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This survey summarizes 
all the important charac- 

I racking down the roots of NURBS as used in CAD and graphics is not 
easy. However. if we consider the two major ingredients of NURBS-ratio- 
nal and B-sdines-then we can begin an overview with Coons’ “little red ~~ ~ 

teristics of NURBS tha t  
contributed t o  their wide 

book.”’ Coons suggested the use of rational polynomials to represent conic 
sections precisely. Forrest pursued the ideas further and gave a rigorous 
treatment of rational conics and cubics.’ On the basis of theoretical works by 
Schoenberg, De Boor,’ Cox. and Mansfield, Riesenfeld introduced B-spline 
curves and surfaces into CAD/CAM and graphics.4 Following Riesenfeld, 
Versprille extended B-splines to rational B-splines. His work in 1975 was the 
first written account of NURBS.’ By the late 1970s. the CAD/CAM industry 
recognized the need for a modeler that had a common internal method of 
representing and storing different geometric entities. At about the same 
time. three major groups looked at the possibility of using NURBS. 

Boeing began developing the Tiger system in 1979. Integrating B-splines6-‘ 
with rational Bezier representations”.“’ quickly led to rational B-splines 
(Figure 1). Boeing felt so strongly about NURBS that they proposed them 
as part of the standard to the August 1981 International Graphics Exchange 

acceptance as standard 
tools for geometry repre- 
sentation and design. 
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Figure 1. An early NURBS model of an airplane gen- 
erated by Boeing's Tiger system. Loren Carpenter de- 
veloped the z-buffer rendering software. 

Courtesy of University of Utah 

Figure 3. Bevel gears generated by Alpha-1. 

Standard meeting." Despite the success of NURBS and the 
great deal of work put into its development. Boeing abandoned 
Tiger in 1984. 

SDRC (Structural Dynamics Research Corporation) pur- 
sued NURBS commercially. In 1978. the company started 
working on a modeler. Following Versprille. SDRC decided to 
use NURBS as a single representation form. Progress was an- 
nounced publicly in 1 982."-" and the modeler. called Geomod, 
was released in 1983 (Figure 2). It was the first commercial 
modeler based entirely on NURBS. 

B-splines have been the subject of much work at the Univer- 
sity of Utah. After several years of research. Riesenfeld and his 
group put their research results into a modeler called Alpha-1 I' 
(Figure 3). For many years, Alpha-1 has served as a research 
environment, but recently, Engineering Geometry Systems 
made a commercial version available. 

Figure 2. Carburetor housing generated by 
SDRCB solid modeler I-deaslCeomod. 

The above groups tremendously influenced the development 
of NURBS technology. Many companies followed their paths. 
Intergraph Corporation started with Bezicr in their Bsurf mod- 
eler in 1982 and incorporated nonuniform B-splines and 
NIJRBS in 1984. In  1985 they started to develop a ncw system 
called l/EMS based entirely on NIJRBS." 

The rapid proliferation of NURBS is due partly to their ex- 
cellent properties and partly to their incorporation in such na- 
tional and intcrnational standards as ICES." PHICS+.'" 
Product Data Exchange Specification. and International Stan- 
dard Office Standard for the Exchangc of Product Modcl Data. 

Why NURBS? 
Some reasons for the widespread acceptance and popularity 

of NURBS in the CAD/CAM and graphics community arc as 
follows: 

They offer a common mathematical form for representing 
and designing both standard analytic shapes (conics. quadrics. 
surfaces of revolution. etc.) and free-form curves and surfaces. 
Therefore. both analytic and free-form shapes are represented 
precisely. and a unified database can store both. 

By manipulating the control points as well as the weights. 
NURBS provide the flexibility to design a large variety of 
shapes. 

Evaluation is reasonably fast and computationally stable. 
NURBS have clear geometric interpretations. making them 

particularly useful for designers. who have a very good knowl- 
edge of geometry-especially descriptive geometry. 

NURBS have a powerful geometric tool kit (knot inser- 
tionirefinementiremoval. degree elevation, splitting, etc.). 
which can be used throughout to design, analyze, process, and 
interrogate objects. 

NURBS are invariant under scaling, rotation. translation. 
and shear as well as parallel and perspective projection. 
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NURBS are genuine generalizations of nonrational B- 
spline forms as well as rational and nonrational Bezier curves 
and surfaces. 

However, NURBS have several drawbacks: 

Extra storage is needed to define traditional curves and sur- 
faces. For example, to represent the full circle using a circum- 
scribing square requires seven control points and 10 knots. 
Traditional representation requires the center, the radius, and 
the normal vector to the plane of the circle. In 3D, this amounts 
to storing 38 instead of seven numbers. 

Improper application of the weights can result in a very bad 
parameterization, which can destroy subsequent surface con- 
structions. 

Some interrogation techniques work better with traditional 
forms than with NURBS. An example is surfacehrface inter- 
section, where it is particularly difficult to handle the “just 
touch” or “overlap” cases. 

Fundamental algorithms, such as inverse point mapping, are 
subject to numerical instability. 

Before you start feeling discouraged about NURBS, let me say 
that the above problems are not peculiar to NURBS. Other 
free-form schemes, such as those of Bezier, Coons, and Gordon, 
exhibit the same problems. 

