How to Grow Almost Anything!

Principles of Measurement & Imaging

Including an Overview of Analytical Tools for Synthetic Biology

by Evan R. Daugharthy 30 March, 2021

Introduction Part I:

Why do we need analytical tools in synthetic biology?

READCOOR WYSS XINSTITUTE

Synthetic Biology Goal

Make a molecule via biosynthesis Engineer an organism Use DNA for nano-scale assembly etc.

proteomics transcriptomics genomics functional assays sensors DNA synthesis CRISPR DNA origami metabolic engineering directed evolution cell-free system

READCOOR WYSS SINSTITUTE

Evan Daugharthy evan.daugharthy@gmail.com

6

READCOOR WYSS 🔆 INSTITUTE

Human gene therapy

THE US HAS OFFICIALLY Started Using Crispr On Humans

ASTROJAN/VICTOR TANGERMANN

De-extinction

JAN 22, 2019

Are Scientists on the Verge of Resurrecting the Woolly Mammoth?

SARAH PRUITT

Cellular therapies

Scientists Restore Some Function In The Brains Of Dead Pigs

Nell Greenfieldboyce • April 17, 20191:01 PM ET

Can measurement save us?

Synthetic biology leap does not have to lead to monstrous outcomes

These technologies must be kept out of the hands of people who would misuse them

Introduction Part II:

Brief history of molecules in biology

1868-71 Nucleic Acid

1789 **Protein**

READCOOR WYSS SINSTITUTE

1880s: Types of biological "matter"

1789 **Protein**

READCOOR WYSS SINSTITUTE

A. Reticular, B. Fibrillar, C. Granular, D. Alveolar

macromolecule

1900-1930s: "colloidal theory"

1789 **Protein**

Wyss 🛇 Institute

28

macromolecule

1900-1930s: "colloidal theory"

READCOOR

~1940: Two distinct nucleic acids with different properties

Nucleic Acid DNA **RNA**

1789 Protein

~1940: Two distinct nucleic acids with different properties

READCOOR WYSS SINSTITUTE

in(X)3 In(X)1 In(X)2 1938 Х Fruit fly ABC A B C A B AB AB C A BO 17 Genome PH DA. PC5 DP PC2 PAB PA8 PA8 PB0 PB0 PC3 PAO PAD PAD Map QV. DJ PC4 **The HEARDIN** 配形離散)(自 11 21 CAN BE AN ADDRESS OF 111 In(N)1 CAMPAGE WIN DER HURD GOW IV O'N DOLLARD (TRADAUSTICA MANA 行任时间在自己规范 ٧ A. 8 C

Fig. 1: polytene chromosome map of Drosophila mediopunctata with inversion breakpoints presented. Centromeres are shown to the right, telomeres to the left.

READCOOR

WYSS

INSTITUTE

Fig. 1: polytene chromosome map of Drosophila mediopunctata with inversion breakpoints presented. Centromeres are shown to the right, telomeres to the left.

READCOOR

W

/YSS

INSTITUTE

1944: Avery, MacLeod, McCarty "the transforming activity... is actually an inherent property of the nucleic acid"

Preparation No.	Carbon	Hydrogen	Nitrogen	Phosphorus	N/P ratio
	per cent	per cent	per cent	par cent	
37	34.27	3.89	14.21	8.57	1.66
38B		-	15.93	9.09	1.75
42	35.50	3.76	15.36	9.04	1.69
44	-	-	13.40	8.45	1.58
Theory for sodium					1
desoxyribonucleate	34.20	3.21	15.32	9.05	1.69

Elementary Chemical Analysis of Purified Preparations of the Transforming Substance

DNA

READCOOR

1944: Avery, Ma "the transforming ac inherent property o

Elementary Chemical Analysis of Pu

Preparation No.	Carbon
	per cent
37	34.27
38B	
42	35.50
44	-
Theory for sodium desoxyribonucleate	34.20

I ANTIGEN B	
I A' A C'	
I A' OBC'S	
D A' C.	

