering is performed, resulting in seven key areas of
technical origami literature from a wide variety of disciplines. Spherical mechanisms are identified
as the method by which most action origami models achieve complicated motion while remaining
flat-foldable. The subset of action origami whose motion originates from spherical mechanisms is
termed “kinematic origami”. Action origami is found to contain large coupled systems of spher-
ical mechanisms. All possible action origami models are classified by their spherical mechanism
structure, resulting in eight possible categories.

Viewing action origami as spherical mechanisms allows the use of established equations
for kinematic analysis. Several kinematic origami categories are used to demonstrate a method for
the position analysis of coupled systems of spherical mechanisms. Input-output angle relationships
and coupler link motions are obtained for a single spherical mechanism, two spherical mechanisms
coupled together, and four spherical mechanisms coupled in a loop arrangement. This lays a
groundwork from which it is possible to create compact, deployable mechanisms with motion in
the deployed state.

Keywords: action origami, compliant mechanisms, spherical mechanisms
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Action origami represents an unexplored area of compact, deployable mechanisms with
motion in the deployed state. A better qualitative and quantitative understanding of action origami
could enable the application of action origami concepts in engineering applications. An under-
standing of what types of motion are possible in action origami is gained by classifying all possible
action origami models by their kinematic structure. Once these mechanism categories are deter-
mined, kinematic modeling of these groups will lead to analysis and synthesis, creating the ability

to design and optimize new mechanisms for use in deployable systems.

1.2 Thesis Objective

The purpose of this thesis is to lay the groundwork for the synthesis of compact, deployable
mechanisms and applications that also allow motion in the deployed state. This is performed by
investigating and classifying action origami models by their kinematic structure, followed by a

position analysis of several of the identified categories.

1.3 Thesis Outline

Chapter 1 introduces the topic by describing the motivation and purpose behind the re-
search.

As using origami as a design inspiration is a relatively new topic, a brief overview of
technical literature dealing with various aspects of origami and how it has been used in engineering
previously is presented in Chapter 2.

In Chapter 3, the structure of action origami that allows motion is found to be spherical

mechanisms. A new term, “kinematic origami”, is introduced to describe action origami models



which obtain motion through spherical mechanisms. Over 300 action origami models are classified
based on their spherical mechanism structure, resulting in 8 different categories. Portions of this
chapter will be published in the proceedings of the 2013 Design and Engineering Technical Con-
ferences (DETC), and the chapter has been accepted for publication in the Journal of Mechanical
Design.

Chapter 4 takes a deeper look at three of these categories, presenting a method for the
analysis of coupled systems of spherical mechanisms. Using existing spherical mechanism knowl-
edge, the path of coupler links for these categories is shown. This chapter is planned for future
submission.

Lastly, Chapter 5 includes conclusions drawn from the research as well as areas of future

work.



CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

The amount of literature dealing with origami and its derivatives is very large and covers a
broad spectrum of disciplines. As a first step to viewing origami from an engineering perspective,
a thorough literature search was undertaken. Hundreds of articles were found relating to many dif-
ferent areas, from the mathematics behind origami principles to the application of these principles
to create unique designs. In order to deal with this abundance of literature, seven key topics were

identified under which the background research fell. These were:

Origami Engineering

Reconfigurable Structures

Rigid Origami

* Origami Kinematics

Alternate Materials

Origami Math

Origami Diagrams

Each of these areas will be discussed in more detail below.

2.2 Origami Engineering

As one long-term goal of this research is to discover new products or better ways to create

existing products, applications for which origami has already been used were important to find.



Many applications exist, and more are sure to come as a result of future research in the fields of
engineering and origami.

In general, origami has been looked to in design for, among other things, flat-foldability
(compactness) and aesthetic appeal. Many of the applications that were found dealt with storing
the product in a more compact state when not in use, and folding the product into its “use state”

when needed. Several applications of origami include:

Sandwich cores for aircraft [1]
* Foldable composite beam [2]

* Packaging [3]

* Electro-chemical capacitors [4]
* Space telescope [5]

* Airbag folding [6]

e Solar sails [7]

* Backpacking/Picnic dishware [8]
* Foldable kayak [9]

e Stent [10]

¢ Automobile crash box [11]

e Architecture [12]

More information about origami in engineering can be found in a review article on the topic

written by Dureisseix [13].



2.3 Reconfigurable Structures/Self-folding

As a single piece of paper can yield an infinite number of designs, research has been di-
rected towards creating reconfigurable structures, or mechanisms that could fold themselves into
a variety of shapes depending on the given need. One group of researchers have investigated
programmable matter, or a material that can change its stiffness of shape at will [14]. They suc-
cessfully created a sheet of material that will fold itself into several shapes using shape-memory
alloy flexures.

A very interesting method for self-folding uses an ink jet printer to print an origami pattern
on a sheet of paper. As the ink dries, it causes the paper to fold into the shape that was printed [15].

Another novel method for self-folding involves using light with a specific polymer to in-
duce folding [16].

Investigation into universal crease patterns from which many shapes can be folded has also
been undertaken [17]. This is important as current technology somewhat restricts us to specify
crease lines beforehand.

Currently, work is being done on a multi-field responsive material that would fold itself

based on the application of an electric and/or magnetic field [18].

2.4 Rigid Origami

Rigid origami is a subset of origami that deals with treating panels as rigid. Many origami
models are rigid-foldable. Rigid-foldable models are easier to model and analyze than models
requiring flexible panels. Tomohiro Tachi, a major contributor in this area, has created a rigid
origami simulator which takes fold patterns created in a vector graphics program and visualizes
their folding [19]. Patterned cylinders have been investigated using rigid origami, which have
potential use in energy absorption [20].

Tachi has also created methods for the rigid-foldability of thick materials [21]. When
folding paper, its thickness can, most of the time, be discounted. When thickness is introduced,
however, many things taken for granted when folding paper must be addressed. This also has
application in using alternate materials in origami, as thickness is a consideration for most non-

paper materials.



Charles Hoberman, well-known for both his moving architecture and children’s toys, has a

patent dealing with the folding of structures made with thick hinged sheets [22].

2.5 Origami Kinematics

Obtaining a mathematical model for the motion of an origami model is an important first
step in the design of an origami-inspired product. While obtaining a desired motion by prototyping
is very possible, it can be time-consuming. Having a robust math model can allow the use of
kinematic tools for path, motion, and function generation as well as optimization. These tools
have the potential to both decrease time spent in design as well as increase performance.

Many papers have been written to describe the motion of origami as it folds. Jian Dai et
al. have written several articles describing the mobility and motions of carton folding using screw
theory and spherical kinematics [3,23,24]. The packaging/carton business is very large, but most
cartons are still assembled by hand. By obtaining a robust mathematical model, robots could be
programmed to fold these cartons [25].

Much of origami obtains its motion using spherical mechanisms. Spherical mechanisms
have been an area of research in mechanical engineering for a long time. C.H. Chiang uses spher-
ical trigonometry to create closed-form equations for the position, velocity, and acceleration of a
single spherical mechanism [26].

Origami motion has also been modeled using quaternions and dual quaternions [27], a

spring mass model [28], and affine transformations [29].

2.6 Alternate Materials

Paper is the material that has been used for origami since its beginnings. Paper is a remark-
ably unique material, creating a sharp crease when folded through the delamination of fibers [30].
Unfortunately, paper is not often a great engineering material.

There are several examples of alternate materials used in origami. Nano-patterned mem-
branes have been folded for 3D nanomanufacturing [31]. Origami structures have been 3D printed

and folded [4]. Industrial Origami, a design company specializing in origami designs, has patented



a pattern to cut into the desired crease site of thick steel sheets that allows them to be bent by

hand [32,33].

2.7 Origami Math

Perhaps the largest quantity of origami research literature deals with origami math. There
are too many topics within origami math for this area to be described sufficiently in this review.
Two topics that are relevant to the work at hand are the determination of flat-foldability and algo-
rithmic design methods.

Determination of the flat-foldability of a single vertex is simple, but most origami models
and tesselations have many vertices. Global flat foldability, the case in which the entire model
composed of many vertices folds flat, is difficult to determine, though research is ongoing [34-36].

Robert Lang has a computational algorithm, known as Treemaker, which creates a crease
pattern based on a proportioned stick figure of the desired model [37]. This method could be of
assistance in the design of new products and mechanisms, expanding what is possible through the

use of computational software.

2.8 Origami Diagrams

Without origami diagrams many artists’ work would be unfoldable to origami enthusiasts.
There are many books on origami folding patterns. The books that were used for this research dealt
in particular with action origami. Two origami artists who do the most work in action origami
are Jeremy Shafer and Robert Lang. Their diagrams have been used most extensively in this

work [38—41].



CHAPTER3. A CLASSIFICATION OF ACTION ORIGAMI AS SYSTEMS OF SPHER-
ICAL MECHANISMS

3.1 Introduction

Origami, the Japanese art of folding paper, has been practiced for hundreds of years, inspir-
ing individuals with its beauty and complexity. The relatively recent application of mathematics to
origami has resulted in a large increase in both the number and sophistication of origami models.
From this growing repository of origami knowledge, solutions to engineering problems have been
discovered for applications as diverse as nanostructured 3D devices [4] and sandwich cores for
aircraft structures [1].

Many origami-based applications employ a collapsible mechanism that is compact while in
a stored state and deploys into a larger state. Thus, origami has provided insight into solutions that
are flat-foldable and collapsible (see Figure 3.1 for an example origami model). However, origami
has not often been used to inspire products meant to move in their deployed state. Action origami
is a field of origami dealing with models that are folded so that they exhibit motion in their final,
deployed state (see Figure 3.2 for an example action origami model). Many action origami models
have been developed as children’s toys: flapping cranes, tops, and paper airplanes. There are in
fact hundreds of action origami models, many of which use complicated kinematics to achieve
motion in their deployed state. These motions are achieved from a single flat sheet of paper with
one manufacturing process — folding.

The field of action origami is a promising area for engineering solutions that has heretofore
been largely unexplored. The motions found in action origami have the potential to provide solu-
tions for the design of mechanisms that need to be stored in a compact state. A better understanding
of the mechanisms used to create motion in action origami could be a foundation for developing a

new source of concepts for deployable, movable engineering solutions.



Figure 3.2: Shafer’s “Venus Fly Trap” [41] is an example of action origami.

The objective of this brief is to describe an approach used to determine the core mech-
anisms that provide motion in action origami, then to implement this approach in developing a
classification scheme based on these mechanisms.

In common origami terminology, action origami includes models with complicated kine-
matic motions as well as tops, airplanes, and shapes that are inflated with air. For this study,
only the subset of action origami with relative motion between components of the model will be

considered. This subset will be referred to as “kinematic origami.”

3.2 Background

The number of books, articles, and papers written on origami and its derivatives is immense.
There is, however, little research dealing specifically with action origami or its intersection with
mechanical principles. Despite this, many aspects of this topic can be found in both the engineering

and origami literature.



The link between traditional origami and mechanisms has been investigated previously. It
has been noted that origami “is a compliant mechanism as [origami] creases act as [pin] joints
to allow motion” [42]. Graph theory has also been used to investigate the relationship between
origami and mechanisms. Both mechanisms and origami can be abstracted to a common graph,
serving as an intermediate step between both worlds [43].

Paper pop-up books, often including complex 3D creations, were used as a source of in-
spiration for compact mechanisms [44]. The conclusion was reached that despite the apparent
complexity of these pop-up books, the mechanisms for creating motion were relatively few, albeit
used in very creative ways. These few mechanisms were modeled using traditional kinematics,
and a new pop-up mechanism was proposed.

The kinematics of carton folding have been investigated to better understand how to fold
packaging materials using robots [3]. Screw theory has been used to understand origami kinemat-
ics, and the mobility of origami at various stages in the folding process has been computed [23].
It should be noted that the focus of these papers is the process of folding from one state to another
rather than motion in the finished state.

It is common to see mechanism links named and viewed as facets or panels in origami and
revolute joints as origami creases [20, 25,45]. If the panels could be replaced with non-flexible
material and the creases with hinges while maintaining motion, the origami is considered “rigid.”
Many kinematic origami models are rigid. The kinematics of rigid origami have been researched
and a program has been created to model them [19].

The computational origami community [46] uses the term “vertex” to describe the point
at which several folds converge. The degree of a vertex is the number of creases converging to
that vertex [47]. It has been noted that a vertex in origami is equivalent to the sphere center of
a spherical mechanism in kinematics [3, 25,48]. This observation serves as a bridge, allowing
spherical kinematics to be applied to origami to understand its motion (Figure 3.3).

Kinematic origami is similar to lamina emergent mechanisms (LEMs) in that they are both
created from a flat sheet and have motion out of the original plane of the sheet. Spherical LEMs
are of particular interest, and it has been shown that there are 21 possible spherical LEM 4-bar

mechanisms [49].
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Figure 3.3: Left: Traditional spherical mechanism. Middle: Unfolded origami single vertex. Right:
Partially folded origami vertex. Note that a traditional spherical mechanism and an origami vertex
are kinematically equivalent.

Action origami models have been created by various origami artists. The greatest number
are found in books by Lang [38, 39] and Shafer [40,41]. These works have been the primary

sources of origami models for this brief.

3.3 Approach

Spherical mechanisms are the source of motion in the kinematic origami models under
consideration. Understanding these spherical mechanisms is thus crucial in translating the art to
engineering.