What are NURBS? 
The mathematical definitions of NURBS curves and surfaces 

are relatively simple.5,’5,20-22 A NURBS curve is a vector-val- 
ued piecewise rational polynomial function of the form 

where the wi are the so-called weights, the Pi are the control 
points (just as in the case of nonrational curves), and Ni,Ju) are 
the normalized B-spline basis functions of degree p defined 
recursively as23724 

where ui are the so-called knots forming a knot vector 

The degree, number of knots, and number of control points are 
related by the formula m = n + p + 1. For nonuniform and 
nonperiodic B-splines, the knot vector takes the form 

where the end knots 01 and p are repeated with multiplicity 
p + 1. In most practical applications a = 0 and p = 1, as is 
assumed throughout this article. The basis functions (Equation 
2) are defined over the entire line; however, the focus is on the 
interval [OJ]. The NURBS curve (Equation 1) with the knot 
vector (Equation 4) is a Bezier-like curve. It interpolates the 
endpoints and is tangential at the endpoints to the first and last 
legs of the control polygon. Most properties of nonrational 
curves apply to NURBS as well. Some details follow later. 

A NURBS surface is the rational generalization of the tensor- 
product nonrational B-spline surface and is defined as fol- 
lows:15.2@22 

n m  

where w ~ , ~  are the weights, Pi,, form a control net, and Ni,p(u) 
and Niq(v) are the normalized B-splines of degreep and q in the 
U and v directions, respectively, defined over the knot vectors 

U = {o, 0 ,..., 0, Up + 1 )..., U , - p  - 1, 1, 1 ,..., 1) (64 

v = {o, 0 ,...) 0, vq + 1 )...) U, - - 1, 1, 1 ,... ) l] (6b) 

where the end knots are repeated with multiplicities p + 1 
and q + 1, respectively, and r = n + p + 1 and s = m + q + 1. 
Although the surface (Equation 5) was obtained by generaliz- 
ing the tensor-product surface form, a NURBS surface is, in 
general, not a tensor-product surface. 

Analytic and geometric 
properties 

The curve form (Equation 1) can be rewritten into the follow- 
ing equivalent form: 

j = O  

where Ri,Ju) are rational basis functions. Their analytic prop- 
erties determine the geometric behavior of curves. The most 
significant properties 
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Figure 4. (a) Euclidean model of the projective plane. (b) Geome 

Generalization: If all the weights are set to 1, then 

B ~ & L )  if U = (0, 0 ,..., 0, 1, 1 ,..., 1) 

where the 0’s and 1’s in U are repeated with multiplicityp + 1, 
and B ~ , J u )  denote the Bemstein polynomials of degree p .  

Locality: Ri ,p(~)  = 0 if U e [ui, ui + ,, + 1) 

Partition of unity: R ~ ,  ,(U) = I 
1 

Differentiability: In the interior of a knot span, the rational 
basis functions are infinitely continuously differentiable if the 
denominator is bounded away from zero. At a knot they are 
p- k times continuously differentiable where kis  the multi- 
plicity of the knot. 

R j , p ( ~ ;  wi = 0)  = 0 
R j , p ( ~ ;  wi 4 *) = 1 
Ri,p(u;  wj  + +m) = 0 j f i 

As a consequence, the NURBS curve will exhibit the following 
geometric characteristics: 

Bezier and nonrational B-spline curves are special cases. 
Local approximation: If a control point is moved or a weight 

is changed, it will affect the curve only i n p  + 1 knot spans. 
Strong convex hull property: if U CE [ui, ui + I), then C(u) lies 

within the convex hull of P i - p ,  ..., Pi. 
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ic construction of NURBS curves. 

Invariance under affine and perspective transformations 
(see the details below). 

The same differentiability property as with the basis func- 
tions. 

If a particular weight is set zero, then the corresponding 
control point has no effect at all on the curve. 

If w j + + m ,  
then C(u) = { :( i f u e  ( u i , u i + p + l )  

U )  otherwise 

NURBS surfaces can be analyzed similarly using the bivariate 
rational basis functions 

r = O  s = O  

Unfortunately, space restrictions do not allow us to pursue a 
detailed discussion of surfaces. 

What, homogeneous 
coordinates? 

In this section I give a geometric definition of NURBS by 
using a model that embeds the projective n space in Euclidean 
(n  + 1) space. As an example, let us see how the projective 
plane can be embedded in Euclidean 3D space. Denote the 
coordinate axes of the Euclidean space by X ,  Y ,  and Wand let 
x,y be another coordinate system where x is parallel to X ,  y is 
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parallel to Y ,  and the origin lies at ( X ,  Y ,  W) = (0, 0 , l )  (Figure 
4a). Now any point P i n  the projective plane determines a line 
OP’, and every line passing through 0 and not lying on the X,Y 
plane determines a point in this plane. The line O P  can be 
defined by any point P that lies on this line. The coordinates 
(XP, YP, WP) of P are called the homogeneous coordinates of 

Obviously, the position of P along O P  is completely 
arbitrary as long as P differs from 0. That is, if P and Q are two 
different points along OP’, then their coordinates are both the 
homogeneous coordinates of P (what mathematicians call an 
equivalence class). In other words, (XP, YP, WP) and (XQ,  Y Q ,  
W Q )  = (w, pYP, pWP), p # 0, are the homogeneous coordi- 
nates of the same point. Since 0 does not correspond to any 
point in the projective plane, the triple (0, 0,O) does not repre- 
sent any point. 