1940: Pauling hypothesizes all antibodies have same sequence

READCOOR WYSS

Protein

INSTITUTE

28

1948: Tiselius "... substances are more complex than was originally supposed."

Protein

READCOOR WYSS SINSTITUTE

1951-53: Sanger sequences insulin

Protein

25

INSTITUTE

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR

WYSS 🛇

1951-53: Sanger sequences insulin

Evan Daugharthy evan.daugharthy@gmail.com

24

READCOOR

Wyss 🛇 Institute 💥

1956-60s: Central dogma of molecular biology

READCOOR

Wyss \bigotimes Institute

1970-80s: Histone modifications on chromatin 2000: Strahl and Allis' "Histone Code"

READCOOR

Wyss \bigotimes Institute

Early 2000s: Whole genome transcription

READCOOR

Wyss \bigotimes Institute

1977: Introns & RNA splicing 1986: RNA editing 1993: miRNA RNA DNA

Early 2000s: Whole genome transcription

READCOOR WYSS SINSTITUTE

1970-80s: Phosphorylation appreciated Last 30 years >200 PTMs

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS SINSTITUTE

Considerations for measurement

Biological systems are composed of many different molecules, all organized in space

Genome	Sequence (3 billion bp) Modifications (100 million methylation sites) Nucleosome (160 million histones) Organization (chromatin state, 2-20 Kb)
Transcriptome	Transcripts (75,000 species) Number (expression level) Splicing (70,000 splice junctions) Editing (2,000 A>I) Localization (regulation)
Proteome	Genes (20,000, >1m protein species) Number (expression level) Modifications (>20, millions of sites) Localization (function)
gharthy	30 READCOOR WYSS & INSTI

evan.daugharthy@gmail.com

Evan Dau

Towards Perfect Molecular Measurement

What is a measurement?

Measurement is an activity that involves interaction with a system with the aim of representing aspects of that system in abstract terms (classes, numbers)

Information-Theoretic Account of Measurement

Claude Shannon 1916-2001

Entropy of an information source

$$H=-\sum_i p_i \log_2(p_i)$$

Information-Theoretic Account of Measurement

Biological System

Shannon: Source of information is anything with more than one state that can be realized.

Biological information = physical composition and localization of (all the) molecules

Information-Theoretic Account of Measurement

Biological System

Shannon: Source of information is anything with more than one state that can be realized.

Biological information = physical composition and localization of (all the) molecules

"Analyte" The entity to be subjected to measurement (in the sample)

"Measurand" The quantity you intend to measure

Information-Theoretic Account of Measurement

Claude Shannon 1916-2001

Mutual information

$$I(x', y') = \log_2 \frac{P(x'y')}{P(x')P(y')}$$

$$= \log_2 \frac{P(x'|y')}{P(x')}$$

$$= \log_2 \frac{P(y'|x')}{P(y')}$$

Measurement technologies are "information machines"

Measurement Theory

Measurement Theory

The difference between the measured value and the true value is called error. Error can have either positive or negative sign.

READCOOR WYSS SINSTITUTE

Errors

Error can be divided into two parts:

Random error - having different magnitude and sign in the case of repeated measurements Systematic error - having the same or systematically changing magnitude and sign in the case of repeated measurements

A. Menditto, et al Accred. Qual. Assur. 2006, 12, 45

READCOOR WYSS SINSTITUTE

There are several approaches to estimating measurement uncertainty

Guide to the expression of uncertainty in measurement (GUM)

Within-lab validation (Nordtest)

Lots of rules to follow in order to estimate & handle errors correctly, which are worth learning!

Measurement Theory

Resolution & Sensitivity

READCOOR

Wyss 🏷 Institute

Resolution & Sensitivity

Dynamic Range is the total range of detection

Resolution is the smallest detectable increment change of input that can be detected in output

Other factors

Linearity – are changes to input & output related in a linear function?