Kinematic origami models can be broken down into their spherical mechanism(s) using
the following approach. While actuating the model, the motion can be traced down the folds to
the center of each spherical mechanism. Once the center of the mechanism is located, it is only a
matter of identifying the folds that are in motion while the model is actuated. The number of folds
participating in the motion surrounding a given spherical mechanism corresponds to the number
of links in the mechanism. An origami model known as Shafer’s “Chomper” [40] is shown in
Figure 3.4 with the folds contributing to motion outlined. Each joint/fold is represented by a line,
and each vertex/spherical mechanism is represented by a point. Each fold is either dotted, meaning
that the fold is shared between two spherical mechanisms, or solid, meaning that the fold is not

shared. It is important to note that oftentimes redundant folds are connected to the center of a

11



Figure 3.4: Shafer’s “Chomper” with folds contributing to motion outlined.

spherical mechanism. These folds may be present due to intermediate folds that were used to
achieve the desired final geometry but do not contribute to the model’s motion.

While the above approach can be effective in determining both the number of mechanisms
and their degrees, artistic features of the origami model (fangs, flippers, ears, etc.) often disguise
the mechanisms. To illustrate a model’s spherical mechanisms more clearly, each mechanism can
be folded from a sheet of circular origami paper and attached as they would be in the origami
model. Representations of these circular paper models were then modeled using Solidworks, as
seen in Figure 3.5. Two colors were used for clarity in the figures. Using this approach, it was
easier to identify the fundamental mechanisms producing motion in each model. This also allowed
for models to be grouped based on similar fundamental mechanism structures.

Graphs were also employed to abstract the origami models further, removing all details
except for the number of mechanisms and the connections between them. This was helpful in
generalizing the origami to the point that it could be easily classified. An example of such a
representation is seen in Figure 3.6.

This approach was used to analyze approximately 300 action origami models available in
the origami literature. Each model displaying relative motion (about 140 models) was folded and
studied. Not every model could be included, as the field of action origami is continually growing.

The results of this analysis of existing action origami models were used to develop the clas-
sification scheme described below. Note that the specifics of each spherical mechanism (number
of links, link lengths, link shapes, internal angles) are not mentioned in this classification scheme.
It is meant to be as general as possible, presenting the idea that most action origami models share a
few common configurations of mechanisms. The flexibility to change link length, number of links,

and link shape is what allows the same mechanisms to provide the motion for very different mod-

12



Figure 3.5: Spherical mechanism representation of Shafer’s “Chomper.”

Figure 3.6: Graph of Shafer’s “Chomper.”

els. For example, Lang’s “Indian Paddling a Canoe” [38] and Lang’s “Manatee” [38] are different
models in terms of complexity and form, but both use a spherical 4-bar mechanism (Figure 3.3) to

achieve their motion (Figure 3.7).

3.4 C(lassification

Kinematic origami can be seen as the highest level of the classification scheme, presented

in Figure 3.8. Each terminal branch (those boxes that are shaded) of this scheme represents a

13



Figure 3.7: Two action models based on a single spherical mechanism.

Kinematic Origami

Open Chain Does it
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Network
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contain only
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Periodic
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N-long Linear
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Periodic
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1D Periodic
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Figure 3.8: Kinematic origami classification. The left branch contains open chains while the right
branch contains networks.

category under which a group of kinematic origami models fall. Each of these categories will be
briefly discussed below.

While many kinematic origami models have complex and diverse motion, once they are
viewed in the light of vertices and spherical mechanisms, the models are based on a few funda-
mental mechanisms. When the artistic elements are stripped away, most kinematic origami can be
reduced to one, two, or a system of interconnected spherical mechanisms. When this analysis is
conducted it is apparent that a relatively small number of spherical mechanism combinations can
produce a wide range of interesting motion with artistic variations in composition.

Note that figures displaying each category name, a representative model with outlined

folds, the 3D model representation, and the graph representation are shown in Figure 3.12 and

14



e TL L

Figure 3.9: The figure on the left does not contain a loop (open chain) while the figure on the right
does (network).

Figure 3.13. The reader is encouraged to consult these figures while considering each of the cate-
gories.

The first question to ask upon attempting to classify a kinematic origami model is whether
or not it has a loop. A loop is defined as at least three spherical mechanisms that are coupled in
such a way that a closed path can be traced (along shared folds) through the centers of each mech-
anism (forming a loop). In Figure 3.9 two graph representations of origami models are displayed,
one with a loop and one without. If such a loop does exist in the origami model, that model is con-
sidered to be a network (those boxes that are striped-shaded), implying coupling between several
different spherical mechanisms. If such a loop cannot be drawn, the model is considered to be an

open chain (those boxes that are solid-shaded).

3.4.1 Single

If there is only one spherical mechanism in the model it is of the “Single” category. At
the center of many seemingly complicated kinematic origami models there is a single spherical
mechanism providing the motion. This category is represented in Figure 3.12 using Lang’s “Cata-

pult” [38].

3.4.2 Coupled

If another spherical mechanism is added the model fits in the “Coupled” category. Adding
a second spherical mechanism provides more options for the possible motions. There are several

locations where the coupling (the joint and links that are shared) could occur, each producing
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unique motion. Coupling of two spherical mechanisms is often used to create mouths for origami

creations. An example of this category is farelly’s “Flapping Butterfly” [38], seen in Figure 3.12.

3.4.3 N-long Linear Chain

If there are more than two spherical mechanisms coupled with no loops, the model belongs
to the category “N-long Linear Chain.” As the category title suggests, any number of mechanisms
can be coupled to one another, as long as they remain linear. An example of this is Shafer’s “Frog’s
Tongue” [41] (Figure 3.12). It is allowed for the orientation of each mechanism to be different, so

long as the beginning and ending mechanisms share only one joint while all others share only two.

3.4.4 Tree

The last category that is an open chain is the “Tree.” This category allows additional joints
to be shared from the mechanisms in a chain. No kinematic origami models were found that
belonged to this category, although it is clear that this category can exist. A modified version of
Shafer’s “Frog’s Tongue” [41], as shown in Figure 3.12, was designed and folded to provide an
example of an origami “Tree.” The absence of models in this area suggests a new area for origami

artists to apply their creativity.

3.4.5 Single Loop

If there is only one loop in the model it is of the class “Single Loop.” An example mech-
anism is the traditional “Square Twist,” shown in Figure 3.13. Note that it is not important how

many unshared joints there are, only that a loop can be formed from the shared joints.

3.4.6 1D Periodic

If the model contains multiple loops, it must be determined if the network is “1D Periodic.”
The determination of multiple loops includes loops that share connections with other loops (they
do not have to be completely unique). For a set of spherical mechanisms with multiple loops to be

1D periodic, a subset of these mechanisms must be translated along one direction, i.e. the model
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Figure 3.10: An example of a 1D periodic network. Note that the circled pair of spherical mecha-
nisms is repeated several times in the direction indicated by the arrow.
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Figure 3.11: An example of a 2D periodic network. Note that the circled set of spherical mecha-
nisms is repeated several times in two directions, indicated by the arrows.

consists of two or more identical pieces connected along a line (Figure 3.10). Shafer’s “Blinking

Eyes” [41], seen in Figure 3.13, is essentially a 1D periodic network.

3.4.7 2D Periodic

If the model is periodic in an additional direction (Figure 3.11) it is “2D Periodic.” Many
of the action tessellations that were studied are included in this 2D periodic class. An example of
a 2D periodic network is Miura’s “Miura-Ori Pattern” (Figure 3.13), which has been used in map

and space solar array folding [50].



Table 3.1: Classification of studied kinematic origami models

Class Number Percentage
Single 49 36%
Coupled 22 16%
N-long Linear Chain 12 8.8%
Tree 0 0.0%
Single Loop 5 3.7%
1D Periodic 3 2.2%
2D Periodic 11 8.1%
Non-periodic 34 25%
Total 136 100%

3.4.8 Non-periodic

Lastly, if a network is not single loop, 1D periodic, or 2D periodic it is considered “Non-
periodic.” An example of a non-periodic network is Shafer’s “Monster Mouth” [40] (Figure 3.13).
This model includes multiple loops and some branching, resulting in a complicated coupled array
of spherical mechanisms working together to open and close the mouth. Note that while the crease
pattern has two-fold symmetry, it is not 2D periodic as the symmetric portions are mirrored, not

translated.

3.5 C(lassification Results

Of the 296 action origami models found, 136 were kinematic origami. These models were
classified using the above approach, the results of which can be found summarized in Figure 3.1.
The majority of the models fell on the left branch of the kinematic origami classification (61%),
while networks (the right branch) constituted the remaining balance (39%). The largest category
was “Single”, implying that a large portion of kinematic origami achieved motion with a single

spherical mechanism. The smallest category was “Tree”, with no representative models.

3.6 Conclusion

A view from which to understand and classify action origami from a technical perspective

has been proposed. Spherical mechanisms were used to differentiate between different classes of
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kinematic origami. It is anticipated that the identification of these classes will serve as the founda-
tion for creating unique mechanisms to be used in engineering applications that take advantage of
the characteristics of origami, namely deployability and extreme compactness. In addition, kine-
matic origami-based mechanisms are not only compact when stored and deployable, they have
motion in the deployed state that can be critical for function. Lastly, a category of kinematic
origami has been identified that contains few models, signifying an area for action origami artists

to further apply their creativity.
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Figure 3.12: Representations of the spherical mechanisms used in open chains.
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CHAPTER 4. A POSITION ANALYSIS OF COUPLED SPHERICAL MECHANISMS
FOUND IN ACTION ORIGAMI

4.1 Introduction

The ancient Japanese art of origami has intrigued people for centuries with a beautiful
complexity arising from the single fabrication process of folding. The quantity and complexity
of origami models has been increasing partly due to the introduction of mathematical tools which
model and characterize the design parameters found in the art [19,37]. Engineers and designers
have looked to origami for inspiration due to its potential in deployable systems. Origami, for
example, has been used as a source of inspiration for space applications [5] and automobile safety

[6,11].

A 7: ¥
—————g—— A Vo
(a) (b) ©

Figure 4.1: Shafer’s “Monster Mouth” [41] is an example of action origami. This model can be
stored in a flat state (4.1a). Once deployed (4.1b), it can then open its mouth (4.1c¢).

Action origami refers to the subset of origami models designed to move. Simple examples
include flapping birds and opening mouths (Figure 4.1). Action origami has received relatively
little attention in the literature but has great potential to inspire new and useful mechanisms. This
is in part due to the ability of many action origami models to deploy from a compact (and even

flat) state to a larger state. In addition, these models are designed to exhibit motion in the deployed
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state. There are several areas of application for such mechanisms, including solar pointing arrays
and minimally invasive surgical tools.

Action origami has been shown to achieve motion through the use of spherical mecha-
nisms [25]. Action origami that achieves motion through the use of spherical mechanisms is termed
“kinematic origami.” All possible kinematic origami configurations have been classified based on
the number and arrangement of spherical mechanisms [51]. Some kinematic origami models con-
tain dozens of coupled spherical mechanisms, but can be fabricated by simple folding in just a few
minutes. As kinematic origami often utilizes symmetry for visual appeal, many models consist-
ing of several spherical mechanisms use the same mechanism (equivalent link lengths) repeated
throughout the model.

In order to utilize the unique properties of kinematic origami in engineering design, the
kinematics of coupled spherical mechanism systems must first be understood. The current liter-
ature dealing with coupled spherical systems is sparse, possibly because there has not previously
been motivation to investigate them. Recent studies show that spherical mechanisms (both single
and coupled) demonstrate several advantages over planar mechanisms including lower values of
inertial forces and better pressure angle values [52,53].

Making explicit the commonality between spherical mechanisms and kinematic origami
makes possible mathematical models that can greatly enhance the analysis, optimization, and syn-
thesis of new mechanisms with motion inspired by kinematic origami.

The purpose of this paper is to take a first step toward the advanced analysis and synthesis
of kinematic origami-inspired mechanisms by describing and demonstrating a method for the po-
sition analysis of coupled systems of repeated spherical mechanisms. Such repeated systems are
common in kinematic origami models and tessellations. This method has the potential to make
kinematic origami-based design more effective and structured, moving much of the design process

to computer-based tools.

4.2 Literature Review

The growing relationship between origami artists and technical designers has resulted in
increased literature on the subject of connections between origami and mechanism design. Green-

berg et al. [54] point out that origami is a form of compliant mechanisms where the creases act as
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pin joints to allow movement, and goes on to show that graph theory can act as a step between kine-
matics and origami. Liu and Dai similarly identify carton panels as mechanism links and creases
as joints when investigating carton mobility [23].

The origami community has long identified and labeled characteristics of origami models
and has particularly noted movement about a single vertex [20], the point at which fold lines
converge. It has been noted that an origami vertex (including the surrounding folds and panels) is
equivalent to a traditional spherical mechanism [3,25,48].

A recent examination of action origami models verifies that much of action origami is
composed of configurations of spherical mechanisms [51], where action origami which achieves
motion from spherical mechanisms is called “kinematic origami”. A classification scheme based
on the spherical mechanism structure of kinematic origami was presented that encompasses all
possible configurations. Several of these categories, “Single”, “Coupled”, and “Loop”, are investi-
gated in this paper.

Lamina emergent mechanisms (LEMs) are a subset of compliant mechanisms that are
monolithic, planar, and have motion emerging from the plane of fabrication [55]. Action origami
shares all of these characteristics. All possible LEM spherical mechanisms have been classi-
fied [49], resulting in 21 possible LEM spherical 4R types being sorted into 3 categories.

The motion of origami has been investigated previously using several different methods.
Screw theory has been used to calculate the mobility of a carton during the folding process [23].
Spherical trigonometry has been utilized to perform some motion studies of a packaging carton
[56]. Quaternions and dual quaternions have been used to analyze the motion of an origami model
known as the square twist [27]. Other methods have also been used [19, 28, 29].

The motion of traditional spherical mechanisms is well-documented [26, 57, 58], and the

modeling and visualization of spherical mechanisms has been demonstrated [59].