Two special cases are worth mentioning. The first is when P = 
P’. In this case P’ = (x, y ,  1); that is, the ordinary coordinates can 
be obtained by simple divisions: x = XIW and y = YIW. Second, 
if R lies on the plane X ,  Y ,  then OR does not intersect the x,y 

p, 25-28 . 

of the projective plane, whereas the second provides a 3D rep- 
resentation of NURBS curves that lie in the 2D Euclidean 
plane. 

The 3D model is useful not only for geometric insight into 
NURBS, but also for obtaining efficient computational algo- 
rithms. For example, we can evaluate a NURBS curve in 3D 
using De Boor’s corner-cutting then locate the 
result in two dimensions. 

Affine and perspective 
invariance 

A general affine transformation is a linear transformation 
(scaling, rotation, shearing, etc.) followed by a translation. 
More precisely, A[P] = L[P]  + T, where P denotes a general 
point. It is easy to show that NURBS are invariant under affine 
transformations: 

plane. The corresponding projective “point” R is represented 
by a direction and is called apoint at infinity. Since R = ( X ,  Y ,  0), 
each triple with a zero third coordinate represents an infinite 

A[C(u)] = L[C(u)] + T =  C L [Pi ] R~,, ,(u) + T 
1 

On the other hand, point. 
We can now borrow the above scheme to construct a geomet- 

C A[Pi I Ri, p(u) = (L[Pi I + T) Ri, p ( u )  
ric model of NURBS. For simplicity we consider planar curves 
only (Figure 4b) (space curves and surfaces are handled analo- 
gously). Each point in the X,Y,W coordinate system can be 
written as (xw, yw, w )  if w # 0 or as (x, y ,  0) if w = 0 and can be 

I 

= C L[Pi I Ri,p(U) + ~2 Ri,p(U) 
mapped onto the x,y plane by a perspective map I i 

(9) 

(direction ( X,Y ) if W = 0 
since the rational basis functions sum to 1. Combining these two 
equations*wehave Now, if we are given a set of control points along with the 

corresponding weights, then we take the following steps: 

1. Construct the weighted vertices: 
A[c(~)I  = A P i  I Ri,p(U) 

I 

Pr = (wi x i ,  wi yi ,  wi i = 0, ..., n That is, obtain the affine image of a NURBS curve by trans- 
forming the control points and leaving the weights unchanged. 
For example, parallel projections of NURBS are obtained by 
projecting the control points. 

Now consider perspective projection. If the center of the pro- 
jection is denoted by C and the perspective plane is given by the 
point Q and by the normal vector N, then, following Lee?’ the 
projection of a point Xis 

2. Obtain a nonrational B-spline curve in the X,Y,W coordi- 
nate system: 

n 

C”(U) = PyNj, p(u) (11) 
i = O  

3. Map the curve onto the x,y plane: 
n 

C wi pi Ni, p ( u )  

C(u) = q(cW(u))=i=; 

wi Ni, p(u) 
i=  0 

(X - Q) * N 
(X - C) N R(X) = (1 - a ) X  + ac, a= 

(12) The projection of a NURBS curve is obtained as follows: 
n 

C wi  pi Wi, p ( u )  

n(C(u)) = i  = O In the above discussion a borrowed model of the projective 
plane gives a geometric definition of NURBS. Do not confuse 
the two models: The first gives a 3D Euclidean representation 

Wi Ni,p(u) 
i = O  

(13) 
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Figure 5. The geometric meaning of w3. 

Here n(Pi) denotes the projection of the control point, and 

Projections of NURBS surfaces are obtained analogously. 

More about the weights 
At first glance, weights look like pure numbers carrying no 

geometric meaning whatsoever. Fortunately, we can associate a 
nice geometric meaning to them. Assume that we are looking 
for the geometric meaning of wi. Since it affects the curve only 
in [ui, ui + + investigations are restricted to this span. Fur- 
thermore, we assume for the time being that only wi changes. 
Define the following points (see Figure 5):31"3 

If w; increasesldecreases, then p increasesldecreases, and so 
the curve is pulledpushed toward/away from Pp 

If wi increasesldecreases, then the curve is pushedpulled 
away frodtoward Pi, j # i .  

As Bi moves, it sweeps out a straight line segment. 
As Bi tends to Pi, P approaches 1 and thus w; tends to infinity. 

Surface weights are analyzed quite similarly. Because of space 
limitations, that discussion-available e l s e ~ h e r e ~ ~ ~ ~ ~ - i s  omit- 
ted here. 

Using the parameters 

N and Bi can be expressed as 

N =  (1 - a)B + aPj 
Bj=(l-P)B+PPj 

Figure 6. Conic sections defined as single rational Bezier 
segments. 

