
Evan Daugharthy
evan.daugharthy@gmail.com 1

How to Grow Almost Anything!

Including an Overview of Analytical Tools for Synthetic Biology

by Evan R. Daugharthy
30 March, 2021

Principles of 
Measurement & Imaging



Evan Daugharthy
evan.daugharthy@gmail.com 2

Introduction Part I: 

Why do we need analytical tools in synthetic biology?
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Introduction
Synthetic Biology Goal

Make a molecule via biosynthesis
Engineer an organism

Use DNA for nano-scale assembly
etc.
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engineering 
feedback loop
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Human gene therapy
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De-extinction
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Cellular therapies
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Can measurement save us?
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Introduction Part II:

Brief history of molecules in biology



Evan Daugharthy
evan.daugharthy@gmail.com 12

Brief history of molecules in biology

P r o t e i nN u c l e i c  A c i d
17891868-71
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Brief history of molecules in biology

P r o t e i nN u c l e i c  A c i d
17891868-71

1880s: Types of biological “matter”

1900-1930s: “colloidal theory”

macromolecule
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Brief history of molecules in biology

DNA RNA P r o t e i nN u c l e i c  A c i d

~1940: Two distinct nucleic acids with different properties

17891868-71
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Brief history of molecules in biology

RNA P r o t e i n
1789

1938
Fruit fly

Genome
Map
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Brief history of molecules in biology

DNA RNA P r o t e i n
1789

Tetranucleotide
Hypothesis

(AGCT)n
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Brief history of molecules in biology

DNA

1944: Avery, MacLeod, McCarty
“the transforming activity… is actually an 

inherent property of the nucleic acid”
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DNA
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Brief history of molecules in biology

P r o t e i nN u c l e i c  A c i d
1868-71

1940: Pauling hypothesizes 
all antibodies have same 

sequence
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Brief history of molecules in biology

P r o t e i n

1948: Tiselius
“… substances are more 

complex than was originally 
supposed.”
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Brief history of molecules in biology

P r o t e i n

1951-53: Sanger sequences insulin
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Brief history of molecules in biology

P r o t e i n

1951-53: Sanger sequences insulin



Evan Daugharthy
evan.daugharthy@gmail.com 25

Brief history of molecules in biology

DNA RNA P r o t e i n

1956-60s: Central dogma of molecular biology
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Brief history of molecules in biology

DNA RNA P r o t e i n

1970-80s: Histone modifications on chromatin
2000: Strahl and Allis’ “Histone Code”
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Brief history of molecules in biology

DNA RNA P r o t e i n

1977: Introns & RNA splicing
1986: RNA editing

1993: miRNA

Early 2000s: Whole genome transcription
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Brief history of molecules in biology

DNA RNA P r o t e i n

1970-80s: Phosphorylation appreciated
Last 30 years >200 PTMs
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Considerations for measurement
Biological systems are composed of many different 

molecules, all organized in space

Genome

Sequence (3 billion bp)
Modifications (100 million methylation sites)

Nucleosome (160 million histones)
Organization (chromatin state, 2-20 Kb)

Transcriptome

Transcripts (75,000 species)
Number (expression level)

Splicing (70,000 splice junctions)
Editing (2,000 A>I)

Localization (regulation)

Proteome
Genes (20,000, >1m protein species)

Number (expression level)
Modifications (>20, millions of sites)

Localization (function)



Evan Daugharthy
evan.daugharthy@gmail.com

Towards Perfect Molecular Measurement

What is a measurement?
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Measurement Theory

Measurement is an activity that involves interaction 
with a system with the aim of representing aspects 
of that system in abstract terms (classes, numbers)
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Measurement Theory

Information-Theoretic Account of Measurement

Claude Shannon 1916-2001

Entropy of an information source
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Measurement Theory

Information-Theoretic Account of Measurement

Information

Biological System
Shannon: Source of information is 
anything with more than one state 

that can be realized.

Biological information = physical 
composition and localization of 

(all the) molecules 
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Measurement Theory

Information-Theoretic Account of Measurement

Information

Biological System
Shannon: Source of information is 
anything with more than one state 

that can be realized.