4.3 Method

This section describes the position analysis of a single origami vertex, which is the basic
building block of the more complex systems described later. Many multi-vertex kinematic origami
models are composed of the same mechanism repeated one or more times, thus the results of one

vertex can be translated and rotated to the other vertices. This is demonstrated with two examples:
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Shafer’s “Chomper” [40] and the traditional “Square Twist”. Taking advantage of symmetry in this

manner can result in a significant reduction of computation time for larger multi-vertex models.

4.3.1 Origami Vertex

As mentioned above, an origami vertex is equivalent to a spherical mechanism when folds
are treated as joints and panels as links. A byproduct of the flat-foldability of origami is the fact
that all origami vertices’ link lengths sum to 360°. This means that each origami vertex is actually
a spherical change point mechanism. Traditional spherical mechanisms reside on a portion of
a sphere (less than a hemisphere) whereas an origami vertex resides on an entire hemisphere.
Although other types are possible, the majority of vertices found in action origami have 4 links,

and thus only spherical 4R mechanisms are discussed below.

',’ c b ¥

l“ a f l'
(a) Single origami vertex. Note that a 4 (b) Equivalent spherical mechanism with
c+b+f=360°. important angles specified.

Figure 4.2: Single origami vertex and corresponding spherical mechanism to be analyzed.

4.3.2 Relationship Between Input and Output Angle

Let us consider the origami vertex shown in Figure 4.2a and its corresponding spherical

mechanism in Figure 4.2b. Note that we decide upon a link that will be grounded. Also, a radius
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is selected for the mechanism because this will determine joint locations along the folds. We will

use a radius of 1, or the unit sphere. The input angle, ¢, is defined as the internal angle between

ground and the input link. The output angle, v, is defined as the external angle between ground

and the output link.

Let ground be labelled f, the input link as a, the coupler link as ¢, and the output link as b.

From [26], an explicit expression of Y in terms of f, a, ¢, b, and ¢ is as follows:

Let

ki = cos(a) x cos(b) x cos(f)
ky = cos(c)
k3 = sin(a) * cos(b) * sin(f)
ky = cos(a) = sin(b) * sin(f)
ks = sin(a) * sin(b) * cos(f)
ke = sin(a) * sin(b)
and let

hy = ki —ky+ k3 *xcos(@)
hy = —kg + ks xcos(@)

hs = ke * sin(¢)

4.1)
4.2)
4.3)
4.4)
4.5)
(4.6)

4.7)
(4.8)
4.9)

Using the above parameters, we obtain the following expression for ¥ obtained from spher-

ical trigonometry:

ho by £ 1 13 — (1 — 13) + (1 — )] /2
h2_h2
1 3

tan(y) =

(4.10)

Note that the above equation has two solutions. Taking the solution that most closely

resembles the expected relationship and accounting for a change of quadrant in the output link
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results in a relationship between input and output angles (Figure 4.3a). Depending on the specific
mechanism configuration, the location at which the change in quadrant of the output link occurs

differs. This must be accounted for to produce the actual solution.

=)
=]
T

y (degrees)

L L I ! I I L ha
1] 20 40 60 80 100 120 140 160 180

¢ (degrees) X

(a) Input(¢)-output(y) (b) Trajectory of the coupler

Figure 4.3: Position analysis of a single origami vertex where a = c =45°, b= f = 135°, 6y = 30°,
Op =0° and Rp = 1.5.

4.3.3 Angle Between Input and Coupler
The internal angle B between the input link and the coupler link is useful in determining
the location of the coupler point. An equation for f8 in terms of f, a, ¢, b, and y is as follows [57]:

cos(B) = sin(b) x sin(f) x cos(y) + cos(b) * cos(f) — cos(a) * cos(c) @.11)

sin(a) * sin(c)

4.3.4 Equation for a Coupler Point

We now have all of the information necessary to determine the location of a coupler point
for all input angles. Let 6y be defined as the length of the link to the desired coupler point P, 6p
as the offset angle from the coupler link to the point P, and Rp as the distance from the center to
the desired coupler point (Figure 4.4a). Three equations for the cartesian coordinates of a coupler

point P are given as [58]:
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rpy = [cos(6p) * cos(a) + sin(0p) * cos(B + Op) x sin(a)] * Rp 4.12)

rpy = [cos(6y) * cos(Q) * sin(a) + sin(6y) * sin(¢) * sin(B + Op) —

(4.13)
sin(6p) * cos(B + Op) * cos(a) * cos(9)] x Rp

rp, = [cos(6p) * sin(@) = sin(a) — sin(6y) * cos(¢) = sin( + 6p) — (4.14)
sin(6y) * cos(B + Op) x cos(a) = sin(¢)] * Rp

(a) Traditional coupler point (b) Origami vertex coupler point

Figure 4.4: Comparison of traditional (Figure 4.4a) and origami (Figure 4.4b) coupler points

Note that Op causes the coupler point to rest on the sphere at radius Rp. As origami deals
with flat panels for links rather than the traditional spherical links, a coupler point for origami
can be defined with 8y as described above, 8p = 0, and a radius Rp to the desired coupler point
(Figure 4.4b).

The path of the coupler point as a function of the input angle is shown in Figure 4.3b and

the path of the coupler link for several input angles is shown in Figure 4.5.
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@¢=1° (b) ¢ = 60°

©) ¢ = 120° d) ¢ = 179°

Figure 4.5: Path of the coupler link for the single vertex specified in Figure 4.3.

4.4 Examples

With the equations for the basic building block defined, it is possible to extend the model
to systems with multiple vertices. This section two examples of the position analysis of coupled
spherical systems. The first is Shafer’s “Chomper”, which is composed of two identical spherical
mechanisms coupled to one another (Figure 4.6a). This configuration is commonly used in action
origami as a mouth for various creatures.

The second example is a model known as the “Square Twist” in which 4 identical spherical

mechanisms are coupled to one another in a loop (Figure 4.6b).

29



(a) Shafer’s “Chomper” model [40]. (b) “Square Twist” model.

Figure 4.6: Examples of the described position analysis method include these origami models.

It should be pointed out that in both examples the spherical centers (two in the first example
and four in the second) are fixed to ground. This simplifies the analysis, allowing the angles and
coupler position of one spherical mechanism to be solved for all input angles, the results of which
are simply translated and rotated to the other spherical centers (as they are identical) to understand

the bulk motion of the mechanism.

4.4.1 Coupled

The “Chomper” model is composed of two identical spherical mechanisms which are cou-
pled as shown in Figure 4.7a. A more traditional representation the spherical mechanism located
at the origin is shown in Figure 4.7b. By analyzing one mechanism and applying the results to the
other mechanism the motion of the entire model can be discovered in an efficient manner. Note
that the second mechanism is translated 1 unit (as we are using the unit sphere) in the x-direction
and rotated 180 degrees from the first mechanism.

Solving the first spherical mechanism yields the input(¢)-output(y) relationship found in
Figure 4.8a. Again, the input-output relationship of the second mechanism is similar to that of the
first. The approach for translating the coupler curve from the first mechanism to the second and

rotating by 180 degrees is described next.
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(a) “Chomper” fold pattern and ge-
ometry. Vi and V, are the spherical (b) Equivalent spherical mechanism of
centers for the mechanisms. the first mechanism in the “Chomper”.

Figure 4.7: “Chomper” and corresponding coupled spherical mechanisms to be analyzed.
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Figure 4.8: Position analysis of the “Chomper” [40] with dimensions as specified in Figure 4.7.

The second center is located a distance of R (which for our example is 1) from the second
mechanism along the x-axis. Thus, R must be added to each x coordinate in the first coupler
curve. The y and z coordinates remain the same. Note that x; represents the initial x position, x;
the translated x position, and x the final x position. Numbers in the subscript designate specific

vertices. The same subscripts are used for y and z.
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Xr=x;+R
Yt =Yi
it — 1

(4.15)
(4.16)

4.17)

Next the translated coupler curve must be rotated 180 degrees. This is accomplished us-

ing the following equations for rotations of cartesian coordinates about the z-axis (because the

mechanism centers are fixed, the z-axis is also fixed thus the rotation are fairly simple):

xXp =X xcos(0) —y, xsin(0)
V=X *5in(0) +y; x cos(0)

If =2t

For this example, 8 = 180°, thus the above simplifies to:

Xof = —X1z
Yof = —Vir
2f =2t

(4.18)
(4.19)
(4.20)

4.21)
(4.22)

(4.23)

The path of the coupler points of both mechanisms is presented in Figure 4.8b. From this

we see the expected motion of the two sides converging. The motion of the two couplers at several

points throughout their motion is shown in Figure 4.9.

4.4.2 Loop

The “Square Twist” model is composed of four identical spherical mechanisms coupled in

such a manner that they form a loop (Figure 4.10a). A traditional kinematic representation of the

spherical mechanism located at the origin is found in Figure 4.10b. Note that one center is located

32



(a) ¢ = 181° (b) ¢ = 193°

(©) ¢ =205° d) ¢ =217°

Figure 4.9: Path of the coupler links for the “Chomper”.

a distance of 1 from the origin (again using the unit sphere) in the y-direction and is rotated by -90°.
The next center (moving clockwise around the loop) is located a distance of 1 in both the x- and
y-directions and is rotated 180°. The last mechanism is located a distance of 1 in the x-direction
from the origin and is rotated by 90°. By leveraging symmetry, one of these mechanisms can be
solved and that solution can be translated and rotated to the other three spherical centers.

Solving the first spherical mechanism yields the input-output relationship found in Fig-
ure 4.11a. The input-output relationship of the remaining three mechanisms is similar to that of
the first. Translating the coupler curve from the first mechanism to the second and rotating by -90

degrees is accomplished using the following translations:
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V3
v, v,
Vi
f=90°
a=45°
b=135" | c=90°

(a) “Square Twist” fold pattern and (b) Equivalent spherical mechanism of the first
geometry. Vi, Vo, V3, and Vj are the mechanism in the square twist.

spherical centers.

Figure 4.10: “Square Twist” and corresponding loop of spherical mechanisms to be analyzed.
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Figure 4.11: Position analysis of the “Square Twist”.

Xor = X1i (4.24)
yu =y1itR (4.25)
20 =i (4.26)
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and the following rotations:

Xof = Yo
YVof = —X2
2f =2

(4.27)
(4.28)
(4.29)

Moving the coupler curve to the third spherical center is accomplished by the following

translations:

x3 =X1i+R
3 =y1it+R
23r = Z1i
and next the following rotations.
X3f = —X3
Y3f = — Y3t
3f =23t

(4.30)
(4.31)
(4.32)

(4.33)
(4.34)
(4.35)

Moving the coupler curve to the fourth spherical center is accomplished by first translating

as follows:

X4 = X1; +R
Y4t = Y1i
24t = 21i
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then rotating, as follows:

X4f = =Yt (4.39)
Va4f = Xd¢ (4.40)
Af =4 (4.41)

The paths of the overall mechanism is presented in Figure 4.11b. The motion of the four
couplers at several angles is shown in Figure 4.12. When actuated from the edges, the center square

of this models twists. When the center is fixed, the twist is imparted to the coupler links.

4.5 Future work

The method that has been described and demonstrated above simplifies the solution of
systems of identical spherical mechanisms whose centers are attached to a ground link. Not all
action origami fits within these restrictions. An example exception is Shafer’s “Frog’s Tongue”
model [41] shown in Figure 4.13a. When a panel is chosen as ground and the model is actuated,
spherical centers along the center of the model move through space. In the examples performed
above the spherical centers were always fixed. When the centers are allowed to move, the analysis
becomes more complex.

2D Periodic models such as the “Miura-Ori” [50] fold (Figure 4.13b) also have moving

centers that require a more advanced version of the method outlined here.

4.6 Conclusion

Utilizing the knowledge that much of action origami is composed of spherical mechanisms
allows the use of traditional kinematic equations for understanding the behavior of these systems.
Every origami vertex is a spherical change point mechanism whose links sum to 360°. A position
analysis of a single origami vertex was performed, resulting in a relationship between input and

output angles as well as the path of the coupler link.
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Figure 4.12: Path of the coupler links for the “Square Twist”.

In coupled systems of spherical mechanisms, if the mechanisms are identical (i.e. have the
same link lengths) and the spherical centers are grounded, one of the mechanisms can be solved
and the results applied to each vertex. In particular, the coupler curve can be moved from the
solved mechanism to every other using translations and rotations to understand the overall motion
of the system. Taking advantage of symmetry in this manner results in a significant reduction of
computation time for large, multi-vertex models.

Future work can be done to perform velocity and acceleration analyses, in addition to mo-

tion, path, and function generation. The capabilities of the presented method could also be ex-
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(a) Shafer’s “Frog’s Tongue” [41]. (b) “Miura-Ori” pattern [50].

Figure 4.13: Future work includes the analysis of models with moving spherical centers, such as
these two models.

panded to address systems in which the spherical centers are not grounded. This would extend the
application of the presented model significantly.

Successfully modeling the motion of action origami contributes meaningful insight to the
kinematics of coupled systems of spherical mechanisms. The position analyses presented are a
first step to the design of products based on coupled spherical systems with applications in the

packaging, medical device, and space industries.
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CHAPTERS. CONCLUSION

5.1 Conclusions

The main conclusion for this thesis is that viewing action origami as spherical mechanisms

is a useful tool that yields two advantages.

1. It allows for a systematic and simple method of classification of action origami, and by

extension systems of spherical mechanisms. This was demonstrated in Chapter 3.

2. Spherical mechanisms advances can be leveraged to understand the kinematics of compli-
cated action origami models. A first step in demonstrating the power of this understanding

was presented in Chapter 4.