Hysteresis – dependence of a state on its history, e.g., direction of change

Wyss \bigotimes Institute

READCOOR

Other factors

Linearity – are changes to input & output related in a linear function

Hysteresis – dependence of a state on its history, e.g., direction of change

Wyss 🏷 Institute

READCOOR

How to Build a Measurement Technology

Wyss \bigotimes Institute

READCOOR

Sometimes the information is the message! For example, the information contained in the arrangements of bonds and chemical groups gives rise to physical signals, such as by the interaction with light.

• Detection of intrinsic size, weight, or charge

READCOOR WYSS SINSTITUTE

- Raman spectroscopy (intrinsic vibrational frequencies of chemical bonds)
- Electrical conductance

Unfortunately, most biomolecules are composed of a very limited set of particular bonds & chemical groups, which limits specificity & multiplexing

READCOOR

 $WYSS \bigotimes INSTITUTE$

Example of Direct Measurement: Nanopore Sequencing

For other types of measurement technologies, we have to actively form the message through experimentation

These approaches fall broadly into two groups: Affinity & Reactivity

How to detect molecules by Affinity

- Affinity refers to the weak chemical interactions between biomolecules, such as hydrogen bonding, hydrophobic and hydrophilic interactions, electrostatic interactions, as well as the steric compatibility of biomolecular interfaces that enable these weak chemical interactions.
- Any ligand that exhibits a non-random binding pattern for other biomolecules under any conditions is capable of forming an informatic message from the underlying biological information.
- However, the more specific the affinity interaction is to a particular biomolecular composition, conformation, or spatiotemporal organization, the more information is transferred into the message.
- Message construction can also utilize either the formation or disruption of these weak interactions.

How to detect molecules by Affinity

- Nucleic acid or nucleic acid analog hybridization probes
- Immunological proteins and immune-derived peptide fragments, such as antibodies, nanobodies, single chain variable fragments, and phage-display particles
- Aptamers, including those formed from nucleic acids, nucleic acid analogs, and polypeptides
- Proteins, such as lectins, which bind certain carbohydrate analytes
- Nucleic acid-guided nucleic acid binding proteins, such as by binding dCas9
- Heat or chemical denaturant treatment to disrupt weak interactions, e.g., DNA duplex melting curves

How to detect molecules by Affinity

Antibody binding

Nucleic acid hybridization

READCOOR

Wyss 🗙 Institute

38

Example: Akoya CODEX

- Reactivity refers to formation or destruction of covalent or ionic chemical bonds.
- Again, in theory any chemical reaction that exhibits a nonrandom reactivity profile with biomolecules is capable of forming the message.
- The most common uses of reactivity stem from natural biochemical processes, since the reactions occurring inside living systems are generally highly specific.

- Endonuclease digestion of nucleic acids to generate restriction fragments
- Protease digestion of peptides
- Blunt ended or single stranded ligation
- Nucleic acid synthesis, such as by a polymerase
- Bisulfite reaction with methylated DNA
- Nucleic acid-guided nucleic acid binding protein nuclease activity, such as Cas9

evan.daugharthy@gmail.com

Example: Illumina

Evan Daugharthy evan.daugharthy@gmail.com

3.5

READCOOR WYSS 🔆 INSTITUTE

Summary on Message Composition

- Most measurement technologies combine multiple methods to achieve a final assay
- E.g. FISSEQ technology has *many* steps utilizing both affinity and reactivity to convert the original specimen into an "encoded message" suitable for transmission/detection and decoding
- Some subset of "all the information" in a sample is encoded into the message – it could be the information necessary to fingerprint to identify a molecule, or other types of information, like spatial information
- E.g., single-cell sequencing each cell is loaded into a droplet and barcoded during message encoding – a cell barcode is incorporated into the message to tell the sequencer which cell the particular RNA or DNA molecule originated from (kind of like an IP/MAC address embedded in an internet data packet)

What is a perfect measurement?

