

Cornell University

Fab@Home

The Personal Desktop Fabricator Kit

Evan Malone, Hod Lipson, Max Lobovsky, Dan Periard, Jennifer Yao, etc.

The Fab@Home Project

The Challenge:

How to break SFF/RP free of the high-cost/niche application trap, and help to realize the potential of personal fabrication?

The Fab@Home Response:

Put cheap, open-architecture "fabbers" into the hands of hobbyists and hackers, and let them improve the technology and invent applications!

Philosophy

Technical Details - Mechanical

Technical Details - Mechanical

- XY Gantry, Z Table Cartesian
 - Low XY inertia
 - Minimize object accel.
- 3 BP step motors with integrated lead screws (HSI Inc.)
 - Easy assembly
 - Expensive
- Timing belt couples Xslave axis
- Snap-together acrylic frame
 - Readily available
 - Brittle
- Sized for desktop
 - ~12 kg
 - − ~0.5 m (L, W, H)
 - Mix of SI and Imp. units

Technical Details – Deposition Tool

- Motorized syringepump(s)
 - HSI non-captive BP stepper
 - ~60PSI/~400kPa max
 - threads into nut in piston
- Plastic syringe barrels
- Quick "snap-in"
- Positive displacement reduces viscosity + friction senstivity -> "Any material"
- Syringes too small for large jobs

Technical Details - Electronics

- Stepper amplifier
 - 4 axes
 - Bipolar
 - 1/8 stepping
 - 35V, 2.5A/ph max
- Microcontroller
 - ARM7 RISC
 - USB interface
 - A/D, D/A, SPI, etc.
 - JTAG programming
- Screw terminals
- Break-out board
- 24VDC / 30W global PS
- Strip & tin & screw assembly
- Wiring errors common

Electronics Improvements

- Eliminate ribbon cables and breakout board
- Use power supply connector rather than cutting off
- Needs improved mechanical attachment
- USB noise sensitivity -> need electronics box
- Connectorize for 8P8C (LAN) cables?

Control

• PC application

- Win PC target
- OpenGL GUI ~
 WYSWYG
- Intuitive operation and GUI
- Import and process STLs
- Multi-material assembly

Firmware

- Bidirectional packet USB2.0 comms
 - Status + commands
- Queued and immediate commands
- Queue ~ 700 6 dimensional path segments
- Open loop steppers

- 1. Import STL(s)
- 2. "Model"
- 3. Apply Materials
- Slice STL(s)
 w. mat.
 params
- 5. "Layer" boundaries
 - 6. Offset
 - boundaries -> region edges
 - 7. Nest edges in tree
 - 8. "Region"

9.

Create Region paths

Purchasing / Vendors

- Most parts off-the-shelf w. pre-filled web orders
- Motors semi-custom "kit" incl. prepared shafts and cables
- Complete kits and assembled machines comm. available

Example Assembly Instructions

Base Assembly Step 9

ITEM NO.	PART NUMBER	QTY.
1	Base-Step 8	1
2	Base Side Panel, Left, 0.236" THK Laser-cut Acryli	1
3	Base Side Panel, Right, 0.236" THK Laser-cut Acryli	1

Documentation and Collaboration

Fab@Home.org Project explanation

HW Design docs BOM/Vendors Assy. Inst. User manuals FAQ/Contacts

FabAtHome.org:

- Documentation
- Downloads
- Images & Video

SourceForge.net:

 Collaborative Software Development

GoogleGroups:

Discussion forum for Users

SourceForge

App. source Firmware source Driver source Bug tracking Feature reqs. Developer Forums Group purchasing Brainstorming User-user Q/A

GoogleGroup

Rubber and Epoxy Products

Clockwise from above: •LED Flashlight •Epoxy Propeller •Watchband with embedded watch •Silicone bottle •Lego truck sporting replica Lego tire

Food Products

Frosting Cake Decoration, D. Periard, Cornell Univ., NY, USA

Printed Chocolate, N. Schaal, Manual H.S., KY, USA

Printed "Fish Robot" Concept

Printed "Fish Robot" Prototype

New Process: UV-cure Epoxy

Organic Transistors

IPMC Relay

IPMC Relay Prototypes

New Process: Sintered Stainless

- 17-4 PH Stainless Steel powder, 12µm
- Polysaccharide binder; aqueous
- Deposited at 85° C via heated syringe
- Sintered 8h @ 1350°C in 6% H 94% Ar
- 35% UTS of bulk 17-4 PH
- 17% linear shrinkage

Work by Maxim Lobovsky, Cornell University

Future?

- Model 2
- Modular Personal Fabrication Architecture & Standards