The literature review that was performed shows that there is a profusion of literature about
origami in many fields. It is likely that future problems encountered in origami-inspired design
have already been thought about, but in an entirely different field than expected. It is hoped that
the brief summary of origami literature found in Chapter 2 and the references found in the Bibli-

ography would be of assistance to those searching for solutions to such problems.

5.2 Future Work

As has been stated, the work that was done in this thesis is but a first step to understanding
and implementing coupled systems of spherical mechanisms into the design of mechanisms. There

are three areas in particular that could benefit from further work.

1. A more complete kinematic analysis of the mechanisms described in Chapter 4 would be
of great worth to those desiring to optimize a design dealing with coupled spherical mecha-

nisms. In particular, velocity and acceleration analyses would increase what is known about
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the kinematics of those mechanisms. Path, motion, and function generation would allow for

meaningful implementation in more complicated applications.

. The method proposed in Chapter 4 was demonstrated for systems of spherical mechanisms
in which all spherical centers were fixed to ground. While this is not uncommon, there
are many models in which all centers cannot be fixed, thus they move through space when
subjected to an input motion. Furthering the method to allow for such models would be of
great importance. It is hypothesized that the motion of such models could be viewed using
superposition. The motion of the mechanism centers through space could be solved, after
which the motion of each spherical center could be solved at each location. If all mechanisms
are the same, as they often are in tesselations, one mechanism could be solved and the results

translated and rotated to every other center.

. Lastly, discovering areas of application is extremely important in order to demonstrate the
unique capabilities of action origami-based designs, namely flat-foldability, deployability,
and sophisticated motion while in the deployed state. Minimally invasive surgery and de-
ployable space arrays are possible application areas, but there are many other areas such

mechanisms could contribute to.
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APPENDIX A. MATLAB POSITION ANALYSIS PROGRAMS

A.1 Required Functions

A.1.1 Spherical Four Bar (s4bar.m)

$This function calculates the two possible output angles of a spherical
%$4bar for a given input angle. See page 8 of C.H. Chiang's Kinematics of
%$Spherical Mechanisms. Also it calculates the x, y, z coordinates of a
$coupler point

%$a=input link angle (length)

$b=output link angle

%$c=coupler link angle

$f=ground link angle

$phi=input angle

%$See "Kinematics of Spherical Mechanisms" by C.H.Chiang for phi (input
%$angle) and psi (output angle)

$x axis 1s defined positive from center of spherical mechanism through the
%$joint connecting the input and ground, y 90 degrees CCW, z up

%$Note that all inputs to this function are in degrees

function [vals] = sédbar(a,b,c,f,phi)

%$convert to radians

a a*xpi/180;

b b*pi/180;

c = c*pi/180;

f = f*pi/180;

phi = phixpi/180;
$intermediate step

k1l = cos(a)*cos (b)*cos (f);

k2 = cos(c);
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k3 = sin(a) *xcos (b) *sin (f);

k4 = cos(a)+*sin(b)*sin(f);
k5 = sin(a) *sin(b) *cos (f);
k6 = sin(a)*sin(b);

$intermediate step

hl kl k2+k3*cos (phi);

h2

kd4+k5+cos (phi) ;

h3 = k6xsin (phi);

$vals (l) and vals(2) are the two solution for the output angle, from

%$Chiang

vals(l) = atan((h2+h3+(h2°2xh3"2 (h1"2 h3"2)%(h1°2 h272))"(1/2))/...
(h1"2 h372));

vals (2) = atan((h2+h3 (h2°2+«h3"2 (h172 h3"2)%(h1"2 h272))"(1/2))/...
(h1°2 h372));

%$convert back to degrees

vals (l)=vals(1l)*180/pi;

vals (2)=vals(2)*180/pi;

A.1.2 Plotting Formatter (plotformatter.m)

$formats data for use in patch function used to draw triangular/square
%$links May 30, 2013
function [xvals yvals zvals] = plotformatter (pointl,point2,point3, numvals)
xvals=zeros (1, numvals);
yvals=zeros (1, numvals) ;
zvals=zeros (1, numvals);
for i=1l:1:numvals 2
xvals(1l,3x(il)+1)=pointl (i, 1);
xvals(1l,3*(11)+2)=point2(i,1);
xvals (l,3x1i)=point3(i,1);
yvals(1,3x(il)+1)=pointl (i, 2);
yvals(1l,3x(il)+2)=point2(i,2);
yvals (l,3x1i)=point3(i,2);
zvals (1,3x(11)+1)=pointl(i,3);

zvals(l,3x(11)+2)=point2(i,3);
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zvals (1l,3*1)=point3 (i, 3);

end

A.2 Single

A.2.1 Single Coupler Path (SinglePath.m)

$This program performs several function for a single spherical mechanism:

o\

1. Solves for the output angles and plots the input output relationship

o\

2. Solves for internal angle beta and plots the input beta relationship
$3. Solves for and plots the x,y,z components of a coupler point

$May 29, 2013

clear all

clc

close all

$definitions

%$start angle

s_angle = 1;

%end angle

e_angle = 179;

$increment
incr = 1;

$calculate number of points
numpoints = (e_angle s_angle) /incr;
%allocate space

output_angles = zeros (numpoints,2);
output_angles_rads = zeros (numpoints,2);
couplerpoint = zeros (numpoints, 3);
jointl = zeros (numpoints, 3);

joint2 = zeros (numpoints, 3);
couplerpointR = zeros (numpoints, 3);
Beta = zeros (numpoints,1);

Beta_.deg = zeros (numpoints,1);
%$define link lengths in degrees

a=45; %input
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b=135; %output

c=45; %coupler

£f=135; %ground

%define coupler information
thetap=0;

theta0=30;

RP=1.5;

R=1;

for i=s_angle : incr : e_angle

%$the inputs are (a,b,c, f,phi)

vals = sdbar(a,b,c,f,1);
output_angles (i (s_anglel),l) = vals(l);
output_angles (i (s-anglel) ,2) = vals(2);
end
input_angles = s_angle:incr:e_angle;

%$this is temporary hopefully, adjusts output so all angles are positive,
$note that adding 180 is not tecnically accurate as we start at 1 degree
%$Don't know where 70 comes from...that is just where it was discontinuous

for i=1:1:70

output_angles (i, 2) = output.angles(i,2)+180;

end

%$convert to radians

a = a»pi/180;
b = bxpi/180;

c c*xpi/180;

£

fxpi/180;
thetap = thetap*pi/180;
theta0 = thetaO*pi/180;
$convert output back into radians for use in beta equation
for i=s_angle : incr : e_angle
output_angles_rads (i (s.anglel) ,1l)=output_angles (i (s.anglel),2) ...
*pi1/180;
end

%calculate beta for each angle
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for i=s_angle : incr : e_angle
$original beta equation
$Beta (i (s.anglel),1l)=acos((sin(b)xsin(f) ...
%cos (pi output_angles_rads (i (s.anglel), 1)) ...
$+cos (b) xcos (f) cos(a)+*cos(c))/ (sin(a)+sin(c)));
$modified beta equation
Beta (i (s-anglel) ,1l)=pitacos((sin(b)*sin(f)*...
cos (output_angles_rads (i (s.anglel), 1)) ...
+cos (b) xcos (f) cos(a)xcos(c))/(sin(a)*xsin(c)));
end
%$convert beta to degrees for plotting
for i=s_angle : incr : e_angle
Beta_deg(i (s.anglel),l)=Beta(i (s.anglel),1l)*180/pi;
end
couplerpointR=zeros (numpoints, 3);
for i=s_angle : incr : e_angle
$couplerpoint x,y,z
couplerpoint (i (s-.anglel) , 1) = (cos(thetal)x*cos(a)+sin(thetal) ...

cos (Beta (i (s.anglel) ,1l)+thetap)*sin(a))«*1;

couplerpoint (i (s_anglel),2) = (cos(thetal)+*cos(ixpi/180)+*sin(a)+...

sin (thetal) xsin(i+pi/180) *sin(Beta(i (s.anglel) , 1) +thetap)
sin(thetal) xcos (Beta(i (s.anglel) , 1) +thetap)*cos(a)*...
cos (1*xpi/180)) *1;

couplerpoint (i (s_.anglel),3) = (cos(thetal)+*sin(i*pi/180)+*sin(a)
sin (thetal) xcos (1+pi/180) *sin(Beta(i (s.anglel) , 1) +thetap)
sin(thetal) xcos (Beta(i (s.anglel) , 1) +thetap)*cos(a)*...
sin(i*pi/180)) *1;

$jointl x,v,z

Jointl (i (s-.anglel), 1) = (cos(0)*cos(a)+sin(0)*...
cos(Beta (i (s_anglel),1)+0)«*sin(a))*1;

jointl (i (s.anglel),2) = (cos(0)xcos(ixpi/180)=*sin(a)+sin(0)...
*sin(i+pi/180) *sin (Beta(i (s.anglel) ,1)+0) ..
sin (0) xcos (Beta (i (s.anglel),1)+0) xcos(a)*cos (i*xpi/180))*1;

jointl (i (s.anglel),3) = (cos(0)*sin(ixpi/180)*sin(a) sin(0)x*...
cos (1*pi/180)*sin(Beta(i (s-anglel),1)+0) ...

sin (0) xcos (Beta (i (s.anglel),1)+0) *xcos(a)*sin(i*xpi/180))*1;
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%$joint2 x,v,z

joint2 (i (s.anglel),1l) = (cos(c)=*cos(a)+sin(c)*...
cos (Beta (i (s-anglel),1)+0)=xsin(a))*1;

joint2 (i (s.anglel) ,2) = (cos(c)+*cos(ixpi/180)+*sin(a)+sin(c)...
*sin (ixpi/180) *sin (Beta (i (s.anglel) ,1)+0)
sin(c) *cos (Beta (i (s_anglel),1)+0)*cos(a)*cos(i*pi/180))*1;

joint2 (i (s.anglel),3) = (cos(c)+*sin(ixpi/180)+*sin(a) sin(c)*...
cos (1*pi/180)*sin(Beta(i (s-.anglel) ,1)+0) ...
sin(c) *cos (Beta (i (s_.anglel),1)+0)*cos(a)*sin(i*pi/180)) *1;

$Coupler Point R x,Vy,z

couplerpointR (i (s-anglel),l) = (cos(thetal)*cos(a)+sin(thetal)«...

cos(Beta(i (s-.anglel),1l))xsin(a)) *RP;
couplerpointR (i (s_anglel),2) = (cos(thetal)x*cos (ixpi/180)*...

sin(a)+sin(thetal) *sin (i*pi/180)+sin(Beta (i (s.anglel) ,1))

sin (thetal) xcos (Beta (i (s.anglel), 1)) rcos(a)+*cos (i+pi/180)) «RP;

couplerpointR (i (s_anglel),3) = (cos(thetal)+*sin(ixpi/180)*sin(a)...

sin(thetal) *xcos (i*pi/180) *sin(Beta (i (s.anglel) ,1))

sin (thetal) xcos (Beta (i (s.anglel), 1)) rcos(a)+*sin(i+pi/180)) «RP;

end

$Plotting!

$plot for 1st solution

subplot (3,1,1)

scatter (input_angles', output_angles(:,1))
xlabel ('Input angle (degrees)')

ylabel ('Output angle (degrees) ')

%plot for second solution

subplot (3,1,2)

scatter (input-angles', output-angles(:,2))
xlabel ('Input angle (degrees)')

ylabel ('Output angle (degrees)')

%$plot beta

subplot (3,1, 3)

scatter (input_angles',Beta_deg(:,1))
xlabel ('Input angle (degrees)')

ylabel ('Beta (degrees) ')

figure (2)
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subplot (2,2,1)

scatter3 (couplerpointR(:, 1), couplerpointR(:,2),couplerpointR(:,3))
title('Trajectory of Coupler Point R'");
xlabel ('X");

ylabel ('Y");

zlabel ('Z");

subplot (2,2,2)

scatter3 (couplerpoint (:, 1), couplerpoint (:,2), couplerpoint (:,3))
title('Trajectory of Coupler Point');

xlabel ('X");

ylabel ('Y");

zlabel ('Z");

subplot (2,2, 3)

scatter3(jointl(:,1), jointl(:,2),jointl(:,3))
title('Trajectory of Jointl');

xlabel ('X");

ylabel ('Y");

zlabel ('2");

subplot (2,2, 4)

scatter3(joint2(:,1), joint2(:,2), joint2(:,3))
title('Trajectory of Joint2');

xlabel ('X");

ylabel ('Y");

zlabel ('Z");

A.2.2 Single Coupler Motion (SingleMotion.m)

%$This program demonstrates the motion of the coupler link for a single
$spherical mechanism. Coupler member shown is a triangle defined by joints
%$on either side of the coupler link at a radius defined by R and a coupler
%point defined by thetap and RP.