Having all the required or desirable characteristics *vs* Being as good or complete as possible

Daugharthy, E., 2016. Towards Perfect Molecular Measurement (Doctoral dissertation).

Towards Perfect Molecular Measurement

- 1. What questions are being asked about biological systems?
- 2. What types of information will provide these answers?
 - 3. What types of observations and measurements will provide this information?
 - Harold Morowitz, 1955

READCOOR

INSTITUTE

Towards Perfect Molecular Measurement

1. What questions are being asked about biological systems?

2. What types of information will provide these answers?

Molecular Mechanisms

Mechanisms are composed of entities and activities

A > B > C

Philosophers of science Machamer, Darden, & Craver

READCOOR

Wyss \bigotimes Institute

Mechanism

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS SINSTITUTE

25

What about more complex phenomena?

Towards Perfect Molecular Measurement

3. What types of observations and measurements will provide this information?

Systems biology is characterized by observing biological systems, experimentally perturbed or in their naturally dynamic states, using quantitative multidimensional and multiplex measurements, and then integrating measurement data and functional observations using mathematical and computational models.

READCOOR WYSS SINSTITUTE

Considerations for measurement

Cells vary in many dimensions simultaneously, need massively multiplex measurements to see the whole picture, i.e. simultaneously encode many species and types of molecules

READCOOR WYSS SINSTITUTE

Brain FISSEQ

198920062015210 cell types145 neuron53 single neurons1 neurontypessequenced

Alberts, Molecular Biology of the Cell

Vikaryous, Human cell type...

Dueck, Deep sequencing...

mouse hippocampus

READCOOR WYSS X INSTITUTE

Cells are high-dimensional entities

Adult mouse cortical cell taxonomy revealed by single cell transcriptomics

Tasic Nature Neuroscience (2016)

 $WYSS \diamondsuit INSTITUTE$

READCOOR

- Se

Evan Daugharthy evan.daugharthy@gmail.com

74
Considerations for measurement

Biological systems vary over all spatial scales; Measurement lacking resolution reduces sensitivity and can lead to incorrect conclusions

> tissue region cell type single cell single molecule

> > READCOOR WYSS SINSTITUTE

bulk

VS

Cell Atlas Project

THE HUMAN CELL ATLAS

Gene expression map:

(0) Capillary endothelium

(1) Ventricular cardiomyocytes

(2) Fribroblast-like (related to cardiac skeleton connective tissue)

(3) Epicardium-derived cells

(4) Fibroblast-like cells (related to smaller vascular development)

(5) Smooth muscle cells / fibroblast-like

(7) Artrial cardiomyocytes

(8) Fibroblast-like cells (related to larger vascular development)

(9) Epicardial cells

1 mm

D

(10) Endothelium / pericytes / adventia

(12) Myoz2-enriched cardiomyocytes

(14) Cardiac neural crest & Schwann progenitor cells

Asp, Michaela, et al. "A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart." *Cell* 179.7 (2019): 1647-1660.

Meaningful variation at sub-cellular scale

Parton et al. Cell Science (2014)

READCOOR WYSS 🏷 INSTITUTE

Impact of bulk measurement technology

Simpson's paradox

bulk measurements yield qualitatively incorrect conclusions

Trapnell Genome Research (2015)

Wyss \circlearrowright Institute

READCOOR

Meaningful variation at tissue scale

Reciprocal metabolic perturbations in liver and adipose tissue in the setting of defective lipolysis

READCOOR

Weinstein et al. ATVBAHA (2012)

INSTITUTE

WYSS 🛇

Other sources of variation confounding measurement

Trapnell Genome Research (2015)

28

READCOOR WYSS SINSTITUTE

Conclusion to message construction

- We need to measure a lot of things simultaneously
- We need to keep the measurements confined spatially

Missing information in bulk measurement

- 7% of breast cancer in patients age <40
- Prognostic value of stroma-related gene signatures (DCN, PLAU) are agedependent (patients <40) for the ER⁻/HER2⁻ subtype¹
- Gene expression in whole breast tissue changes dramatically with age²
- Cellular composition of breast tissue changes dramatically with age³