Biological information = physical 
composition and localization of 

(all the) molecules “Analyte”
The entity to be subjected 

to measurement 
(in the sample)

“Measurand”
The quantity you intend 

to measure
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Measurement Theory

Information-Theoretic Account of Measurement

Claude Shannon 1916-2001 Mutual information

Measurement technologies are 
“information machines”
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Measurement 
Technology

Measurement Theory

Information

Biological System

Encoder

Message

Transmission

Decoder

Scientist

“True Value”

“Measured Value” Error
Resolution
Sensitivity
Specificity
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Measurement Theory
The difference between the measured value and the true value is called error. Error 

can have either positive or negative sign.
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Errors
Error can be divided into two parts: 

Random error - having different magnitude and sign in the case of repeated measurements 
Systematic error - having the same or systematically changing magnitude and sign in the case of 

repeated measurements
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Errors

There are several approaches to estimating 
measurement uncertainty

Guide to the expression of uncertainty in 
measurement (GUM)

Within-lab validation (Nordtest)

Lots of rules to follow in order to estimate & handle 
errors correctly, which are worth learning!
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Measurement 
Technology

Measurement Theory

Information

Biological System

Encoder

Message

Transmission

Decoder

Scientist

“True Value”

Error
Resolution
Sensitivity
Specificity

“Measured Value”



Evan Daugharthy
evan.daugharthy@gmail.com

Resolution & Sensitivity

Sensitivity is defined 
by a response curve 
relating the input to 

output

Dueck, Hannah R., et al. "Assessing the 
measurement transfer function of single-cell RNA 

sequencing." bioRxiv(2016): 045450.
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Resolution & Sensitivity

Dynamic Range is 
the total range of 

detection

Resolution is the 
smallest detectable 
increment change of 

input that can be 
detected in output
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Other factors

Linearity – are 
changes to input & 
output related in a 

linear function?

Hysteresis –
dependence of a 

state on its history, 
e.g., direction of 

change
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Measurement 
Technology

How to Build a Measurement Technology

Information

Biological System

Encoder

Message

Transmission

Decoder

Scientist
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How to compose a message

Information

Biological System

Encoder

Message

Sometimes the information is the message!
For example, the information contained in the 

arrangements of bonds and chemical groups gives 
rise to physical signals, such as by the interaction with 

light.
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How to compose a message

Information

Biological System

Encoder

Message

• Detection of intrinsic size, weight, or charge
• Raman spectroscopy (intrinsic vibrational 

frequencies of chemical bonds)
• Electrical conductance
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How to compose a message

Unfortunately, most biomolecules are composed of a 
very limited set of particular bonds & chemical groups, 

which limits specificity & multiplexing
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Example of Direct Measurement:
Nanopore Sequencing
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How to compose a message

Information

Biological System

Encoder

Message

For other types of measurement technologies, we have 
to actively form the message through experimentation

These approaches fall broadly into two groups: 
Affinity & Reactivity
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How to detect molecules by Affinity

• Affinity refers to the weak chemical interactions between 
biomolecules, such as hydrogen bonding, hydrophobic and 
hydrophilic interactions, electrostatic interactions, as well as the 
steric compatibility of biomolecular interfaces that enable these 
weak chemical interactions.

• Any ligand that exhibits a non-random binding pattern for other 
biomolecules under any conditions is capable of forming an 
informatic message from the underlying biological information.

• However, the more specific the affinity interaction is to a 
particular biomolecular composition, conformation, or 
spatiotemporal organization, the more information is transferred 
into the message.

• Message construction can also utilize either the formation or 
disruption of these weak interactions.
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How to detect molecules by Affinity

• Nucleic acid or nucleic acid analog hybridization probes
• Immunological proteins and immune-derived peptide fragments, 

such as antibodies, nanobodies, single chain variable 
fragments, and phage-display particles

• Aptamers, including those formed from nucleic acids, nucleic 
acid analogs, and polypeptides 

• Proteins, such as lectins, which bind certain carbohydrate 
analytes

• Nucleic acid-guided nucleic acid binding proteins, such as by 
binding dCas9

• Heat or chemical denaturant treatment to disrupt weak 
interactions, e.g., DNA duplex melting curves



Evan Daugharthy
evan.daugharthy@gmail.com 54

How to detect molecules by Affinity
Antibody binding Nucleic acid 

hybridization
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Example: Akoya CODEX
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How to detect molecules by Reactivity

• Reactivity refers to formation or destruction of covalent or ionic 
chemical bonds.

• Again, in theory any chemical reaction that exhibits a non-
random reactivity profile with biomolecules is capable of forming
the message.

• The most common uses of reactivity stem from natural 
biochemical processes, since the reactions occurring inside 
living systems are generally highly specific.
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How to detect molecules by Reactivity

• Endonuclease digestion of nucleic acids to generate restriction 
fragments

• Protease digestion of peptides 
• Blunt ended or single stranded ligation
• Nucleic acid synthesis, such as by a polymerase 
• Bisulfite reaction with methylated DNA
• Nucleic acid-guided nucleic acid binding protein nuclease 

activity, such as Cas9



Evan Daugharthy
evan.daugharthy@gmail.com 58

How to detect molecules by Reactivity
Maxam-Gilbert Sequencing

Gilbert, Sanger & Berg
Nobel 1980

Edman Reaction/
Sanger Sequencing

Sanger - Nobel 1958 
(Insulin sequence)
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Example: Illumina
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How to detect molecules by Reactivity
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How to detect molecules by Reactivity
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How to detect molecules by Reactivity
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Summary on Message Composition