Conic sections 
(17) 

Conic sections are among the most important curves in 
CAD/CAM and graphics. A significant reason for using 
NURBS is their ability to precisely represent conic segments as 
well as full conics. We start with the representation of one seg- 
ment whose end tangents are not parallel. Since the conic is a 
quadratic curve, we try to represent it as a quadratic NURBS: 

(18) 

Using the expressions of a and P, we obtain the following iden- 
tity 

where the rational basis functions are defined over the knot 
vector U = [O, O,O, 1,1,1]. These basis functions are in fact those 
of rational Bezier curves. Thus the equation of the quadratic 
NURBS reduces to 

This is called the cross-ratio or double ratio of the four points Pi, 
B, N, and Bi. Now, using Equations 17 through 19, we can easily 
analyze the effects of shape modification: 

60 
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w,=l 

figure 7. The d e f i i o n  of circular a m  sweeping less than 180 
degrees. 

-1 
5- 2 -1 

4-  2 

Figure 8. The seven-control-point square-based NURBS circle. 

1. The segment is a semiellipse (circle); that is, the end tangent 

2. The segment lies outside the control triangle. 

(1 - u)2wo Po + 2u(l-  U)WlP1+ u2w2P2 C(u) = (21) vectors are parallel. 
(1 - u)2wo + 2u(l-  u ) y  + u2w2 

is constant for a particular segment.2,520334 This ratio is called 
the conic shape factor. The value of CSF-not the individual 
values of the weights-determines aparticular conic. More pre- 
cisely (see Figure 6), 

CSF < 1 + ellipse 
CSF = 1 + parabola 
CSF > 1 + hyperbola 

In many applications the end weights are set to 1 and the middle 
weight is used to describe a family of curves. This choice is 
particularly useful for obtaining a circular arc. The require- 
ments for the circular arc are (see Figure 7)235320330 

(23) 
(1 - uI2Po + u2p2 2 4 1  - u)V (22) C(u)= + 

(1 - + u2 (1 - u)2 + u2 

0 

0 

PO PlP2 must be isosceles. 
If WO = w2 = 1, 

1po-p2I 
then w1 = 

e2 
f 2  

else CSF = - 

where Vis a direction vector parallel to the end tangent vectors. 
To avoid the use of a direction vector, we can insert knots to 
obtain “regular” control points.36 

If the arc is elliptical and lies outside the control triangle, then 
we can represent it as a complementary arc, using a negative 
weight (see Figure 6). Inserting a knot at u = M removes the 
negative weight and creates a new control polygon that contains 
the arc in its convex 

We can piece segments together to obtain full conic curves. 
For example, the full circle is composed of four segments, each 
sweeping 90 degrees (see Figure 8).37 The circle has the repre- 
sentation 

where the control points form a square, and 

1 1 1 3  
4 2 2 4  U = {o, 0, 0, -, -, -, -, 1, 1, l} 

J 

6 1 1  1 1  
2 2 2 ’2  

During the construction of conic segments, two special cases 
can occur: 
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The full ellipse is obtained from the circle by an affine transfor- 
mation. Since the affine map of a NURBS curve is obtained by 
transforming the control points and leaving the weights un- 
changed, the ellipse is described by a circumscribing rectangle 
using the above knot vector and weights.36 

The shape invariance factor of one Bezier segment can be 
generalized to quadratic NURBS. The segment contained in 
the convex hull of Pi - 1, Pi, and Pi + is tangential to the legs at 

(ui + 2 - ui + 1)wi - 1Pi - 1 + (ui + 1 - ui )wi Pi 
( U i + 2  - ui+ 1)Wi- 1 + (u1+ 1 - U i ) W i  

Qo = 

(26) 

(ui+3 - ui+2)wi Pi + (ui+ 2 -  ui+ l)wi+ 1Pi+ 1 

(ui+ 3 - ui + 2)wi + (ui+2 - ui+ 1)wi+ 1 
Q1 = 

and therefore it is represented by a Bezier curve segment with 
control points Qo, Pi, and Q1 and with weights w&, wi, and w f ,  

where 

The Bezier curve is defined over [ui + 1, ui + 21. Since the shape 
of this curve is independent of the parameterization, we use the 
conic shape invariance formula to yield Equation 28, shown in 
Figure 9. 

Here Equation 30 is defined over the knot vectors U and V, 
where U is the knot vector of Equation 29, V = (0, 0,1,1], and 

Natural quadrics 
The natural quadrics are the plane, cylinder, cone, and 

sphere. The planar surface patch is described by a bilinear 
NURBS surface whose control points are the corners of the 
planar patch. A cylindrical patch or the full trimmed cylinder is 
obtained by extruding a circular arc or a full circle. The cone is 
a special case of the cylinder, achieved by degenerating one of 
the boundary curves in the U direction. The sphere, being a 
surface of revolution. is discussed below. 

General quadrics 
Quadrics of revolution are the most commonly used quadrics. 

For example, the hyperboloid of one sheet is obtained by rotat- 
ing a hyperbolic arc around an axis. The NURBS representa- 
tion of these surfaces is obtained by using the technique for 
surfaces of revolution discussed below. Nonrotationally-sym- 
metric quadrics can be obtained by applying affine transforma- 
tions to the rotationally symmetric ones. For example, applying 
shear transformations to the control points of the sphere results 
in a general ellipsoid. For a detailed discussion of quadric 
patches see Hildebrand.38339 

Figure 9. Equation 28. 