1 Azim et al. Clin Cancer Res (2012)

READCOOR WYSS SINSTITUTE

How to transmit a message

READCOOR

Wyss 🏷 Institute

XE

How to transmit a message

The medium of information transmission in biological measurements is typically **light**

The FISSEQ approach

FISSEQ approach to massively multiplex *in situ* molecular detection is **sequencing**

Wyss 🏷 Institut

READCOOR

The FISSEQ approach

FISSEQ approach to massively multiplex *in situ* molecular detection is **sequencing**

	Theoretical Multiplexity
Serial labeling	F×N
"Colorimetric" labeling	2 ^F -1

F = fluorophores

L = distinct levels of fluorescence

READCOOR WYSS X INSTITUTE

The FISSEQ approach

FISSEQ approach to massively multiplex *in situ* molecular detection is **sequencing**

Theoretical Multiplexity
rial labeling F×N
blorimetric" labeling
equencing F ^N

Evan Daugharthy evan.daugharthy@gmail.com

111

READCOOR WYSS

INSTITUTE

RNA FISSEQ Data

Evan Daugharthy evan.daugharthy@gmail.com

112

READCOOR WYSS 🛇 INSTITUTE

RNA FISSEQ Data

Evan Daugharthy evan.daugharthy@gmail.com

113

READCOOR WYSS XINSTITUTE

Molecular detection across spatial scales

Evan Daugharthy evan.daugharthy@gmail.com

114

Wyss 🗙 Institute 🔀 READCOOR

RNA FISSEQ Protocol

- 1. Fix RNA in place
- 2. Add RT primer (random hex)

3. Reverse transcription incorporating aminoallyI-dUTP

- 4. Cross-link cDNA using BS(PEG)9
- 5. RNase to free cDNA ends
- 6. Circularize cDNA

7. Rolling circle amplification to generate sequencing amplicon "rollony"

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS SINSTITUTE

RNA FISSEQ Protocol

1. Fix RNA in place

2. Add RT primer (random hex)

5. RNase to free cDNA ends

6. Circularize cDNA

7. Rolling circle amplification to generate sequencing amplicon "rollony"

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS 🏷 INSTITUTE

RNA FISSEQ Protocol

1. Fix RNA in place

2. Add RT primer (random hex)

5. RNase to free cDNA ends

6. Circularize cDNA

7. Rolling circle amplification to generate sequencing amplicon "rollony"

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS 🏷 INSTITUTE

The in situ sequencing library

single RNA molecule capture amplified sequencing template

traditional NGS

FISSEQ

sequence & position

template = sequence

Evan Daugharthy evan.daugharthy@gmail.com

118

READCOOR WYSS 🗙 INSTITUTE

RNA-FISSEQ of primary fibroblast wound healing

Highly Multiplexed Subcellular RNA Sequencing in Situ

Je Hyuk Lee,^{1,2}*† Evan R. Daugharthy,^{1,2,4}* Jonathan Scheiman,^{1,2} Reza Kalhor,² Joyce L. Yang,² Thomas C. Ferrante,¹ Richard Terry,¹ Sauveur S. F. Jeanty,¹ Chao Li,¹ Ryoji Amamoto,³ Derek T. Peters,³ Brian M. Turczyk,¹ Adam H. Marblestone,^{1,2} Samuel A. Inverso,¹ Amy Bernard,⁵ Prashant Mali,² Xavier Rios,² John Aach,² George M. Church^{1,2}†

Evan Daugharthy evan.daugharthy@gmail.com

120

READCOOR WYSS 🛇 INSTITUTE

Random hexamer reverse transcription captures from the whole transcriptome

human primary fibroblast data

121

READCOOR

Wyss 🛇 Institute

Evan Daugharthy

evan.daugharthy@gmail.com

RNA-FISSEQ data is **RNA-seq** data

FN1 average per-base coverage 1.6× (527 reads / 8.9 kb)