• Most measurement technologies combine multiple methods to 
achieve a final assay

• E.g. FISSEQ technology has many steps utilizing both affinity 
and reactivity to convert the original specimen into an ”encoded 
message” suitable for transmission/detection and decoding

• Some subset of “all the information” in a sample is encoded into 
the message – it could be the information necessary to
fingerprint to identify a molecule, or other types of information, 
like spatial information

• E.g., single-cell sequencing – each cell is loaded into a droplet
and barcoded during message encoding – a cell barcode is
incorporated into the message to tell the sequencer which cell 
the particular RNA or DNA molecule originated from (kind of like 
an IP/MAC address embedded in an internet data packet)
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Towards Perfect Molecular Measurement

What is a perfect measurement?

Having all the required or desirable characteristics
vs

Being as good or complete as possible

Daugharthy, E., 2016. Towards Perfect Molecular Measurement (Doctoral dissertation).
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Towards Perfect Molecular Measurement

1. What questions are being asked about biological 
systems?

2. What types of information will provide these answers?

3. What types of observations and measurements will 
provide this information?

- Harold Morowitz, 1955
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Towards Perfect Molecular Measurement

1. What questions are being asked about biological 
systems?

2. What types of information will provide these answers?

Molecular Mechanisms

Philosophers of science Machamer, Darden, & Craver

Mechanisms are composed of entities and activities

A > B > C
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Mechanism
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What about more complex phenomena?
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Towards Perfect Molecular Measurement

3.   What types of observations and measurements 
will provide this information?

Systems biology is characterized by observing biological systems, experimentally 
perturbed or in their naturally dynamic states, using quantitative multidimensional 

and multiplex measurements, and then integrating measurement data and 
functional observations using mathematical and computational models.
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Considerations for measurement

Cells vary in many dimensions simultaneously, need 
massively multiplex measurements to see the whole 

picture, i.e. simultaneously encode many species and 
types of molecules 

Information

Biological System

Encoder

Message



Evan Daugharthy
evan.daugharthy@gmail.com 73

Brain FISSEQ

mouse hippocampus

1989
210 cell types

1 neuron

2006
145 neuron 

types
Alberts, Molecular Biology of the Cell Vikaryous, Human cell type… Dueck, Deep sequencing…

2015
53 single neurons

sequenced
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Cells are high-dimensional entities
Adult mouse 
cortical cell 
taxonomy 
revealed by 
single cell 
transcriptomics

Tasic Nature Neuroscience (2016)
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Considerations for measurement

Biological systems vary over all spatial scales;  
Measurement lacking resolution reduces sensitivity and 

can lead to incorrect conclusions
tissue region

cell type
single cell

single molecule

bulk vs

Information

Biological System

Encoder

Message
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Cell Atlas Project

Asp, Michaela, et al. "A spatiotemporal organ-wide gene expression and cell atlas of the developing human 
heart." Cell 179.7 (2019): 1647-1660.
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Meaningful variation at sub-cellular scale

Parton et al. Cell Science (2014)
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single-cell genomics experiments, as some cell fate decisions are
governed by a single pair of mutually exclusive regulators. For ex-
ample, the myeloid/erythroid fate decision in common myeloid
progenitor cells is made via the mutually antagonistic transcrip-
tion factors PU.1 (encoded by SPI1) and GATA1 (Rekhtman et al.
1999). In the hypothetical experiment, onemight observe the pat-
tern on the left side of Figure 1A and conclude that the genes in
question are expressed mutually exclusively. However, if the pop-
ulation consisted of a mixture of two separate groups of cells, this
conclusion might be incorrect. Grouping the cells properly by
type, and then performing the analysis could reveal the genes are
in fact positively correlated, not negatively correlated. That is, fail-
ing to properly compartmentalize the data by cell type leads to a
qualitatively incorrect interpretation. The misleading effects of
Simpson’s Paradox are likely to be pervasive in modern experi-
ments using bulk assays.

Another crucial reason that single-cell measurements are nec-
essary to define cell states is that bulk measurements confound
changes due to gene regulation with those due to shifts in cell
type composition. Consider an experiment aimed at studying
the effect of a drug on a tissue composed of two cell types. (Fig.
1B) Suppose a certain gene’s expression is measured via bulk-cell
analysis before and after treatmentwith the drug. Uponmeasuring
a major increase in the gene’s expression, one might surmise that
the drug causes an up-regulation of the gene in the relevant cells.
However, it might instead be that the drug stimulates cell division
in one of the two subpopulations. Bulk assays cannot discriminate
between these two cases.