Commonly used surfaces 
The most commonly used surfaces are extruded surfaces, nat- 

ural quadrics, general quadrics, ruled surfaces, and surfaces of 
revolution. Other types of surfaces such as swept surfaces are 
covered in the “Surface design” section below. 

Extruded surfaces 
Extruded surfaces are obtained by creating a profile curve 

and by extruding it in a certain direction W for a given distance 
d .  If the profile curve is given as 

n 

C(u) = C Q i  Ri,p(u) (29) 
i = O  

then the extruded surface’s equation takes the form 
n 1  

~ ( u ,  V) = x x pi, j ~ i ,  p ;  j,l(u, VI (30) 
i = O  j = O  

Ruled surfaces 
Given two general NURBS curves, 

ni 

ci ( U )  = Pi Rj,pi(u), i = 1,2 
j = O  

defined over the knot vectors U1 and U2, we want a ruled 
surface 

n 1  

S ( U , V )  = C pi, j ~ i ,  p ;  j,l(ut V) (33) 
i = O  j = O  

such that S(u, 0) = C,(u) and S(u, 1) = C,(u). This representa- 
tion assumes that the two curves have the same degree and are 
defined over the same knot vector. Therefore, we need to do the 
following: 

If the degrees differ, elevate the degree of the lower order 
c u r ~ e . ~ , ~ ~  
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Curve and surface design 

Figure 10. Surface of revolution. 

If the knot vectors differ, then merge the two knot 
vectors .42*43 

Surfaces of revolution 
Surfaces of revolution are probably the most frequently used 

surfaces in engineering design and graphics. The most conve- 
nient way to define such surfaces is to define a profile curve in 
the x,z plane, say, and rotate it around the z axis. Assume that 
the profile curve has the form 

m 

C ( U )  = C Qj Rj, (34) 
j = O  

Then the surface of revolution (see Figure 10) is obtained by 
combining Equation 34 with one of the circle definitions. For 
example, a full surface of revolution is given by 

6 m  

The most commonly used curve and surface design tech- 
niques are interpolation and data filtering. The sections below 
summarize some techniques used frequently in practical appli- 
cations. 

Curve design 
There are three basic ways to design NURBS curves: sketch a 

control polygon, interpolate through a set of points, and fit a 
curve passing near a set of points. Here we discuss the last two 
methods in some detail. 

Interpolation 
We distinguish between two kinds of interpolations. In the 

first, we have pure data points unrelated to any other entities in 
the system; in the second, we have data points from another 
process that are related to other entities such as section curves. 
In  the first case, I recommend using nonrational curves (except 
when specific local interpolants seem more suitable than a gen- 
eral method). In the second case, “true” rational curves have to 
be computed if the existing entities are rational curves as well. 

The global curve-interpolation problem can be solved rela- 
tively e a ~ i l y . ~ ’ ~ ~ , ~ ~ . ~ ’  Given a set of data points Qk, k = 0, ..., n, 
we seek a B-spline curve that for certain parameter values uk, k 
= 0, ..., n agrees with Qk; that is, 

n 

Qk = c(uk)  = c pi Nf,p(uk) (37) 
I = 0 

To solve this equation, we need the parameter values at which 
the data points are assumed, the knot vector, and the degree of 
the curve. The degree in practical applications is generally 2 or 
3; however, the method we are about to consider works with 
arbitrary degree. One of several methods to compute the pa- 
rameter values is the centripetal method:4” 

where for fixed j ,  P,,  lie in a plane perpendicular to the z axis I =  1 
and form a square with center on the z axis. For fixed J the 
weights are Given the parameter values, we need a knot vector that reflects 

the distribution of these parameters. The following averaging 
method worked well in practice:21 

1 1  1 1  
W f , ]  = { W 1 3  “]>5 W], W ] ,  5 W], 2 wp W]}, 

U=(O,O )..., 0 , V l )  ..., V, , -p ,  1, 1 ,..., 1) (39) 
(36) 

i = 0, ..., 6 

where wj are the weights for the profile curve (Equation 34). 
Common surfaces such as the sphere or torus are obtained by 
rotating a full circle or a semicircle around an axis. This sphere 

where the end points are repeated with multiplicityp + 1, and 

l j + ~ - l  

representation results in two “poles” where the partial deriva- 
tives vanish. Using triangular patches4 or a tiling method45 

V . - -  C ui, J =  1, ..., n - p  (40) 
’ - P  i = j  

results in a non-tensor-product representation of the sphere 
without degeneracy. It can be proved3 that the coefficient matrix 
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four dimensions. That is, from given 3D derivatives 