$May 29, 2013

clear all

clc

close all
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s_angle 1;

e_angle = 179;

incr = 1;

numpoints = (e_angle s_angle) /incr;
output_angles = zeros (numpoints,2);
output_angles_rads = zeros (numpoints,2);
couplerpoint = zeros (numpoints, 3);
couplerpointl = zeros (numpoints, 3);
couplerpoint?2 = zeros (numpoints, 3);

couplerpointR = zeros (numpoints, 3);
Beta = zeros (numpoints,1);

dP = zeros (numpoints,2);

$define link lengths in degrees
a=45; %input

b=135; %output

c=45; %coupler

£f=135; %ground

%define coupler information

thetap=0;
theta0=30;
RP=1.5;
R=1;
for i=s_angle : incr : e_angle
vals = s4dbar(a,b,c,f,1i);
output_angles (i (s_anglel),1l) = vals(l);
output_angles (i (s_anglel) ,2) = vals(2);
end
input_angles = s_angle:incr:e_angle;

%this is temporary hopefully, adjusts output so all angles are positive,
$note that adding 180 is not tecnically accurate as we start at 1 degree
%$Don't know where 70 comes from...that is just where it was discontinuous
for i=1:1:70

output_angles (i, 2) = output.angles(i,2)+180;
end
%define link lengths, etc, convert to radians

a = a*xpi/180;
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b

bxpi/180;

c = c*pi/180;

f = f+«pi/180;

thetap = thetap*pi/180;

theta0 = thetaO*pi/180;

$convert output back into radians for use in beta equation

for i=s_angle : incr : e_angle

output_angles_rads (i (s.anglel),1l)=output_.angles (i (s.anglel) ,2)*...

pi/180;
end

%$calculate beta for each angle, note that we should technically have

%$cos (pi output_...), also shouldn't have the pi in front
for i=s_angle : incr : e_angle

%$Beta (i (s.anglel) ,1l)=acos((sin(b)xsin(f) ...
%$cos (pi output_angles_rads (i (s.anglel),1))+...
%$cos (b) xcos (f) cos(a)*cos(c))/(sin(a)*sin(c)));

Beta (i (s-anglel) ,l)=pitacos((sin(b)*sin(£f)*...

cos (output-angles_rads (i (s-.anglel) , 1)) +cos(b)*cos(f) cos(a)x*...

cos(c))/(sin(a)*sin(c)));
end
Beta_deg = zeros (numpoints,1l);
%$convert beta to degrees for plotting
for i=s_angle : incr : e_angle

Beta_deg (i (s._.anglel),1)=Beta(i (s_anglel),1)*180/pi;

end
for i=s_angle : incr : e_angle
$couplerpoint
couplerpoint (i (s-anglel),l) = (cos(thetal)x*cos(a)+sin(thetal)*...
cos (Beta (i (s-.anglel), 1) +thetap)*sin(a)) *R;
couplerpoint (i (s_anglel),2) = (cos(thetal)+cos(ixpi/180)«*...
sin(a)+sin(thetal)*sin(i*pi/180)*sin(Beta(i (s_anglel) ,1)+...
thetap) sin(thetal) xrcos(Beta (i (s-anglel),1l)+thetap)*...
cos (a) xcos (ixpi/180)) *R;
couplerpoint (i (s_anglel),3) = (cos(thetal)=*sin(i*pi/180)+*sin(a)

sin(thetal) xcos (1*pi/180) *sin(Beta (i (s-anglel),1l)+thetap)

sin(thetal) rcos (Beta(i (s_anglel) , 1) +thetap)*cos(a)x*...

53



sin(i%pi/180)) *R;

%$jointl

couplerpointl (i (s-anglel),l) = (cos(0)=*cos(a)+sin(0)*...
cos(Beta (i (s-.anglel),1)+0)*sin(a)) *R;

couplerpointl (i (s_anglel),2) = (cos(0)xcos(ixpi/180)«sin(a)+...
sin(0) *sin (ixpi/180) *sin (Beta (i (s_anglel) ,1)+0) ...
sin (0) xcos (Beta (i (s.anglel),1)+0) xcos(a)*cos (i*xpi/180)) *R;

couplerpointl (i (s_anglel),3) = (cos(0)*sin(i*pi/180)+sin(a)
sin(0) xcos (i*pi/180) *sin (Beta (i (s_anglel) ,1)+0) ...
sin(0) *cos (Beta (i (s-anglel),1)+0)*cos(a)*sin(i*pi/180)) *R;

$joint2

couplerpoint2 (i (s_anglel),1l) = (cos(c)=*cos(a)+sin(c)x*...
cos(Beta (i (s_.anglel),1)+0)+*sin(a)) *R;

couplerpoint2 (i (s_anglel),2) = (cos(c)*cos(i*xpi/180)*sin(a)+...
sin(c)*sin(ixpi/180) *sin(Beta(i (s_.anglel) ,1)+0) ...
sin(c) *xcos (Beta (i (s_.anglel),1)+0) *«cos(a)*cos (i*pi/180)) *R;

couplerpoint2 (i (s_-anglel),3) = (cos(c)*sin(ixpi/180)+*sin(a)
sin(c)*cos (ixpi/180) *sin(Beta(i (s_.anglel) ,1)+0) ...
sin(c) *cos (Beta(i (s.anglel),1)+0) *xcos(a)+*sin(i*pi/180)) *R;

$Coupler Point R

couplerpointR(i (s-anglel),1l) = (cos(thetal)*cos(a)+sin(thetal)«...

cos(Beta(i (s-anglel), 1)) xsin(a)) *RP;

couplerpointR (i (s_anglel) ,2) = (cos(thetal)+*cos(ixpi/180)*sin(a)+...

sin(thetal) *sin (i*pi/180) *sin(Beta (i (s_anglel) ,1))

sin (thetal) xrcos (Beta (i (s.anglel), 1)) rcos(a)+*cos (i+pi/180)) «RP;
couplerpointR (i (s_anglel),3) = (cos(thetal)*sin(i*pi/180)*sin(a)

sin(thetal) *cos (1*pi/180) *sin(Beta (i (s.anglel) , 1))

sin(thetal) xcos (Beta (i (s-anglel), 1)) *cos(a)+*sin(ixpi/180)) *RP;

end

xvals=zeros (1, numpoints) ;

yvals=zeros (1, numpoints) ;

zvals=zeros (1, numpoints) ;

[xvals,yvals,zvals]=plotformatter (couplerpointR, couplerpointl, ...

couplerpoint2, numpoints);

xvals=xvals';

yvals=yvals';
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zvals=zvals';
xvals2=zeros (1, numpoints) ;
yvals2=zeros (1, numpoints) ;
zvals2=zeros (1, numpoints) ;
[xvals2,yvals2,zvals2]=plotformatter (couplerpoint,couplerpointl, ...
couplerpoint2, numpoints);
xvals=xvals';
yvals=yvals';
zvals=zvals';
$figure
for i=1l:1:numpoints 2
%$sets the view of the graph. The first number is the azimuth
% (horizontal rotation about the z axis). The second is the elevation
view (130, 30)
%$sets the x y z axes to prevent autoscaling [xmin xmax ymin ymax...]
axis([1 2 2 2 0 21);
axis manual
$starts the plot in 3D view
axis vis3d
$creates ground link triangle from 3 points [x1,x2,x3],I[vl,y2,v3]
patch([0,1, sin(pi/4)1,[0,0,sin(pi/4)1,10,0,01,'x");
%$creates coupler link
patch(xvals (3x(11)+1:3%1i),yvals(3«(11)+1:3x1i),...
zvals (3« (il)+1:3%1),'k");
hold on
%plots sphere center
plot3(0,0,0,'s");
$plots link 2 [x1,x2],[yl,y2]
plot3([1l,couplerpointl (i, 1)], [0, couplerpointl (i, 2)], ...
[0, couplerpointl (i,3)1]1);
$plots link 4
plot3 ([ sin(pi/4),couplerpoint2(i, 1)1, [sin(pi/4), ...
couplerpoint2 (i, 2)], [0, couplerpoint2(i,3)1);
grid on
xlabel ('x")

ylabel ('y')
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zlabel('z")
%plots out of plane coupler point
$patch (xvals2 (3x(11)+1:3%x1i),yvals2(3x(il)+1:3%1i),...
$zvals2 (3« (11)+1:3x1),'g");
pause (0.02)
$prevents clearing the plot the last time
drawnow
if i7"=numpoints 2
clf
end

end

A.3 Chomper

A.3.1 Chomper Coupler Path (ChomperPath.m)

%$This program performs several function for the kinematic equivalent of
%the chomper model:

%$1. Solves for the output angles and plots the input output relationship
%2. Solves for internal angle beta and plots the input beta relationship
%3. Solves for and plots the x,y,z components of the coupler points
clear all

clc

close all

%definitions

%$start angle

s_angle = 181;

%end angle

e_angle = 217;

$increment
incr = 1;

%calculate number of points
numpoints = (e_angle s_angle) /incr;
%allocate space

output_angles = zeros (numpoints,2);
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output_angles_rads = zeros (numpoints,2);
couplerpoint = zeros (numpoints, 3);
jointl = zeros (numpoints, 3);

joint2 = zeros (numpoints, 3);
couplerpointR = zeros (numpoints, 3);

Beta = zeros (numpoints,1);

Beta_deg = zeros (numpoints,1l);
couplerpoint2=zeros (numpoints, 3);%for the symmetric coupler point
$define link lengths in degrees

a=70; Sinput

b=110; %output

c=110; %coupler

£=70; %ground

%$define coupler information

thetap=0;

theta0=55;

RP=2;

R=1;

input_angles = s_angle:incr:e_angle;
$s4dbar (a,b,c, £, input (phi))

%$length to P (thetal))

for i=s_angle : incr : e_angle
vals = sdbar(a,b,c,f,1i);
output_angles (i (s-anglel) ,1l) = vals(l);
output_angles (i (s_anglel) ,2) = vals(2);
end

%$convert to radians

a = a*pi/180;
b = bxpi/180;
c = c*xpi/180;
f = £xpi/180;

thetap = thetap*pi/180;
theta0 = thetaOxpi/180;

%$convert output back into radians for use in beta equation
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for i=s_angle : incr : e_angle

output_angles_rads (i (s.anglel) ,l)=output._angles (i (s.anglel) , 1) *...

pi/180;
end
$calculate beta for each angle. The commented beta is used if there needs
%to be an offset
for i=s_angle : incr : e_angle
Beta (i (s.anglel) ,1l)=acos((sin(b)*sin(f)*...
cos (pi output_angles_rads (i (s.anglel),l)) +cos(b)x*cos(f)
cos (a) *xcos(c) )/ (sin(a) *sin(c)));
%$Beta (i (s.anglel) ,1l)=pitacos((sin(b)*sin(f)*...
%cos (output_angles_rads (i (s_anglel), 1)) +cos(b)=*cos(f)
$cos (a)*cos(c))/(sin(a)*sin(c)));
end
%$convert beta to degrees for plotting
for i=s_angle : incr : e_angle
Beta-deg(i (s-anglel),l)=Beta(i (s-anglel),1l)*180/pi;
end
for i=s_angle : incr : e_angle
$couplerpoint x,vy,z
couplerpoint (i (s-anglel) , 1) = (cos(thetal)x*cos(a)+sin(thetal) ...
cos (Beta (i (s.anglel) , 1) +thetap)+*sin(a))*1;
couplerpoint (i (s_anglel) ,2) = (cos(thetal)x*cos(i*pi/180)*sin(a)+...
sin(thetal) *sin (i*pi/180) *sin(Beta (i (s_anglel), 1) +thetap)
sin (thetal) rcos (Beta (i (s-anglel) , 1) +thetap)*cos(a)x*...
cos (1*pi/180)) *1;
couplerpoint (i (s_anglel),3) = (cos(thetal)=*sin(i*xpi/180)+*sin(a)

sin(thetal) *xcos (i*pi/180) *sin(Beta (i (s.anglel), 1) +thetap)
sin(thetal) xcos (Beta(i (s.anglel) , 1) +thetap)*cos(a)*...
sin (i*pi/180)) *1;

%$jointl x,v,z

jointl (i (s-anglel),1l) = (cos(0)+*cos(a)+sin(0)*...

cos(Beta (i (s.anglel),1)+0)+*sin(a))*1;

jointl (i (s.anglel),2) = (cos(0)*cos(ixpi/180)*sin(a)+sin(0)x*...

sin(i*pi/180)*sin(Beta(i (s-anglel),1)+0) ...

sin (0) xcos (Beta (i (s.anglel),1)+0) xcos(a)*cos (i*xpi/180))*1;
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jointl (i (s.anglel),3) = (cos(0)*sin(i*xpi/180)xsin(a) sin(0)x*...
cos (1*pi/180)*sin (Beta(i (s.anglel) ,1)+0) ...
sin(0) xcos (Beta (i (s-anglel),1)+0)*cos(a)*sin(i*pi/180)) *1;

%$joint2 x,vy,z

jJoint2 (i (s.anglel),1l) = (cos(c)=*cos(a)+sin(c)*...
cos (Beta (i (s_anglel),1)+0)+*sin(a))*1;

joint2 (i (s.anglel) ,2) = (cos(c)+*cos(ixpi/180)+*sin(a)+sin(c)*...
sin (i*pi/180) *sin(Beta (i (s.anglel) ,1)+0) ...
sin(c) *cos (Beta (i (s_.anglel),1)+0)*cos(a)*cos(i*pi/180)) *1;

joint2 (i (s-anglel),3) = (cos(c)*sin(i*xpi/180)xsin(a) sin(c)x*...
cos (i*pi/180) *sin(Beta (i (s.anglel) ,1)+0) ...
sin(c) *cos (Beta(i (s.anglel),1)+0) *cos(a)*sin(i*xpi/180))*1;

%$Coupler Point R x,vy,z

couplerpointR(i (s-anglel),1l) = (cos(thetal)*cos(a)+sin(thetal)«...

cos(Beta(i (s-.anglel),1l))xsin(a)) *RP;

couplerpointR (i (s_anglel) ,2) = (cos(thetal)*cos(ixpi/180)*sin(a)+...

sin(thetal) *sin (i*pi/180) *sin(Beta (i (s.anglel) , 1))
sin (thetal)xcos (Beta (i (s.anglel), 1)) rcos(a)+*cos (ixpi/180)) «RP;
couplerpointR(i (s_anglel),3) = (cos(thetal)*sin(i*pi/180)*sin(a)
sin(thetal) *cos (1*pi/180) *sin(Beta (i (s.anglel) , 1))
sin (thetal)rcos (Beta (i (s.anglel), 1)) rcos(a)+*sin(i+pi/180)) «RP;
end

$Plot the second mechanism in the chomper by utilizing symmetry

for i=s_angle : incr : e_angle
X
couplerpoint2 (i (s_.anglel),1l)= couplerpointR(i (s.anglel),1l)+1;
sy

couplerpoint2 (i (s-anglel), 2)= couplerpointR(i (s.anglel) ,2);

o\°

z
couplerpoint2 (i (s_anglel), 3)= couplerpointR(i (s_.anglel), 3);

end

%$Plotting!