Time series studies of gene expression, which are foundation-
al for examining dynamic processes in development and disease
progression, also suffer from averaging in bulk studies. For exam-
ple, differentiating cellsmight transition through a sequence of in-
termediate states on the way to becoming fully mature. However,
they typically do not do so in a synchronizedmanner, so sampling

a population of them at any particularmoment in timewill yield a
mixture of cells from different stages, as illustrated in Figure
1C. Tracking the time-average expression of a gene of interest
might yield a qualitatively misleading picture of that gene’s devel-
opmental regulation. If we could reorder the cells on the horizon-
tal axis, we would see a faithful representation of the gene’s
expression dynamics during development.

Bulk measurements are thus fundamentally constrained by
averaging. Accurately defining the cell types and states in our bod-
ies and explaining how they arise in development and disease de-
mands single-cell measurements.

Technological advances in cellular state measurement
Next-generation sequencing has proven to be a remarkably sen-
sitive means of monitoring gene expression, epigenetic configu-
ration, nuclear structure, and other aspects of cellular state.
However, most assays require a minimum level of input material
that exceeds that of a single cell. Over the past several years, a num-
ber of sequencing-based assays have been optimized to work at the
level of individual cells. These improvements have primarily
stemmed from breakthroughs in amplification techniques, modi-
fications to reverse transcriptase that improve processivity and en-
able controlled template switching, and the development of
instruments that physically capture and isolate individual cells.

Most single-cell genomics assays have been adapted from
similar techniques developed for analyzing bulk-cell populations
(Table 1). The most widely used of these is RNA-seq, which mea-
sures global gene expression by reverse transcribing RNA into
cDNA and sequencing it (Cloonan et al. 2008; Mortazavi et al.
2008; Nagalakshmi et al. 2008). Counting the reads that originate
from each gene yields a measure of its expression. Single-cell ver-
sions of the RNA-seq protocol isolate individual cells in microflui-
dic capillaries (Wu et al. 2013), by serial dilution, or via flow

Figure 1. Single-cell measurements preserve crucial information that is lost by bulk genomics assays. (A) Simpson’s Paradox describes the misleading
effects that arise when averaging signals from multiple individuals. (B) Bulk measurements cannot distinguish changes due to gene regulation from those
that arise due to shifts in the ratio of different cell types in a mixed sample. (C) Time series experiments are affected by averaging when cells proceed
through a biological process in an unsynchronized manner. A single time point may contain cells from different stages in the process, obscuring the dy-
namics of relevant genes. Reordering the cells in “pseudotime” according to biological progress eliminates averaging and recovers the true signal in ex-
pression (Trapnell et al. 2014).

Trapnell

1492 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on April 17, 2019 - Published by genome.cshlp.orgDownloaded from 

79

Impact of bulk measurement technology

Trapnell Genome Research (2015)

Simpson's paradox

bulk measurements yield qualitatively incorrect conclusions
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Meaningful variation at tissue scale

Reciprocal metabolic 
perturbations in liver 
and adipose tissue in 

the setting of 
defective lipolysis

Weinstein et al. ATVBAHA (2012)
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Other sources of variation confounding measurement

Trapnell Genome Research (2015)

single-cell genomics experiments, as some cell fate decisions are
governed by a single pair of mutually exclusive regulators. For ex-
ample, the myeloid/erythroid fate decision in common myeloid
progenitor cells is made via the mutually antagonistic transcrip-
tion factors PU.1 (encoded by SPI1) and GATA1 (Rekhtman et al.
1999). In the hypothetical experiment, onemight observe the pat-
tern on the left side of Figure 1A and conclude that the genes in
question are expressed mutually exclusively. However, if the pop-
ulation consisted of a mixture of two separate groups of cells, this
conclusion might be incorrect. Grouping the cells properly by
type, and then performing the analysis could reveal the genes are
in fact positively correlated, not negatively correlated. That is, fail-
ing to properly compartmentalize the data by cell type leads to a
qualitatively incorrect interpretation. The misleading effects of
Simpson’s Paradox are likely to be pervasive in modern experi-
ments using bulk assays.

Another crucial reason that single-cell measurements are nec-
essary to define cell states is that bulk measurements confound
changes due to gene regulation with those due to shifts in cell
type composition. Consider an experiment aimed at studying
the effect of a drug on a tissue composed of two cell types. (Fig.
1B) Suppose a certain gene’s expression is measured via bulk-cell
analysis before and after treatmentwith the drug. Uponmeasuring
a major increase in the gene’s expression, one might surmise that
the drug causes an up-regulation of the gene in the relevant cells.
However, it might instead be that the drug stimulates cell division
in one of the two subpopulations. Bulk assays cannot discriminate
between these two cases.