(nil Yi,  i i )  

we need to find 4D derivatives 
0 

Ni, I i, k = 0, ..., n 

is totally positive and banded with bandwidth less than p .  
Therefore the linear system (Equation 37) can be solved safely 
by Gauss elimination without pivoting. Now, if in addition to 
the data points, derivatives (tangent vectors) are also given, 
then we need 2(n + 1) control points to find an interpolatory 
spline. The systems to be solved are 

where the Dk are the derivative vectors and the vi are the knots. 
The parameter values can be obtained as above, or we can take 
advantage of the tangents and pick another parameterization 
that is closer to the arc length (fit a parabola between two 
neighboring data points and approximate its arc length). The 
knot vector is obtained as follows: We need 2(n + 1) + p + 1 
knots because there are 2(n + 1) data points. Because quadratic 
and cubic curves are the most frequently used curves, we con- 
sider the casesp = 2 andp = 3. I fp  = 2, then choose 

If p = 3, then 

we need to compute Wi only. We interpolate a 1D spline w(u) 

through the data points wi, i = 0,  ..., n so that ~ ( u i )  = wi. From 
this we have 

The above rational and nonrational interpolation techniques 
are global methods; that is, the curve is generated by using all 
the data points. We can define local interpolants by considering 
two consecutive data points at a tin1e.4~’~~ These methods are 
rather heuristic, but they do provide surprisingly good-looking 
results (see Figure 11). Quadratic NURBS (conics) are particu- 
larly useful in engineering design. The basic steps to obtain a 
local quadratic interpolant can be sketched as follows: 

Compute tangent directions using a local method such as 
that of Akima5’ or Rennet” 

Use Bezier segments to interpolate between neighboring 
data points. 

Compute the weights to generate a circular arc if the control 
triangle happens to be isosceles. 

Use double knots to represent the piecewise Bezier curve as 
one quadratic NURBS curve. 

In general, this method provides a G1 continuous curve with 
a very good parameterization. It is possible to obtain a C1 
parameterization without double knots either by recomputing 
the weights using the conic shape invariance or by repositioning 
the knots. Unfortunately, both methods result in a very bad 
parameterization and are not applicable to closed curves (for 
example, the circle3’). 

Data fitting 
un-2 + 2u,- 1 U,- 1 + 1 (43) Inmany applications we receive alarge amount of data. Inter- 

polating a lot of points, some of which are subject to error, 
results in a wiggly interpolant and a huge database. A better 
solution is to approximate, that is, to generate a curve that goes 
near the data points and passes through only a few of them. The 
most popular approximation is least-squares fitting. Writing 

3 ’ 2  

If we merge Equations 41a and 41b in an alternating fashion, 
then the resulting 2(n + 1) x 2(n + 1) system is banded and can 
be solved without pivoting. 
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Figure 12. Curve fitting with quadratic NURBS. 

Equation 37 in a matrix form yields Q = N P ,  where Q and P are 
(n + 1) x 1 matrices and N is an (n + 1) x (n + 1) matrix. Now, if 
we have more data points than control points, then the equation 
Q = NP is overdetermined and can be solved approximately as 
follows:46~52~53 

where NT is the transpose of N. Based on this, the following 
algorithm creates a least-squares fit that approximates the data 
up to a given tolerance: 

1. Assign initial parameters to the data points. 
2. Generate a least-squares fit by using Equation 44. 
3. If the fit is not acceptable, then compute new parameter 
values and go to Step 2. 

This algorithm, combined with a segmentation algorithm, usu- 
ally gives reasonable curve fits. One snag is an occasional fail- 
ure to converge; that is, the computed new parameter values do 
not improve the fit or do not improve it up to a given tolerance. 
Hence the program does not leave the loop after a reasonable 
number of iterations. 

Geometric considerations may help solve the curve-fitting 
problem 10cally.~~The fitting part of a quadratic NURBS fitting 
program works as follows: Consider a set of data points Qo, ..., 
Q, lying within a control triangle defined by the first and last 
data points and by the tangents there. Fit conics through Q1, ..., 
Q,-1. If these points lie on a single arc, then all the conic-fitting 
curves result in the same curve. However, if they are scattered, 

fors = O  to m do 
= 0; un,s = 1; 

for r =  1 ton  do 

u r , s = % - l , s +  ,, 1 

E I Q ~ , ~ - Q ~ - ~ , ~ ~ ~  
f =  1 

end 
end 
U0 = 0; U, = 1; 
for r = 1 ton  - 1 do 

end 

Figure 13. The averaging technique needed to compute the 
parameter values in surface interpolation. 

then fitting conics through these points results in (n -1) differ- 
ent arcs. To measure the scatter, use the distance between the 
shoulder points (points computed at U = U!) of two external 
conics. If this distance is less than a user-specified tolerance, 
then a resultant curve is fitted that passes through the mean of 
the shoulder points involved. Otherwise the point set is subdi- 
vided and the process is repeated. This technique is very reli- 
able and, despite the use of conics, it can be used to fit very 
complicated data points (see Figure 12). 

Surface design 
The most frequently used surface design methods are inter- 

polation, fitting, and cross-sectional design (surface definition 
based on curves). 

Surface interpolation 
The curve-interpolation technique above can be extended to 

surfaces relatively easily. Assume that we are given a set of 
(n + 1) x (m + 1) data points QCs, r = 0, ..., n, s = 0, ..., m. The 
objective is to find a degree (p,q) surface that agrees with Q,, at 
certain parameter values, that is 

To solve Equation 45, we need the parameter values and the 
two knot vectors. To compute the parameter values, we can use 
the averaging technique shown in Figure 13.’l 
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Figure 14. NURBS skinning: surface interpolation through 
cross-sectional curves. 