RNA-FISSEQ data is **RNA-seq** data

Media-dependent splicing of fibronectin in human primary fibroblasts reflects mesenchymal-epithelial transition

EDB Expression p < 1E - 16 in FBS vs. EGF Media

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR

WYSS

RNA-FISSEQ data is quantitative

human primary fibroblast data

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS 🔆 INSTITUTE

25

RNA-FISSEQ data is spatially resolved

human primary fibroblast data

Evan Daugharthy evan.daugharthy@gmail.com

125

READCOOR WYSS X INSTITUTE

Wound healing model

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS \bigotimes INSTITUTE

Molecular phenotype of wound sensing & response

Evan Daugharthy evan.daugharthy@gmail.com

130

READCOOR WYSS 🚫 INSTITUTE

28

Polonator H12

Other Related Technologies

Technology	Encoding	Transmission/ Decoder	Used For	Exemplary Companies
Nanopore Sequencing	None (direct measurement) Or synthesis of complementary strand	Charge/impedance changes as molecule passes through a pore (electrical signals)	DNA, RNA, protein Any polymers	Oxford Nanopore Genia (Roche)
Single-Cell RNA/DNA Sequencing	DNA/RNA enzymatic processing adds barcode (information tag) to each cell in a micro- droplet before mixing for NGS	Fluorescence / Optical (NGS)	DNA, RNA	10X Genomics Bio-Rad
Single-Cell/Spatial Protein	DNA barcoding	Fluorescence / Optical (NGS)	Proteins	CITE-Seq (10X) Akoya
Imaging Mass Spec	None (direct measurement) - ionizes the molecules on the surface of the sample and collects a mass spectrum at each pixel	Mass spectrometry (electrical signal)	Proteins	Bruker Thermo

Other Related Technologies

Technology	Encoding	Transmission/ Decoder	Used For	Exemplary Companies
smFISH	Hybridization Reaction	Fluorescence / Optical (spectral multiplexing)	RNA/DNA	ACD RNAscope ACD Base Scope
Multiplex FISH	Hybridization Reaction(s)	Fluorescence / Optical (temporal multiplexing / barcode detection)	RNA/DNA	ACD High Multiplex MERFISH OligoFISSEQ
Spatial Transcriptomics	Spatial DNA tagging (DNA/RNA processing biochemistry)	Fluorescence / Optical (NGS)	RNA	10X Visium
FISSEQ	DNA/RNA processing biochemistry	Fluorescence / Optical (NGS)	RNA / DNA	ReadCoor / 10X Genomics
ISS (in situ sequencing) & Targeted FISSEQ	Hybridization Reaction(s) & DNA/RNA biochemistry	Fluorescence / Optical (temporal multiplexing / barcode detection)	RNA / DNA	Cartana / 10X Genomics

End of technology – any questions/discussion

Application discussion to follow

Brain FISSEQ

198920062015210 cell types145 neuron53 single neurons1 neurontypessequenced

Alberts, Molecular Biology of the Cell

Vikaryous, Human cell type...

Dueck, Deep sequencing...

mouse hippocampus

READCOOR WYSS X INSTITUTE

Brain FISSEQ

exocytosis/secretion/transport cytoskeletal processes homeostasis and macromolecule modification

2

З

4

Rosetta Brain

Connectomic reconstruction is possible by barcoding neuronal connections

Marblestone, Daugharthy et al. *arXiv* (2014) arXiv:1404.5103 Marblestone, Daugharthy et al. *arXiv* (2014) doi:10.1101/001214

Evan Daugharthy evan.daugharthy@gmail.com

157

Wyss 🛇 Institute

READCOOR

Rosetta Brain

Marblestone, Daugharthy et al. *arXiv* (2014) doi:10.1101/001214

Rosetta Brain

Simultaneous RNA-FISSEQ reveals the cellular identity of each neuron

Marblestone, Daugharthy et al. *arXiv* (2014) arXiv:1404.5103 Marblestone, Daugharthy et al. *arXiv* (2014) doi:10.1101/001214