Time series studies of gene expression, which are foundation-
al for examining dynamic processes in development and disease
progression, also suffer from averaging in bulk studies. For exam-
ple, differentiating cellsmight transition through a sequence of in-
termediate states on the way to becoming fully mature. However,
they typically do not do so in a synchronizedmanner, so sampling

a population of them at any particularmoment in timewill yield a
mixture of cells from different stages, as illustrated in Figure
1C. Tracking the time-average expression of a gene of interest
might yield a qualitatively misleading picture of that gene’s devel-
opmental regulation. If we could reorder the cells on the horizon-
tal axis, we would see a faithful representation of the gene’s
expression dynamics during development.

Bulk measurements are thus fundamentally constrained by
averaging. Accurately defining the cell types and states in our bod-
ies and explaining how they arise in development and disease de-
mands single-cell measurements.

Technological advances in cellular state measurement
Next-generation sequencing has proven to be a remarkably sen-
sitive means of monitoring gene expression, epigenetic configu-
ration, nuclear structure, and other aspects of cellular state.
However, most assays require a minimum level of input material
that exceeds that of a single cell. Over the past several years, a num-
ber of sequencing-based assays have been optimized to work at the
level of individual cells. These improvements have primarily
stemmed from breakthroughs in amplification techniques, modi-
fications to reverse transcriptase that improve processivity and en-
able controlled template switching, and the development of
instruments that physically capture and isolate individual cells.

Most single-cell genomics assays have been adapted from
similar techniques developed for analyzing bulk-cell populations
(Table 1). The most widely used of these is RNA-seq, which mea-
sures global gene expression by reverse transcribing RNA into
cDNA and sequencing it (Cloonan et al. 2008; Mortazavi et al.
2008; Nagalakshmi et al. 2008). Counting the reads that originate
from each gene yields a measure of its expression. Single-cell ver-
sions of the RNA-seq protocol isolate individual cells in microflui-
dic capillaries (Wu et al. 2013), by serial dilution, or via flow

Figure 1. Single-cell measurements preserve crucial information that is lost by bulk genomics assays. (A) Simpson’s Paradox describes the misleading
effects that arise when averaging signals from multiple individuals. (B) Bulk measurements cannot distinguish changes due to gene regulation from those
that arise due to shifts in the ratio of different cell types in a mixed sample. (C) Time series experiments are affected by averaging when cells proceed
through a biological process in an unsynchronized manner. A single time point may contain cells from different stages in the process, obscuring the dy-
namics of relevant genes. Reordering the cells in “pseudotime” according to biological progress eliminates averaging and recovers the true signal in ex-
pression (Trapnell et al. 2014).

Trapnell

1492 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on April 17, 2019 - Published by genome.cshlp.orgDownloaded from 
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Conclusion to message construction

• We need to measure a lot of things simultaneously
• We need to keep the measurements confined 

spatially

Information

Biological System

Encoder

Message
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Missing information in bulk measurement

3 Sun et al. Clin Cancer Res (2013)

• 7% of breast cancer in patients age <40
• Prognostic value of stroma-related gene signatures (DCN, PLAU) are age-

dependent (patients <40) for the ER−/HER2− subtype1

• Gene expression in whole breast tissue changes dramatically with age2

• Cellular composition of breast tissue changes dramatically with age3

1 Azim et al. Clin Cancer Res (2012) 2 Pirone et al. Cancer Epidemiol
Biomarkers Prev (2012)
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Measurement 
Technology

How to transmit a message

Information

Biological System

Encoder

Message

Transmission

Decoder

Scientist
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How to transmit a message

The medium of information transmission in biological 
measurements is typically light
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The FISSEQ approach

FISSEQ approach to massively multiplex in situ
molecular detection is sequencing

Theoretical 
Multiplexity

Serial labeling F×N

"Colorimetric" 
labeling [                     ,            ]

Sequencing FN

F = fluorophores

N
 =

 c
yc

le
s

2F-1
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The FISSEQ approach

FISSEQ approach to massively multiplex in situ
molecular detection is sequencing

Theoretical 
Multiplexity

Serial labeling F×N

"Colorimetric" 
labeling [                     ,            ]

Sequencing FN

F = fluorophores

L = distinct levels of fluorescence

2F-1
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The FISSEQ approach

FISSEQ approach to massively multiplex in situ
molecular detection is sequencing

Theoretical 
Multiplexity

Serial labeling F×N

"Colorimetric" 
labeling [                     ,            ]

Sequencing FN

F = fluorophores

N
 =

 c
yc

le
s

N
 =

 c
yc

le
s

time

RNA-seq
DNA-seq
barcode2F-1
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RNA FISSEQ Data

Each dot is a single RNA molecule

A G C T
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RNA FISSEQ Data
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Molecular detection across spatial scales
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RNA FISSEQ Protocol