The computation of v, is analogous. Using the parameters just 
computed, we get the U and V knot vectors in exactly the same 
way as with curves. There are two basic ways to solve for the 
unknown control points in Equation 45. The first is to solve 
directly the matrix equation Q = UPV,s5 where 

Since U and V are positive definite (and banded), they are 
invertible. Thus we have 

The second method is to interpolate each row (column) of 
data points and to fit a surface through these sectional curves. 
This method is actually a surface lofting,56 which will be dis- 
cussed later. 

Surface fitting 

With a large amount of data, surface fitting is used instead of 

Figure 15. Ship hull surface from surface skinning. 

interpolation. The curve-fitting technique can be generalized 
easily to surfaces to yield 

Cross-sectional design 
Cross-sectional d e ~ i g n ~ ~ - ~ "  is concerned with surface con- 

struction based on curves to generate B-spline surfaces. The 
most frequently used techniques are skinning, sweeping, and 
swinging. 

works as follows: We are 
given a set of NURBS curves through which a NURBS surface 
is to pass. In practice these curves are usually planar curves 
positioned in 3D space with a so-called spine curve. The 
skinned surface is obtained in three steps (see Figure 14): 

Briefly, NURBS 

1. Make all cross-sectional curves compatible. That is, all the 
curves should have the same degree and number of control 
points and be defined over the same knot vector. Assume this 
has been done; then 

n 

C,"(U) = C Q Y k  N i , p ( ~ ) ,  k = 0 ,..., K (49) 
i = O  

are u-directional curves lying on the surface (isoparametric 
lines in the U direction) and defined over the same knot vector 
U. 
2. Compute v values and a knot vector V for interpolation with 
degree-q NURBS curves (use the technique outlined for 
curves). The v values are needed as the curves (Equation 49) 
are assumed to be at a certain fixed v. 
3. Using the knot vector V and the v values computed in Step 
2, interpolate curves through the control points of Equation 49. 
More precisely, for each i, i = 0, ..., n,  obtain 
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Figure 16. NURBS swinging. (a) profile curve, (b) trajectory curve, (c) control points ofthe swung surface, and (a) swung surface. 

so that Equation 50 interpolates QYk at certain v values (note 
that if the u-directional curves of Equation 49 are rational, then 
rational interpolations are to be used). The control points of 
Equation 50 are then the control points of the skinned surface 
(Figure 15) 

defined over the knot vectors U and V. 
Although the surface interpolates through the cross-sectional 

curves, its shape is determined by the following additional 
factors: 

The position of the cross-sectional curves. If they are very 
unevenly positioned (not the case in most practical applica- 
tions), then the surface can behave badly. 

The choice of the v values and the V knot vector in Step 2. 
The continuity of the cross-sectional curves. If theyareratio- 

nal, then the algorithm works in four dimensions. Now, even if 
the rational curve is C' in three dimensions, its 4D correspon- 
dent may be only C? if multiple knots are used (think of the 

January 1991 

circle discussed above). That is, the skinning algorithm may 
produce C? surfaces in four dimensions whose map in three 
dimensions will exhibit discontinuities. An obvious fix is not to 
use multiple knots (whenever possible). 

To improve the shape of the surface-say, to remove un- 
wanted oscillations-we can impose additional constraints. For 
example, if the cross-sectional curves are planar, then at each 
control point of Equation 49 the normal vector of its plane can 
be used as a tangent constraint to improve curve interpolations 
in Step 3. 

NURBS sweeping is a special case of skinning that uses a 
constant section curve. If the spine curve is a v curve, then the 
constant section curve is positioned along the spine at the same 
U value. 

NURBS swinging is a generalization of rotational sweeping. 
Assume that we have a profile curve P(u)  in the x,z plane and a 
trajectory curve T(v) in the x y  plane (Figure 16): 

n 

P ( U )  =x Pi Ri,p(u) 
i = O  
m 

T(V) = C Tj Rj, JV)  
i = O  

Swinging the profile around the z axes yields the following 
surfaces9: 
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Figure 17. Fork designed with Alpha-1 using a vari- 
ety of shaping operations: warping, bending, and 
tapering. 

where a is an arbitrary scaling factor. Multiplying the x and y 
components of Equation 52 yields the control points and the 
weights of the swung surface: 

(54) 

Shape modifications 
There are several ways to alter a shape with the definition of 

NURBS: 

Figure 18. Pushing a NURBS cuwe with equal increments. 

Reposition control points (including the application of mul- 
tiple control points to generate sharp edges). 

Change the weights. 
Modify the knot vector. 
Move data points and reinterpolate. 

I discuss the first two in some detail. 