READCOOR

Wyss \bigotimes Institute

Application: Gene therapy

Evan Daugharthy evan.daugharthy@gmail.com

161

READCOOR WYSS 🛇 INSTITUTE

Whole brain therapeutic detection & MALAT1 KD

 Quantification of functional therapeutic A and corresponding knockdown of target MALAT1 expression level, compared with negative control therapeutic B in whole mouse brain

Spatial uptake of gene therapy

Single-cell Phenotyping by RNA Expression

Astrocyte Neuron APOE, GFAP SNAP25, SYN1

Cell & Tissue Morphology by Antibody

Astrocyte Neuron Microglia Registration Marker

Data from mouse visual cortex

Therapeutic uptake and knockdown response are spatially localized

Therapeutic Target Gene

Evan Daugharthy daugharthy@fas.harvard.edu

163

Spatial uptake of gene therapy

 Uptake and knockdown are cortical layer and cell type dependent

Limited ASO uptake Limited MALAT1 knockdown

ASO Fills Cell Partial MALAT1 Knockdown

Data from mouse visual cortex

ASO Fills Cell Nearly Full MALAT1 Knockdown

Evan Daugharthy daugharthy@fas.harvard.edu

Scaling OligoPaints to whole genome

2L

175

2R

х

C. elegans whole genome OligoPaints

Evan Daugharthy

evan.daugharthy@gmail.com

3-D

X

2L OligoPaint fluorescent **serimper**imer SXX barcode for 2R sequencing

READCOOR WYSS 🛇 INSTITUTE 🔀

Preliminary data from genome OligoFISSEQ

1 sequence/chromosome

Evan Daugharthy evan.daugharthy@gmail.com

176

Publication

Nguyen, Huy Q., et al. "3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing." *Nature Methods* 17.8 (2020): 822-832.

READCOOR WYSS 🔆 INSTITUTE

XS

Preliminary data from genome & proteome

Direct genomic sequencing (unpublished)

DNA-barcoded antibody labeling

Protein FISSEQ

Toward perfect detection

We can detect up to [cell volume] / 0.04 μ m³ RNA's per cell

Cell type	Cell volume	Upper Limit	
erythrocyte	100 µm³	³ 2,500	
neutrophil	300 µm ³	7,500	
beta cell	1,000 µm ³	25,000	
enterocyte	1,400 µm ³	35,000	
fibroblast	2,000 µm ³	50,000	
HeLa	3,000 µm ³	75,000	
hair cell	4,000 µm ³	100,000	
osteoblast	4,000 µm ³	100,000	
macrophage	5,000 µm ³	125,000	
cardiomyocyte	15,000 µm ³	375,000	
megakaryocyte	30,000 µm ³	750,000	
fat cell	600,000 µm ³	15,000,000	
oocyte	4,000,000 µm ³	100,000,000	

mRNA: 10k-[50k-300k]-1m / cell Genome: 11m bp / 0.04 μm³ Protein: 80,000 / 0.04 μm³

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS 🛇 INSTITUTE 🔀

Increased sensitivity

We can detect up to [cell volume] / 0.04 μ m³ RNA's per cell

Cell type	Cell volume	Upper Limit		
erythrocyte	100 µm³	2,500	How to get	
neutrophil	300 µm ³	7,500	more ser	nsitivity
beta cell	1,000 µm ³	25,000	per RNA n	nolecule?
enterocyte	1,400 µm ³	35,000		
fibroblast	2,000 µm ³	50,000		
HeLa	3,000 µm ³	75,000		
hair cell	4,000 µm ³	100,000	> volume	< RNAs
osteoblast	4,000 µm ³	100,000		
macrophage	5,000 µm ³	125,000		
cardiomyocyte	15,000 µm ³	375,000		Taraatad
megakaryocyte	30,000 µm ³	750,000		
fat cell	600,000 µm ³	15,000,000		FI33EQ
oocyte	4,000,000 µm ³	100,000,000		
Development				