%plot for 1st solution

subplot (3,1,1)

scatter (input-angles', output-angles(:,1))

xlabel ('Input angle (degrees)')
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ylabel ('Output angle (degrees)')

$plot for second solution

subplot (3,1,2)

scatter (input_angles', output_angles (:,2))

xlabel ('Input angle (degrees)')

ylabel ('Output angle (degrees)')

%$plot beta

subplot (3,1, 3)

scatter (input_angles',Beta_deg(:,1))

xlabel ('Input angle (degrees)')

ylabel ('Beta (degrees)')

figure (2)

$plot two coupler points

scatter3 (couplerpointR(:, 1), couplerpointR(:,2),couplerpointR(:,3))
hold on

scatter3 (couplerpoint2(:,1),couplerpoint2(:,2),couplerpoint2(:,3))
title('Trajectories');

xlabel ('X");

ylabel ('Y");

zlabel ('Z");

legend('Coupler Point P', 'Location', 'NorthEast')

A.3.2 Chomper Coupler Motion (ChomperMotion.m)

$This program demonstrates the motion of the two coupler links for the
$chomper model. Coupler links shown are triangles defined by joints

%$on either side of the coupler link at a radius defined by R and a coupler
%point defined by thetap and RP.

$May 29, 2013

clear all

clc

close all

$definitions

$start angle

s_angle = 181;
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%end angle

e_angle = 217;

$increment
incr = 1;

$calculate number of points

numpoints = (e_angle s_angle) /incr;

%allocate space

output_angles = zeros (numpoints,2);

output_angles_rads = zeros (numpoints,2);

couplerpoint = zeros (numpoints, 3);
jointl = zeros (numpoints, 3);

joint2 = zeros (numpoints, 3);

couplerpointR = zeros (numpoints, 3);

Beta = zeros (numpoints,1);

Beta_.deg = zeros (numpoints,1)

$define link lengths in degrees

a=45; %input

b=135; %output

c=45; %coupler

f=135; %ground

%$define coupler information

thetap=0;

theta0=30;

RP=1.5;

R=1;

for i=s_angle : incr : e_angle
$the inputs are (a,b,c,f,phi)
vals = s4bar(70,110,110,70,1);
output_angles (i (s_anglel),h 1)
output_angles (i (s_anglel) ,2)

end

= vals (1) ;

input_angles = s_angle:incr:e_angle;

a a*pi/180;
b = bpi/180;
c = c*pi/180;

f = f*xpi/180;

vals (2);

61



thetap

30*pi/180;
thetaO = 30+pi/180;
$convert output back into radians for use in beta equation

for i=s_angle : incr : e_angle

output_angles_rads (i (s.anglel) ,1l)=output_angles (i (s.anglel) , 1) *...

pri/180;
end

%calculate beta for each angle, note that we should technically have

$cos (pi output_...), also shouldn't have the pi in front
for i=s_angle : incr : e_angle

Beta (i (s-anglel) ,1l)=acos((sin(b)*sin(f) ...
cos (pi output_angles_rads (i (s.anglel),l)) +cos(b)*cos(f)
cos (a) xcos(c))/(sin(a)*sin(c)));

%$Beta (i (s.anglel) ,1l)=pit+tacos((sin(b)*sin(f)*...

%$cos (output_angles_rads (i (s.anglel), 1)) +cos(b)=*cos(f) cos(a)x*...

$cos(c))/ (sin(a)*sin(c)));
end
Beta_deg = zeros (numpoints,1l);
$convert beta to degrees for plotting
for i=s_angle : incr : e_angle

Beta_deg (i (s.anglel),1)=Beta(i (s.anglel),1)+180/pi;

end
for i=s_angle : incr : e_angle
%$jointl
couplerpointl (i (s-anglel),1l) = (cos(0)=*cos(a)+sin(0)*...
cos (Beta (i (s.anglel),1)+0)+*sin(a)) *R;
couplerpointl (i (s_anglel),2) = (cos(0)xcos(ixpi/180)«sin(a)+...
sin(0) *sin (ixpi/180) *sin(Beta (i (s-anglel) ,1)+0)
sin (0) xcos (Beta (i (s.anglel),1)+0) xcos(a)*cos (i*xpi/180)) *R;
couplerpointl (i (s_anglel),3) = (cos(0)*sin(ixpi/180)«*sin(a)
sin(0) xcos (1*pi/180) *sin(Beta(i (s.anglel) ,1)+0) ...
sin (0) xcos (Beta (i (s.anglel),1)+0) *xcos(a)*sin(i*xpi/180)) *R;
%$joint2
couplerpoint2 (i (s_anglel),1l) = (cos(c)=*cos(a)+sin(c)x*...
cos (Beta (i (s-anglel),1)+0)=xsin(a)) *R;
couplerpoint2 (i (s_anglel) ,2) = (cos(c)*cos(i*pi/180)+sin(a)+sin(c)...
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*sin (ixpi/180) *sin (Beta (i (s.anglel) ,1)+0)
sin(c) *cos (Beta (i (s_.anglel),1)+0) *«cos(a)*cos (i*pi/180)) *R;
couplerpoint2 (i (s_anglel),3) = (cos(c)*sin(ixpi/180)+*sin(a)
sin(c)*cos (i*pi/180) *sin(Beta(i (s_anglel) ,1)+0)
sin(c) *cos (Beta(i (s_.anglel),1)+0) *xcos(a)+*sin(i*xpi/180)) *R;
%$Coupler Point R
couplerpointR(i (s-anglel),l) = (cos(thetal)*cos(a)+sin(thetal)«...
cos(Beta (i (s-anglel),1l))xsin(a)) *RP;
couplerpointR (i (s_anglel) ,2) = (cos(thetal)*cos(ixpi/180)*sin(a)+...
sin(thetal) *sin (i*pi/180) *sin (Beta (i (s.anglel) , 1))
sin (thetal) xrcos (Beta (i (s.anglel), 1)) rcos(a)+*cos (i+pi/180)) «RP;
couplerpointR (i (s_anglel),3) = (cos(thetal)+*sin(i*pi/180)*sin(a)
sin(thetal) *cos (1*pi/180) *sin(Beta (i (s.anglel) , 1))
sin (thetal)rcos (Beta (i (s.anglel), 1)) rcos(a)+*sin(ixpi/180)) «RP;
end
$Let's try to plot the second mechanism in the chomper by utilizing
STsymmetry
couplerpoint2_l=zeros (numpoints, 3);
couplerpoint2_2=zeros (numpoints, 3);
couplerpoint2_R=zeros (numpoints, 3);
for i=s_angle : incr : e_angle
$joint 2_1
%X
couplerpoint2.1(i (s.anglel),1l)= couplerpointl(i (s.anglel),1l)+1;
Y%
couplerpoint2.1(i (s.anglel), 2)= couplerpointl (i (s.anglel) ,2);

o\

z
couplerpoint2.1(i (s-anglel), 3)= couplerpointl(i (s.anglel), 3);
%$joint 2.2

%X

couplerpoint2._2 (i (s.anglel),l)= couplerpoint2(i (s.anglel),l1l)+1;
Y

couplerpoint2_2 (i (s.anglel), 2)= couplerpoint2(i (s.anglel) ,h2);

o\

z
couplerpoint2.2 (i (s-anglel), 3)= couplerpoint2(i (s.anglel), 3);

%joint 2_R
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$x

couplerpoint2 R(i (s.anglel),1l)= couplerpointR(i (s.anglel),1l)+1;

Y
couplerpoint2_R(i (s.anglel), 2)= couplerpointR(i (s.anglel),2);
%z
couplerpoint2_ R(i (s.anglel), 3)= couplerpointR(i (s.anglel), 3);
end
%$Plotting!

xvals=zeros (1, numpoints) ;
yvals=zeros (1, numpoints) ;
zvals=zeros (1, numpoints) ;
[xvals,yvals,zvals]=plotformatter (couplerpointR, couplerpointl, ...
couplerpoint2, numpoints);
xvals=xvals';
yvals=yvals';
zvals=zvals';
xvals2=zeros (1, numpoints) ;
yvals2=zeros (1, numpoints) ;
zvals2=zeros (1, numpoints) ;
[xvals2,yvals2,zvals2]=plotformatter (couplerpoint2_1, couplerpoint2.2, ...
couplerpoint2_R, numpoints) ;
xvals2=xvals2';
yvals2=yvals2';
zvals2=zvals2';
$figure
for i=1l:1:numpoints 2
%$sets the view of the graph. The first number is the azimuth
% (horizontal rotation about the z axis). The second is the elevation
view (60, 30)
%$sets the x y z axes to prevent autoscaling [xmin xmax ymin ymax...]
axis([2 2 2 2 2 21);
axis manual
axis vis3d
%$creates ground link triangle from 3 points [x1,x2,x3],[yl,v2,vy3]
patch ([0, .5,1], [0, .5*tan(pi*70/180),0],[0,0,01,'r");

%$creates coupler link 1
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patch(xvals (3x(11)+1:3%1i),yvals(3*(1i1)+1:3*1i),...
zvals (3« (1il)+1:3%1),'k");

hold on

%$creates coupler link 2

patch(xvals2 (3% (1i1)+1:3%1),yvals2(3x(il)+1:3%x1i), ...
zvals2 (3« (11)+1:3%x1i),'k");

%$plots sphere center 1

plot3(0,0,0,'s");

%plots sphere center 2

plot3(1,0,0,'s");

$plots link 2.1 [x1,x2],[yl,y2]

plot3([1l,couplerpointl (i, 1)], [0, couplerpointl (i, 2)], ...
[0, couplerpointl (i,3)1);

$plots link 4_1

plot3([.5,couplerpoint2(i,1)], [.5*tan(pi*70/180), ...
couplerpoint2 (i, 2)], [0,couplerpoint2(i,3)1);

$plots link 2.2 [x1,x2],[yl,v2]

plot3 ([0, couplerpoint2_1(i,1)], [0, couplerpoint2.1(i,2)],...
[0, couplerpoint2_1(i,3)1);

$plots link 4.2

plot3([.5,couplerpoint2.2(i,1)],[.5*tan(pi*70/180), ...
couplerpoint2.2(i,2)]1, [0, couplerpoint2.2(i,3)]);

grid on

xlabel ('x")

ylabel ('y")

zlabel('z")

%plots out of plane coupler point

$patch (xvals2 (3x(11)+1:3%1i),yvals2(3x(il)+1:3%1i),...

$zvals2 (3« (1i1)+1:3x1i),'g");

pause (0.1)

$prevents clearing the plot the last time

drawnow

if i7"=numpoints 2
clf
end

end
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A4 Square Twist

A.4.1 Square Twist Coupler Path (SquarePath.m)

$This program plots the input/output relationship, input/beta relationship,
%and path of the coupler point on each of the four couplers of the square
Stwist.

%$Coupler points are determined by thetap and a radius RP.

$May 29,2013

clear all

clc

close all

Il
-
~.

s_angle

e_angle = 179;

incr = 1;

numpoints = (e_angle s_angle) /incr;
%allocation

output_angles = zeros (numpoints,2);
output_angles_rads = zeros (numpoints,2);
couplerpoint = zeros (numpoints, 3);

couplerpointR=zeros (numpoints, 3);
Beta = zeros (numpoints,1);
Beta_deg = zeros (numpoints,1l);
couplerpoint2=zeros (numpoints, 3);
couplerpoint3=zeros (numpoints, 3);
couplerpointé4=zeros (numpoints, 3);
%$mechanism definition

a=45;

b=135;

c=90;

£=90;

thetap=45;

theta0=45;

RP=.5;

for i=s_angle : incr : e_angle
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vals = sdbar(a,b,c,f,1);

output_angles (i (s_anglel),l) = vals(l);
output_angles (i (s-anglel) ,2) = vals(2);
end
input_angles = s_angle:incr:e_angle;

$this is temporary hopefully, adjusts output so all angles are positive,
$note that adding 180 is not tecnically accurate as we start at 1 degree
%$Don't know where 70 comes from...that is just where it was discontinuous
for i=1:1:45
output_angles (i, 2) = output-angles(i,2)+180;
end
for i= 91:1:134
output_angles (i, 2) = output._angles(i,l);
end
output_angles (135,2) = 19.463;
for i=136:1:179
output_angles (i,2) = output-angles(i,l);
end

%$convert to radians

a = axpi/180;
b = b*xpi/180;
c = c*pi/180;

f = f£*xpi/180;

thetap = thetap*pi/180;

theta0 = thetaO*pi/180;

$convert output back into radians for use in beta equation

for i=s_angle : incr : e_angle

output_angles_rads (i (s.anglel) ,1l)=output-angles (i (s-anglel) ,2)*...

pi/180;
end

$calculate beta for each angle, note that we should technically have

%$cos (pi output....), also shouldn't have the pi in front
for i=s_angle : incr : e_angle

%$Beta (i (s.anglel),1l)=acos((sin(b)*sin(£f)*...
%$cos (pi output_angles_rads (i (s-.anglel), 1)) +cos(b)+*cos(f)

%$cos (a) xcos(c))/ (sin(a)*sin(c)));
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Beta (i (s.anglel) ,l)=pitacos((sin(b)*sin(f)*...