3. Reverse transcription incorporating 
aminoallyl-dUTP

4. Cross-link cDNA using BS(PEG)9

5. RNase to free cDNA ends

6. Circularize cDNA

1. Fix RNA in place

2. Add RT primer (random hex)

7. Rolling circle amplification to 
generate sequencing amplicon 
“rollony”
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RNA FISSEQ Protocol

3. Reverse transcription incorporating 
aminoallyl-dUTP

4. Cross-link cDNA using BS(PEG)9

5. RNase to free cDNA ends

6. Circularize cDNA

1. Fix RNA in place

2. Add RT primer (random hex)

7. Rolling circle amplification to 
generate sequencing amplicon 
“rollony”
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The in situ sequencing library

sequence & position

amplified sequencing template

single RNA molecule capture

template = sequence

traditional NGS

FISSEQ
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RNA-FISSEQ of primary fibroblast wound healing
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RNA-FISSEQ data is RNA-seq data

ncRNA
6.9%

rRNA
42.7%

antisen
se RNA
6.8%

mRNA
43.6%

Random hexamer reverse transcription captures from 
the whole transcriptome

human primary fibroblast data

>8,000
genes
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RNA-FISSEQ data is RNA-seq data

FN1 average per-base coverage 1.6×
(527 reads / 8.9 kb)

0

5

10

Synonymous G→A (rs13652)

EDB EDA IIICS

Co
ve

ra
ge

 D
ep

th
 (r

ea
ds

)

0 nt 8815 nt
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RNA-FISSEQ data is RNA-seq data

EDB Expression p<1E-16 in FBS vs. EGF Media

Media-dependent splicing of fibronectin in human primary 
fibroblasts reflects mesenchymal-epithelial transition



Evan Daugharthy
evan.daugharthy@gmail.com 124

RNA-FISSEQ data is quantitative

human primary fibroblast data
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RNA-FISSEQ data is spatially resolved

human primary fibroblast data
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Wound healing model
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Molecular phenotype of wound sensing & response
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Polonator H12
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Other Related Technologies
Technology Encoding Transmission/

Decoder
Used For Exemplary 

Companies
Nanopore 

Sequencing
None (direct 

measurement)
Or synthesis of 
complementary 

strand

Charge/impedance 
changes as 

molecule passes 
through a pore 

(electrical signals)

DNA, RNA, protein
Any polymers

Oxford Nanopore
Genia (Roche)

Single-Cell 
RNA/DNA 

Sequencing

DNA/RNA 
enzymatic 

processing adds 
barcode 

(information tag) to 
each cell in a micro-

droplet before 
mixing for NGS

Fluorescence / 
Optical (NGS)

DNA, RNA 10X Genomics
Bio-Rad

Single-Cell/Spatial 
Protein

DNA barcoding Fluorescence / 
Optical (NGS)

Proteins CITE-Seq (10X)
Akoya

Imaging Mass Spec None (direct 
measurement) -

ionizes the 
molecules on the 

surface of the 
sample and collects 
a mass spectrum at 

each pixel

Mass spectrometry 
(electrical signal)

Proteins Bruker
Thermo
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Other Related Technologies

Technology Encoding Transmission/
Decoder

Used For Exemplary 
Companies

smFISH Hybridization 
Reaction

Fluorescence / 
Optical (spectral 

multiplexing)

RNA/DNA ACD RNAscope
ACD Base Scope

Multiplex FISH Hybridization 
Reaction(s)

Fluorescence / 
Optical (temporal 

multiplexing / 
barcode detection)

RNA/DNA ACD High Multiplex
MERFISH

OligoFISSEQ

Spatial 
Transcriptomics

Spatial DNA tagging 
(DNA/RNA 
processing 

biochemistry)

Fluorescence / 
Optical (NGS)

RNA 10X Visium

FISSEQ DNA/RNA 
processing 

biochemistry

Fluorescence / 
Optical (NGS)

RNA / DNA ReadCoor / 10X 
Genomics

ISS (in situ 
sequencing) & 

Targeted FISSEQ

Hybridization 
Reaction(s) & 

DNA/RNA 
biochemistry

Fluorescence / 
Optical (temporal 

multiplexing / 
barcode detection)

RNA / DNA Cartana / 10X 
Genomics
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Pause

End of technology – any 
questions/discussion

Application discussion to follow
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Brain FISSEQ

mouse hippocampus

1989
210 cell types

1 neuron

2006
145 neuron 

types
Alberts, Molecular Biology of the Cell Vikaryous, Human cell type… Dueck, Deep sequencing…

2015
53 single neurons

sequenced
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Brain FISSEQ

1 exocytosis/secretion/transport
2 cytoskeletal processes
3 homeostasis and macromolecule modification
4 epithelial cell migration &c.
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Rosetta Brain