Repositioning control points 
The simplest technique is based on repositioning one control 

point. Considering curves for simplicity, we reposition a control 
point as follows: We are given the parameter ulpoint on the 
curve, a direction vector W, and a distance d. The curve is 
pulled/pushed a distance d in the direction W by recomputing 
the position of Pi as PI* = Pi + ctW,32.33 where 

(55) 

Many applications require shape modifications more specific 
than simple push or pull. The most commonly used methods are 

warping, flattening, bending, stretching, and twisting. To 
achieve these operations on NURBS, you use conventional 
 method^^'.^^ applied to the control points.6496s 

Warping introduces bumps into flat surfaces. Picking a warp 
center on the control net, we reposition control points in a 
certain direction using the distance function 

i(l-4) w < o  

i[l-$) w > o  

where w is the warp factor, D is the maximum distance a point 
can be moved, and d is the distance between a control point and 
the warp center (Figure 17). 

The idea behind flattening is to use an infinite plane and to 
replace certain control points by their projection onto this 
plane. 

Bending is performed by bending the control net using a 
polyhedral bending formulation. Too coarse a control mesh or 
low order can result in such unexpected shapes as a self-inter- 
secting surface. Knot insertion can improve the smoothness of 
the bent surface. 

Stretching is achieved by applying the functional generaliza- 
tion of scaling to the control points. For example, using g ( z )  = 

(x' - x)/x, a radially symmetric transformation66 is defined by 
(x', y', z') = ( x ( g ( z )  + l), y ( g ( z )  + l), z) .  Applying this transfor- 
mation to the control points stretches a NURBS surface. 

Twisting is accomplished by applying a functional rotation to 
the control points. Rotation around the z axis is obtained by 
(x', y', z') = ( (x cos p - y sin p), (x sin p + y cos p), z ). If we set p 
= p(z) ,  then the above rotation will produce a twist. 
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Figure 19. Simultaneous pulls toward nonneighboring control 
points. 

Changing the weights 
The geometric meaning of the weights can be used to in- 

crease and decrease the fullness of NURBS. Here we con- 
sider only the curve case, because surfaces can be handled 
analogously. Assume that the NURBS curve, at a certain 
parameter value U ,  is to be pulledlpushed toward/away from 
Pi a distance d.  This is achieved by recomputing the corre- 
sponding weight as follows32: 

(57) 

We implement this formula as follows: 

Pick a point S on the curve. 
Pick a point P on the control polygon. The system prompts 

the designer by drawing the line SP. 
Pick a new position of S along the line SP. 

In this process no weights are used explicitly. Recomputing one 
weight constrains the curve to pass through a point. The picked 
point P must not be an existing control point. If it lies between 
two existing control points, a knot is inserted so that P will be a 
new control point. To help the designer modify the shape, the 
above process is automated as follows (Figure 18): 

Pick one point anywhere on the control polygon. The system 
automatically inserts a knot (if necessary), computes a parame- 
ter value (the node4), and sets a default increment d. 

When a key is hit, the curve is pulled or pushed with the 
default increment (which can be overridden). If the designer 
keeps hitting the key, the curve gets blown up or down until the 
desired shape is reached. 

In many cases, it is desirable to manipulate weights simulta- 
neously. Let M = C ( U ;  wi = wi + 1 = 0) and S = C(U) .  Then 

Now we would like to pull the curve toward Pi and Pi + 1 at the 
same time by recomputing the corresponding weights simulta- 
neously. We do that by repositioning S within MPiPi + 1: 

If we write w; = p;wi and w;+ = Pi + lwi + 1, then 

1 - ai -ai+ 1 1 -a* 1 -a* r+l  

1-a;-ai+1 1-a:-.* 1 r + l  

Pi= ai * 
ai 

P i + l =  ai+l . *  
Q i + l  

The constants a;, ..., a:+ are computed geometrically without 
evaluating the rational basis functions.32 Here we used them 
purely for convenience. The derivation above shows that the 
control points must not be neighboring. Based on the locality 
properties of NURBS curves, any two points P, and P, can be 
picked, as long as Is - rl > p  (Figure 19). 

Conclusions 
While NURBS have been used in the graphics and CAD 

industry for about a decade, publications and basic research 
have fallen behind technical development. I hope the pointers 
given in this survey will provide sufficient information until the 
gap is filled. Several research problems currently being consid- 
ered are 

Trimmed NURBS surfaces and their visualization. 
Skinning revisited. The technique as used today is not invari- 
ant under linear transformation of the cross-sectional 
curves. That is, if you rotate the set of curves in 3-space, then 
the skinning operator produces different surfaces (because 
it works in 4D). In addition to this, multiple knots, needed to 
define the circle, destroy the continuity of the surface. The 
application of DeBoor-Fix functionals seems to be promis- 
ing to remedy some problems. 
Bidirectional skinning (NURBS representatiodapproxima- 
tion of Gordon-Coons type surface construction). 
Rational curve and surface interpolation and data fitting. 
Geometry processing of NURBS with particular emphasis 
on blending, filleting, and offsetting, and the associated util- 
ities such as surface-surface intersection. 
Shaping operators (sculpting tools) and the utilization of the 
extra degrees of freedom (the weights). 
Approximation of NURBS with nonrational splines. 
Visualization techniques based on precise geometry as op- 
posed to polygonal approximation. 
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In my opinion, there is a great deal of potential inherent in the 
rational form. Current success with NURBS-based modelers 
has proved that NURBS are excellent candidates for geometry 
representation with a unified database. However, the best mod- 
eler, capable of coping with all the problems listed in this survey, 
is yet to come. 0 
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