cos (output_angles_rads (i (s.anglel),l))+cos(b)x*cos(f) cos(a)x*...

cos(c))/(sin(a)*sin(c)));
end
$convert beta to degrees for plotting
for i=s_angle : incr : e_angle

Beta_-deg (i (s-anglel),1l)=Beta(i (s.anglel),1)*180/pi;

end
for i=s_angle : incr : e_angle
$couplerpoint
couplerpoint (i (s_.anglel) ,1l) = (cos(thetal)*cos(a)+sin(thetal)*...

cos(Beta (i (s.anglel),1l)+thetap)+*sin(a))*1l;

couplerpoint (i (s_anglel),2) = (cos(thetal)x*cos(i*xpi/180)+*sin(a)+...

sin (thetal) *xsin(i+*pi/180) *sin(Beta(i (s.anglel) ,1)+thetap)
sin (thetal) xcos (Beta(i (s.anglel) , 1) +thetap)*cos(a)*...
cos (1*pi/180)) *1;

couplerpoint (i (s-anglel),3) = (cos(thetal)*sin(i*xpi/180)+*sin(a)
sin (thetal) xcos (1+pi/180) *sin(Beta(i (s.anglel) ,1)+thetap)
sin(thetal) xcos (Beta(i (s.anglel) , 1) +thetap)*cos(a)*...
sin(i*pi/180)) *1;

%$jointl

couplerpoint (i (s_.anglel) ,1) = (cos(0)=*cos(a)+sin(0)*...
cos(Beta (i (s.anglel),1)+0)+sin(a))*1;

couplerpoint (i (s_anglel),2) = (cos(0)+*cos(i*xpi/180)*sin(a)+...
sin (0) *sin(i+pi/180) *sin (Beta(i (s_.anglel) ,1)+0) ...
sin (0) xcos (Beta (i (s.anglel),1)+0) xcos(a)+*cos (i*xpi/180))*1;

couplerpoint (i (s_.anglel),3) = (cos(0)*sin(i*pi/180)*sin(a)
sin (0) xcos (ixpi/180) *sin (Beta (i (s.anglel) ,1)+0) ...
sin (0) xcos (Beta (i (s.anglel),1)+0) *xcos(a)*sin(i*xpi/180))*1;

%$joint2

couplerpoint (i (s_anglel),1l) = (cos(c)=*cos(a)+sin(c)x*...
cos (Beta (i (s-.anglel),1)+0)xsin(a))*1l;

couplerpoint (i (s_anglel) ,2) = (cos(c)+*cos(ixpi/180)*sin(a)+...
sin(c)*sin(ixpi/180) *sin(Beta(i (s_.anglel) ,1)+0) ...
sin(c) *cos (Beta (i (s-anglel),1)+0)*cos(a)*cos (i*xpi/180)) *1;

couplerpoint (i (s_anglel),3) = (cos(c)*sin(i*pi/180)*sin(a)
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sin(c)*cos (1ixpi1/180) *sin(Beta(i (s_anglel) ,1)+0)
sin(c)*cos (Beta(i (s.anglel),1)+0) *xcos(a)+*sin(i*xpi/180))*1;
%$Coupler Point R
couplerpointR (i (s_anglel),1l) = (cos(thetal)=xcos(a)+sin(thetal)x...
cos(Beta(i (s.anglel),1l))xsin(a)) *RP;
couplerpointR (i (s_anglel),2) = (cos(thetal)+*cos(i*pi/180)+*sin(a)+...
sin(thetal) *sin (i*pi/180) *sin (Beta (i (s.anglel) , 1))
sin (thetal) xcos (Beta (i (s.anglel), 1)) rcos(a)+*cos (ixpi/180)) *«RP;
couplerpointR (i (s_anglel),3) = (cos(thetal)x*sin(ixpi/180)*sin(a)
sin(thetal) xcos (1*pi/180) *sin(Beta (i (s-anglel) , 1))
sin (thetal) xrcos (Beta (i (s.anglel), 1)) rcos(a)+*sin(i+pi/180)) «RP;
end
$Let's try to plot the second mechanism in the square twist by utilizing
Ssymmetry
$first rotate 90 degrees

rot12=90%pi/180;

for i=s_angle : incr : e_angle
X
couplerpoint2 (i (s_anglel),1l)= couplerpointR(i (s_.anglel) ,1l)x*...

cos(rotl2) couplerpointR(i (s.anglel),2) *sin(rotl2);

2%

couplerpoint2 (i (s_anglel), 2)= couplerpointR(i (s_.anglel) ,1)x*...
sin(rotl2)+couplerpointR (i (s_.anglel), 2) «cos(rotl2);

%z

couplerpoint2 (i (s_anglel), 3)= couplerpointR(i (s.anglel), 3);

end

$now translate 1 unit in the positive y direction

for i=s_angle : incr : e_angle

Y

couplerpoint2 (i (s_anglel), 2)= couplerpoint2(i (s.anglel),2)+1;
end

$Let's try to plot the third mechanism in the square twist by utilizing
Ssymmetry

$first rotate 180 degrees
rot13=180+pi/180;

for i=s_angle : incr : e_angle
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%X
couplerpoint3 (i (s_anglel),1l)= couplerpointR(i (s_anglel) ,1l)x*...

cos (rotl3) couplerpointR(i (s-anglel),2) *sin(rotl3);

Y

couplerpoint3 (i (s_anglel), 2)= couplerpointR(i (s_anglel) ,1l)x*...
sin(rotl3)+couplerpointR (i (s.anglel), 2) xcos(rotl3);

%z

couplerpoint3 (i (s_anglel),3)= couplerpointR(i (s.anglel), 3);

end

$now translate 1 unit in the positive y direction and 1 in positive x

%direction
for i=s_angle : incr : e_angle
X
couplerpoint3 (i (s-anglel) ,1l)= couplerpoint3(i (s.anglel),1)+1;
sy
couplerpoint3 (i (s_anglel),2)= couplerpoint3(i (s.anglel),2)+1;
end

$Let's try to plot the fourth mechanism in the square twist by utilizing
Ssymmetry
$first rotate 90 degrees

rot14=90%pi/180;

for i=s_angle : incr : e_angle
$x
couplerpointd4 (i (s_anglel),1l)= couplerpointR(i (s_.anglel) ,1l)x*x...

cos (rotl4d) couplerpointR(i (s-anglel) , 2)xsin(rotld);

Y%

couplerpointd4 (i (s_anglel), 2)= couplerpointR(i (s_anglel) , 1) x*...
sin(rotl4) +couplerpointR (i (s-anglel), 2) xcos(rotld);

%z

couplerpointd (i (s_anglel),3)= couplerpointR(i (s.anglel), 3);

end

$now translate 1 unit in the positive x direction

for i=s_angle : incr : e_angle

%X

couplerpointd4 (i (s-anglel),1l)= couplerpointd4 (i (s.anglel),1l)+1;
end
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$Plotting!

hold on

$plot for 1st solution

subplot (3,1,1)

scatter (input_angles', output_angles(:,1))

xlabel ('Input angle (degrees)')

ylabel ('Output angle (degrees) ')

%plot for second solution (what is this telling me?)

subplot (3,1,2)

scatter (input-angles', output-angles(:,2))

xlabel ('Input angle (degrees)')

ylabel ('Output angle (degrees)')

subplot (3,1, 3)

scatter (input_angles',Beta_-deg(:,1))

xlabel ('Input angle (degrees)')

ylabel ('Beta (degrees) ')

figure (2)

scatter3 (couplerpointR(:,1),couplerpointR(:,2),couplerpointR(:,3))
hold on

scatter3 (couplerpoint2(:, 1), couplerpoint2(:,2),couplerpoint2(:,3))
hold on

scatter3 (couplerpoint3(:, 1), couplerpoint3(:,2),couplerpoint3(:,3))
hold on

scatter3 (couplerpointd (:, 1), couplerpointd (:,2),couplerpointd (:,3))
grid on

title('Trajectories');

xlabel ('X");

ylabel ('Y");

zlabel ('Z");

A.4.2 Square Twist Coupler Motion (SquareMotion.m)

$This program plots the motion of the coupler point on each of the four
$couplers of the square twist.

%Coupler triangles seen are determined by the joint on either side of the
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$coupler link and a point on the coupler link determined by thetap and a
$radius RP.

$May 29,2013

clear all

clc

close all

s_angle = 1;

e_angle = 179;

incr = 1;

numpoints = (e_angle s_angle) /incr;
output_angles = zeros (numpoints,2);
output_angles_rads = zeros (numpoints,2);
couplerpoint = zeros (numpoints, 3);

Beta = zeros (numpoints,1);

%define link lengths in degrees
a=45; %input

b=135; %output

c=90; %coupler

£f=90; S%ground

$define coupler information

thetap=0;
theta0=30;
RP=1.5;
R=1;
for i=s_angle : incr : e_angle
vals = sdbar(a,b,c,f,1);
output_angles (i (s_anglel),1l) = vals(l);
output_angles (i (s-anglel) ,2) = vals(2);
end
input_angles = s_angle:incr:e_angle;

%$this is temporary hopefully, adjusts output so all angles are positive,
%$note that adding 180 is not tecnically accurate as we start at 1 degree
$Don't know where 70 comes from...that is just where it was discontinuous
for i=1:1:45
output_angles (i, 2) = output-angles(i,2)+180;

end
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for i= 91:1:134
output_angles (i, 2) = output._angles(i,1);
end
output_angles (135,2) = 19.463;
for i=136:1:179
output_angles (i, 2) = output._angles(i,l);
end

%$convert to radians

a = a*pi/180;
b = bxpi/180;
c = c*xpi/180;
f = fxpi/180;

thetap = thetap*pi/180;
thetaO = thetalOxpi/180;
%$convert output back into radians for use in beta equation

for i=s_angle : incr : e_angle

output_angles_rads (i (s-anglel) ,l)=output.-angles (i (s-anglel) ,h2) ...

*pi/180;
end

$calculate beta for each angle, note that we should technically have

%$cos (pi output_....), also shouldn't have the pi in front
for i=s_angle : incr : e_angle

%$Beta (i (s.anglel),1l)=acos((sin(b)*sin(£f)*...
%cos (pi output_angles_rads (i (s_.anglel), 1)) +cos(b)+*cos(f)
$cos (a) xcos (c))/ (sin(a) xsin(c)));
Beta (i (s.anglel) ,l)=pitacos((sin(b)*sin(f)*...
cos (output_angles_rads (i (s.anglel), 1)) +cos(b)*cos(f)
cos (a) xcos (c))/ (sin(a)*sin(c)));
end
Beta_deg = zeros (numpoints,1);
$convert beta to degrees for plotting
for i=s_angle : incr : e_angle

Beta_deg (i (s.anglel),1l)=Beta(i (s.anglel),1)+180/pi;

end
couplerpointl = zeros (numpoints, 3);
couplerpoint2 = zeros (numpoints, 3);
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couplerpointR = zeros (numpoints, 3);

for i=s_angle : incr : e_angle
$couplerpoint
couplerpoint (i (s_.anglel),1l) = (cos(thetal)x*cos(a)+sin(thetal) ...

cos (Beta(i (s.anglel) ,1l)+thetap)*sin(a)) *R;
couplerpoint (i (s_anglel),2) = (cos(thetal)+*cos(i*xpi/180)+*sin(a)+...
sin (thetal) *xsin(i+pi/180) *sin(Beta(i (s.anglel) , 1) +thetap)
sin (thetal) xcos (Beta(i (s.anglel) , 1) +thetap)*cos(a)*...
cos (1*pi/180)) *R;
couplerpoint (i (s-anglel),3) = (cos(thetal)+*sin(i*pi/180)+*sin(a)
sin (thetal) xcos (1+pi/180) *sin(Beta(i (s.anglel) , 1) +thetap)
sin (thetal) xrcos (Beta(i (s_.anglel) , 1) +thetap)*cos(a)*...
sin(i*pi/180)) *R;
$jointl
couplerpointl (i (s_.anglel),1l) = (cos(0)=*cos(a)+sin(0)x*...
cos(Beta(i (s_anglel),1)+0)xsin(a)) *R;
couplerpointl (i (s-anglel),2) = (cos(0)+*cos(i*pi/180)+*sin(a)+...
sin (0) *sin(i+pi/180) *sin (Beta(i (s_.anglel) ,1)+0) ...
sin (0) *cos (Beta (i (s.anglel),1)+0) xcos(a)+*cos (i*xpi/180)) *R;
couplerpointl (i (s_anglel),3) = (cos(0)*sin(ixpi/180)+*sin(a)
sin (0) xcos (1i*pi/180) *sin(Beta(i (s_.anglel) ,1)+0) ...
sin (0) *cos (Beta (i (s.anglel),1)+0) *xcos(a)*sin(i*pi/180)) *R;
$joint2
couplerpoint2(i (s_anglel),1l) = (cos(c)=*cos(a)+sin(c)x*...
cos (Beta (i (s-anglel),1)+0)=xsin(a)) *R;
couplerpoint2 (i (s_.anglel),2) = (cos(c)+*cos(ixpi/180)+*sin(a)+...
sin(c) *sin(ixpi/180) *sin (Beta (i (s_anglel) ,1)+0) ...
sin(c) *cos (Beta (i (s-anglel),1)+0)*cos(a)*cos(i*pi/180)) *R;
couplerpoint2 (i (s_anglel),3) = (cos(c)*sin(i*pi/180)+sin(a)
sin(c)*cos (ixpi/180) *sin(Beta(i (s_anglel) ,1)+0) ...
sin(c) *cos (Beta (i (s_.anglel),1)+0)*cos(a)*sin(i*pi/180)) *R;
%$Coupler Point R
couplerpointR(i (s_.anglel),1l) = (cos(thetal)*cos(a)+sin(thetal) ...
cos(Beta(i (s.anglel),1l))xsin(a)) *RP;
couplerpointR (i (s_anglel),2) = (cos(thetal)+*cos(i*pi/180)+*sin(a)+...