1

2
3

4
5

6

7
8

9
10

11

12 13

14

15

16

17 18
19

20
21

22

23

24
25

26 27

28
29

30
31

32

3334
35

36 37

38

39
40 41

42
43

44

45
46

47
48

49

50
51 52

53 54 55
56

57
58

X

O

O

O
²

Marblestone, Daugharthy et al. arXiv (2014) arXiv:1404.5103
Marblestone, Daugharthy et al. arXiv (2014) doi:10.1101/001214

Connectomic reconstruction is possible by barcoding 
neuronal connections
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Rosetta Brain

Marblestone, Daugharthy et al. arXiv (2014) arXiv:1404.5103
Marblestone, Daugharthy et al. arXiv (2014) doi:10.1101/001214
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Rosetta Brain

X

O

O

O
²

Marblestone, Daugharthy et al. arXiv (2014) arXiv:1404.5103
Marblestone, Daugharthy et al. arXiv (2014) doi:10.1101/001214

Simultaneous RNA-FISSEQ reveals 
the cellular identity of each neuron 
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Application: Gene therapy
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Whole brain therapeutic detection & MALAT1 KD

-40%

0%

40%

80%

Therapeutic Target Gene

C
ha

ng
e 

in
 A

bu
nd

an
ce

ASO 3174 vs Control Treatment

Dosed with control therapeutic B
Detect functional therapeutic A

Dosed with control therapeutic B
Detect MALAT1

Dosed with functional therapeutic A
Detect therapeutic A

Dosed with functional therapeutic  A
Detect MALAT1

• Quantification of functional therapeutic A and corresponding knockdown of target MALAT1 
expression level, compared with negative control therapeutic B in whole mouse brain 

Change over entire sagittal section

Reads
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Spatial uptake of gene therapy

Astrocyte
APOE, GFAP

Therapeutic
Target Gene

Astrocyte
Neuron

Microglia
Registration Marker

Therapeutic uptake and 
knockdown response are 

spatially localized

Single-cell 
Phenotyping by 
RNA Expression

Cell & Tissue 
Morphology by 

Antibody

Neuron
SNAP25, SYN1

Data from mouse visual cortex

12-3 12-3

Limited 
ASO 

Uptake
‘Full’ 

Knockdown

Partial 
Knockdown

12-3
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Spatial uptake of gene therapy

Data from mouse visual cortex

ASO Fills Cell 
Partial MALAT1

Knockdown

ASO Fills Cell
Nearly Full MALAT1

Knockdown 

Limited ASO uptake 
Limited MALAT1

knockdown

• Uptake and knockdown are cortical layer 
and cell type dependent

12-3
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Scaling OligoPaints to whole genome

Courtesy of Brandon Fields, Scott Kennedy, Son Nguyen & Ting Wu

P

barcode for 
sequencing 

seq primer

C. elegans whole genome OligoPaints

OligoPaint

fluorescent
primer

MainStreet
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Preliminary data from genome OligoFISSEQ

1 sequence/chromosome
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Publication

Nguyen, Huy Q., et al. "3D mapping and accelerated super-resolution imaging of the human genome using in situ 
sequencing." Nature Methods 17.8 (2020): 822-832.
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Preliminary data from genome & proteome

Direct genomic 
sequencing 

(unpublished)

DNA-barcoded 
antibody
labeling

1 sequence/chromosome

Membrane label of iPS cells
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Protein FISSEQ

Membrane label of iPS cells

Thy1-YFP (green), Bassoon (blue), Homer1 (red)) 

(Peng Yin)

Microtubules

Microtubules (green)
Mitochondria (purple)

(Boyden)

WGA Stain
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Toward perfect detection

We can detect up to [cell volume] / 0.04 μm3 RNA's per cell
Cell type Cell volume Upper Limit

erythrocyte 100 μm3 2,500
neutrophil 300 μm3 7,500
beta cell 1,000 μm3 25,000

enterocyte 1,400 μm3 35,000
fibroblast 2,000 μm3 50,000

HeLa 3,000 μm3 75,000
hair cell 4,000 μm3 100,000

osteoblast 4,000 μm3 100,000
macrophage 5,000 μm3 125,000

cardiomyocyte 15,000 μm3 375,000
megakaryocyte 30,000 μm3 750,000

fat cell 600,000 μm3 15,000,000
oocyte 4,000,000 μm3 100,000,000

1 um 100 nm

320 nm 320 nm

mRNA: 10k-[50k-300k]-1m / cell

Protein: 80,000 / 0.04 μm3

Genome: 11m bp / 0.04 μm3
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Increased sensitivity

< RNAs> volume

We can detect up to [cell volume] / 0.04 μm3 RNA's per cell
Cell type Cell volume Upper Limit

erythrocyte 100 μm3 2,500
neutrophil 300 μm3 7,500
beta cell 1,000 μm3 25,000

enterocyte 1,400 μm3 35,000
fibroblast 2,000 μm3 50,000

HeLa 3,000 μm3 75,000
hair cell 4,000 μm3 100,000

osteoblast 4,000 μm3 100,000
macrophage 5,000 μm3 125,000

cardiomyocyte 15,000 μm3 375,000
megakaryocyte 30,000 μm3 750,000

fat cell 600,000 μm3 15,000,000
oocyte 4,000,000 μm3 100,000,000

How to get 
more sensitivity 

per RNA molecule?

ExM Targeted
FISSEQ
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FISSEQ with expansion microscopy
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Preliminary data on FISSEQ with expansion

tether RNA & expand isotropically

distance < 0.61λ / NA
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Preliminary data on FISSEQ with expansion

ExM RNA-FISH of GAPDH demonstrates efficient RNA expansion

Untreated
2.5x Resolution
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C. elegans



Evan Daugharthy
evan.daugharthy@gmail.com

ExSeq

Alon, Shahar, et al. "Expansion 
sequencing: Spatially precise in situ 
transcriptomics in intact biological 

systems." Science371.6528 (2021).
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Perfect resolution

Genome “B” form DNA helix 2 nm diameter and 3.4 nm 
long per 10 base pairs

Transcriptome 1.5-3 nm per 10 nt

Proteome ~nm scale

Expansion Microscopy (ExM) 300 nm / 150× expansion = 2 nm

SIM + ExM 150 nm / 75× expansion = 2 nm

DNA PAINT + ExM 10 nm / 5× expansion = 2 nm

Not easy, but within reach



Evan Daugharthy
evan.daugharthy@gmail.com 197

ThanksWyss Institute
Jonathan Braff
Nicholas Conway
Jessica Duda
Kevin Esvelt
Thomas Ferrante
Sam Inverso
David Kalish
Seth Kroll
Kathleen Leeper
Daniel Levner
Chao Li
Allison Martin
Steven Perrault
Ben Pruitt
Michael Sismour
Richard Terry
Brian Turczyk
Frederick Vigneault
Daniel Wiegand
DAC
Peng Yin
Peter Sorger
John Quackenbush
Boyden Lab
Ed Boyden
Shahar Alon
Fei Chen
Paul Tillberg
Asmamaw Wassie

Church Lab
John Aach
Volker Busskamp
Sven Dietz
Nancy Feng
Dan Goodman
Kettner Griswold
Jeremy Huang
Eswar Iyer
Reza Kalhor
Gleb Kuznetsov
Jay Lee
Nathan Lewis
Prashant Mali
Adam Marblestone
Kalim Mir
Pierce Ogden
Srivatsan Raman
Paul Reginato
Jonathan Scheiman
Yu Wang

Funding
NSF Fellowship DGE1144152

CEGS P50 HG005550
NIH 1R01MH103910-01

NIMH MH098977
NHBLI RC2HL102815

Allen Institute for Brain Science

Kharchenko Lab
Peter Kharchenko
Joseph Herman
Fan Jean
Zador Lab
Tony Zador
Ian Peikon

Systems Biology
Tim Mitchison
Andrew Murray
Emily Runey
Sam Reed
Hattie Chung
Siting Gan
Antonina Hafner
Stephanie Hays
Adrian Jinich
Jose Reyes
Cameron Myhrvold
Mashaal Sohail
Eric Solis
Matthieu Landon
Alex Ng
Yin Lab
Peng Yin
Maier Avendano
Mingjie Dai
Ralf Jungmann
Cameron Myhrvold
Luvena Ong
Florian Schuederr
Johannes Woehrstein

Yanai Lab
Itai Yanai
Maayan Baron
Students
Brian Ahern
Tiffany Chen
Vivek Dasari
Joshua Lehrer

Broad Institute
Xian Adiconis
Martin Aryee
Joshua Levin
Alex Shalek
Aviv Regev 

Allen Brain Institute
Amy Bernard 
Allan Jones
Bosiljka Tasic
Megason Lab
Sean Megason
Kishore Mosaliganti
Depace Lab
Angela Depace
Meghan Bragdon
Tara Martin
Kennedy Lab
Scott Kennedy
Brandon Fields

Colaiacovo Lab
Monica Colaiacovo 
Jinmin Gao
Beck Lab
Andrew Beck
Octavian Bucur
Jong Cheol
Humayun Irshad
Alex Lancaster
Wu Lab
Ting Wu
Huy Nguyen
Son Nguyen

VisiTech
Steve Coleman



Evan Daugharthy
evan.daugharthy@gmail.com

Homework Preview

Part 1: FoldScope

Samples from Carolina.com
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Homework Preview

Part 2: FISH Probe Design

Use bioinformatics & Python tools to screen 
potential FISH probes (encoders)
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Homework Preview

Part 3: FIJI Image analysis (smFISH)

To be supplied by recitation – experiment ongoing 
today!

Thanks!