sin (thetal) xsin(i+pi/180) *sin (Beta(i (s_.anglel) , 1))
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sin (thetal) xcos (Beta (i (s.anglel), 1)) rcos(a)+*cos (ixpi/180)) «RP;
couplerpointR (i (s_anglel),3) = (cos(thetal)x*sin(ixpi/180)*sin(a)
sin(thetal) *xcos (i*pi/180) *sin(Beta (i (s.anglel) , 1))
sin (thetal)xcos (Beta (i (s.anglel), 1)) +cos(a)+*sin(i+pi/180)) «RP;
end
$Let's try to plot the second mechanism in the square twist by utilizing
Ssymmetry
couplerpoint2_l=zeros (numpoints, 3);
couplerpoint2_2=zeros (numpoints, 3);
couplerpoint2_R=zeros (numpoints, 3);
$first rotate 90 degrees

rotl1l2=90+pi/180;

for i=s_angle : incr : e_angle
$x
couplerpoint2_1(i (s.anglel),1l)= couplerpointl(i (s.anglel) ,1)x*...

cos(rotl2) couplerpointl (i (s.anglel),2)*sin(rotl2);

5y

couplerpoint2_1(i (s-anglel) ,2)= couplerpointl (i (s.anglel),1l)x...
sin(rotl2)+couplerpointl (i (s.anglel), 2) *cos(rotl2);

%z

couplerpoint2_1(i (s-anglel), 3)= couplerpointl (i (s.anglel),3);

X

couplerpoint2. 2 (i (s.anglel),1l)= couplerpoint2(i (s.anglel) ,1l)x...
cos(rotl2) couplerpoint2 (i (s.anglel),2) *sin(rotl2);

Y%

couplerpoint2_2 (i (s.anglel), 2)= couplerpoint2(i (s.anglel) ,1)x*...

sin(rotl2)+couplerpoint2 (i (s.anglel), 2) *«cos(rotl2);

o\°

Z

couplerpoint2_2 (i (s.anglel), 3) couplerpoint2 (i (s.anglel), 3);

$x

couplerpoint2 R(i (s.anglel) , 1) couplerpointR (i (s_.anglel) , 1) ...
cos (rotl2) couplerpointR(i (s-anglel) , 2)*xsin(rotl2);

Y

couplerpoint2 R(i (s.anglel), 2)= couplerpointR(i (s_.anglel) , 1) ...

sin(rotl2)+couplerpointR (i (s-anglel), 2) xcos(rotl2);

o\
N
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couplerpoint2_ R(i (s.anglel), 3)= couplerpointR(i (s.anglel), 3);
end

$now translate 1 unit in the positive y direction

for i=s_angle : incr : e_angle
5y
couplerpoint2_1(i (s.anglel),2)= couplerpoint2.1(i (s.anglel),b2)+1;

couplerpoint2_2 (i (s-anglel) , 2)= couplerpoint2.2(i (s-anglel),2)+1;
couplerpoint2_ R(i (s.anglel),2)= couplerpoint2_ R(i (s.anglel),2)+1;

end

$Let's try to plot the third mechanism in the square twist by utilizing

Ssymmetry

couplerpoint3_1l=zeros (numpoints, 3);

couplerpoint3_2=zeros (numpoints, 3);

couplerpoint3_R=zeros (numpoints, 3);

$first rotate 180 degrees

rot13=180%pi/180;

for i=s_angle : incr : e_angle

$x

couplerpoint3.1(i (s.anglel) , 1) couplerpointl (i (s_.anglel) , 1) ...

cos (rotl3) couplerpointl (i (s.anglel),2) *sin(rotl3);

5y

couplerpoint3.1(i (s.anglel),2)= couplerpointl (i (s.anglel) ,1)x*...
sin(rotl3)+couplerpointl (i (s.anglel),2) «cos(rotl3);

%z

couplerpoint3_1(i (s-.anglel),3)= couplerpointl(i (s.anglel), 3);

X

couplerpoint3.2 (i (s.anglel),1l)= couplerpoint2(i (s.anglel) , 1) ...
cos (rotl3) couplerpoint2 (i (s-anglel),2) *sin(rotl3);

Y

couplerpoint3.2 (i (s.anglel), 2) couplerpoint2 (i (s_.anglel) , 1) ...

sin(rotl3)+couplerpoint2 (i (s.anglel), 2) «cos(rotl3);

o\©

Z

couplerpoint3.2 (i (s.anglel), 3) couplerpoint2 (i (s.anglel), 3);

o\

X
couplerpoint3_R(1i (s-anglel),1l)= couplerpointR(i (s.anglel) , 1) ...

cos (rotl3) couplerpointR(i (s-anglel) , 2)xsin(rotl3);
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5y
couplerpoint3_R(i (s.anglel),2)= couplerpointR(i (s_.anglel) , 1) ...

sin(rotl3) +couplerpointR (i (s-anglel), 2) xcos(rotl3);

o\°

Z

couplerpoint3_R(i (s.anglel),3)= couplerpointR(i (s_.anglel), 3);
end
$now translate 1 unit in the positive y direction and 1 in positive x
%direction

for i=s_angle : incr : e_angle

o\°

X

couplerpoint3_1(i (s-anglel),1l)= couplerpoint3_.1(i (s-anglel),1)+1;

2%

couplerpoint3.1 (i (s.anglel),2)= couplerpoint3.1(i (s.anglel),2)+1;
$xX

couplerpoint3.2 (i (s.anglel),1l)= couplerpoint3.2(i (s.anglel),1)+1;

5y

couplerpoint3.2 (i (s-anglel),2)= couplerpoint3.2(i (s-anglel),2)+1;
X

couplerpoint3_R(i (s.anglel),1l)= couplerpoint3_ R(i (s.anglel),1)+1;
2%
couplerpoint3_R(i (s-anglel) ,2)= couplerpoint3_R(i (s-anglel),b2)+1;
end
$Let's try to plot the fourth mechanism in the square twist by utilizing
STsymmetry
couplerpoint4_l=zeros (numpoints, 3);
couplerpoint4_2=zeros (numpoints, 3);
couplerpoint4_R=zeros (numpoints, 3);
$first rotate 90 degrees
rot14=90+pi/180;

for i=s_angle : incr : e_angle

o\

X

couplerpoint4d4_1(i (s-anglel) ,1l)= couplerpointl (i (s.anglel),1l)x*...
cos(rotl4d) couplerpointl (i (s-.anglel),2)*sin(rotld);

5y

couplerpoint4.1(i (s-anglel),2)= couplerpointl(i (s.anglel) , 1) ...

sin(rotld)+couplerpointl (i (s-anglel) , 2) xcos(rotld);
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$z

couplerpoint4_ 1 (i (s.anglel),3)= couplerpointl (i (s.anglel), 3);

X

couplerpoint4 2 (i (s.anglel),1l)= couplerpoint2(i (s.anglel) , 1) ...
cos(rotl4d) couplerpoint2 (i (s.anglel),2)*sin(rotld);

5y

couplerpoint4_ 2 (i (s-anglel) , 2)= couplerpoint2 (i (s.anglel),1l)x*...

sin(rotl4) +couplerpoint2 (i (s-anglel), 2) *cos(rotld);

o
°Z

couplerpoint4_2 (i (s-anglel), 3) couplerpoint2 (i (s-anglel), 3);

X

couplerpoint4 R(i (s.anglel),1l)= couplerpointR(i (s.anglel) , 1) ...
cos(rotl4d) couplerpointR(i (s_.anglel),2) *sin(rotld);

Y%

couplerpoint4 R(i (s_.anglel), 2)= couplerpointR(i (s.anglel) ,1)x*...

sin(rotl4) +couplerpointR (i (s_.anglel), 2) «cos(rotld);

o\°

Z

couplerpoint4 R(i (s.anglel), 3) couplerpointR (i (s-.anglel), 3);
end

$now translate 1 unit in the positive x direction

for i=s_angle : incr : e_angle
$xX
couplerpoint4_ 1 (i (s.anglel),1l)= couplerpointd4d 1(i (s.anglel),1l)+1;
couplerpoint4 2 (i (s.anglel),1l)= couplerpointd4 2 (i (s.anglel),1l)+1;

couplerpoint4 R(i (s-anglel),1l)= couplerpointd4d R(i (s-anglel),1)+1;
end
$Plotting!
xvals=zeros (1, numpoints) ;
yvals=zeros (1, numpoints) ;
zvals=zeros (1, numpoints) ;
[xvals,yvals,zvals]=plotformatter (couplerpointR, couplerpointl, ...
couplerpoint2, numpoints) ;
xvals=xvals';
yvals=yvals';
zvals=zvals';

xvals2=zeros (1, numpoints);
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yvals2=zeros (1, numpoints) ;

zvals2=zeros (1, numpoints);

[xvals2,yvals2,zvals2]=plotformatter (couplerpoint2_R, couplerpoint2.1, ...

couplerpoint2_2, numpoints);

xvals2=xvals2';

yvals2=yvals2';

zvals2=zvals2';

xvals3=zeros (1, numpoints) ;

yvals3=zeros (1, numpoints) ;

zvals3=zeros (1, numpoints);

[xvals3,yvals3, zvals3]=plotformatter (couplerpoint3_R, couplerpoint3_1, ...

couplerpoint3_2, numpoints);

xvals3=xvals3';

yvals3=yvals3';

zvals3=zvals3';

xvalsd=zeros (1, numpoints) ;

yvalsd=zeros (1, numpoints) ;

zvalsd=zeros (1, numpoints);

[xvals4d,yvalséd, zvalsd4]=plotformatter (couplerpoint4_R, couplerpointd. 1, ...

couplerpoint4_2, numpoints);

xvalsd=xvalsd';

yvals4=yvals4';

zvalsd=zvalsd';

$figure

for

i=1l:1:numpoints 2

%$sets the view of the graph. The first number is the azimuth

% (horizontal rotation about the z axis). The second is the elevation
view (60, 30)

%$sets the x y z axes to prevent autoscaling [xmin xmax ymin ymax...]
axis([2 3 2 3 2 21);

axis manual

$starts the plot in 3D view

axis vis3d

%$creates ground link triangle from 3 points [x1,x2,x3],[yl,v2,vy3]
patch¢((0,0,1,11,10,1,1,01,10,0,0,01,'c");

%$creates coupler link 1
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patch(xvals (3x(11)+1:3%1i),yvals(3*(1i1)+1:3*1i),...
zvals (3« (1il)+1:3%1),'k");

hold on

%$creates coupler link 2

patch(xvals2 (3% (1i1)+1:3%1),yvals2(3x(il)+1:3%x1i), ...
zvals2 (3« (11)+1:3%x1i),'k");

$creates coupler link 3

patch(xvals3(3%x(1i1)+1:3%1),yvals3(3x(il)+1:3%xi),...
zvals3(3x(11)+1:3%1),"'k");

hold on

%$creates coupler link 4

patch(xvals4 (3% (1i1)+1:3%1),yvalsd (3x(il)+1:3%x1i), ...
zvalsd (3x(11)+1:3%1i),"'k");

%$plots sphere center 1

plot3(0,0,0,"'s");

%plots sphere center 2

plot3(1,0,0,"'s");

%$plots sphere center 1

plot3(1,1,0,"'s");

$plots sphere center 2

plot3(0,1,0,"'s");

%$plots link 2.1 [x1,x2],I[yl,y2]

plot3([1l,couplerpointl (i, 1)], [0, couplerpointl (i, 2)], ...
[0, couplerpointl (i,3)1);

$plots link 4_1

plot3 ([0, couplerpoint2 (i, 1)], [1,couplerpoint2(i,2)], ...
[0, couplerpoint2 (i,3)1);

$plots link 2.2 [x1,x2],[yl,y2]

plot3 ([0, couplerpoint2_1(i,1)], [0, couplerpoint2.1(i,2)],...
[0, couplerpoint2_1(1i,3)1);

$plots link 4.2

plot3([1l,couplerpoint2.2(i, 1)1, [1l,couplerpoint2_2(i,2)1, ...
[0, couplerpoint2.2(1i,3)1);

$plots link 2.3 [x1,x2]1,I[yl,v2]

plot3 ([0, couplerpoint3.1(i,1)]1,[1l,couplerpoint3.1(i,2)],...
[0,couplerpoint3_1(i,3)1);
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end

$plots link 4.3
plot3([1l, couplerpoint3 2(i,1)]1,[0,couplerpoint3.2(i,2)],...
[0, couplerpoint3.2(i,3)1);
%$plots link 2_4 [x1,x2],I[yl,y2]
plot3([1l,couplerpoint4 1(i,1)],[1,couplerpointd 1(i,2)],...
[0, couplerpoint4.1(i,3)1);
%$plots link 4_4
plot3 ([0, couplerpointd 2 (i,1)],[0,couplerpointd 2 (i, 2)],...
[0, couplerpointd4 2(1i,3)1);
grid on
xlabel ('x")
ylabel ('y")
zlabel('z")
%$plots out of plane coupler point
$patch(xvals2 (3x(11)+1:3%x1),yvals2(3x(1i1l)+1:3%1i),...
$zvals2 (3x(11)+1:3x1),"'g");
pause (0.01)
picpause=10;
if i==
pause (picpause)
elseif i==60
pause (picpause)
elseif i==120
pause (picpause)
end
$prevents clearing the plot the last time
drawnow
if i"=numpoints 2
clf

end
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