Evan Daugharthy evan.daugharthy@gmail.com

187

READCOOR WYSS 🏷 INSTITUTE

FISSEQ with expansion microscopy

Evan Daugharthy evan.daugharthy@gmail.com

188

READCOOR WYSS 🔆 INSTITUTE

28

Preliminary data on FISSEQ with expansion

tether RNA & expand isotropically

READCOOR

Wyss \bigotimes Institute

Preliminary data on FISSEQ with expansion

RNA-FISH of GAPDH demonstrates efficient RNA expa

Evan Daugharthy evan.daugharthy@gmail.com

190

C. elegans

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR WYSS SINSTITUTE

ExSeq

Alon, Shahar, et al. "Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems." *Science*371.6528 (2021).

Wyss \bigotimes Institute

READCOOR

Perfect resolution

Genome	"B" form DNA helix 2 nm diameter and 3.4 nm long per 10 base pairs	
Transcriptome	1.5-3 nm per 10 nt	
Proteome	~nm scale	
Not easy, but within reach		
Expansion Microscopy (ExM)	300 nm / 150× expansion = 2 nm	
SIM + ExM	150 nm / 75× expansion = 2 nm	
DNA PAINT + ExM	10 nm / $5 \times$ expansion = 2 nm	
Evan Daugharthy daugharthy@fas.harvard.edu	193 Wyss S Institute	

Wyss Institute

Jonathan Braff Nicholas Conway Jessica Duda Kevin Esvelt **Thomas Ferrante** Sam Inverso David Kalish Seth Kroll Kathleen Leeper **Daniel Levner** Chao Li Allison Martin Steven Perrault Ben Pruitt Michael Sismour Richard Terry Brian Turczyk Frederick Vigneault **Daniel Wiegand**

DAC

Peng Yin Peter Sorger John Quackenbush

Boyden Lab

Ed Boyden Shahar Alon Fei Chen Paul Tillberg Asmamaw Wassie

Church Lab John Aach Volker Busskamp Sven Dietz Nancy Feng Dan Goodman Kettner Griswold Jeremy Huang Eswar lyer Reza Kalhor **Gleb Kuznetsov** Jay Lee Nathan Lewis Prashant Mali Adam Marblestone Kalim Mir Pierce Ogden Srivatsan Raman Paul Reginato Jonathan Scheiman Yu Wang

VisiTech Steve Coleman

Kharchenko Lab

Peter Kharchenko Joseph Herman Fan Jean

Zador Lab Tony Zador Ian Peikon

Thanks

Yanai Lab

Maayan Baron

Itai Yanai

Students

Brian Ahern

Tiffany Chen

Vivek Dasari

Joshua Lehrer

Broad Institute

Xian Adiconis

Martin Aryee

Joshua Levin

Alex Shalek

Aviv Regev

Wyss

Systems Biology

Tim Mitchison Andrew Murray **Emily Runey** Sam Reed Hattie Chung Siting Gan Antonina Hafner Stephanie Hays Adrian Jinich Jose Reyes Cameron Myhrvold Mashaal Sohail **Eric Solis** Matthieu Landon Alex Ng Yin Lab

Peng Yin Maier Avendano Mingjie Dai Ralf Jungmann Cameron Myhrvold Luvena Ong Florian Schuederr Johannes Woehrstein

National Human Genome Research Institute

197

INSTITUTE Funding NSF Fellowship DGE1144152 CEGS P50 HG005550

NIH 1R01MH103910-01 NIMH MH098977 NHBLI RC2HL102815 Allen Institute for Brain Science

Allen Brain Institute Colaiacovo Lab

Amy Bernard Allan Jones Bosiljka Tasic

Megason Lab Sean Megason **Kishore Mosaliganti**

Depace Lab Angela Depace Meghan Bragdon Tara Martin

Kennedy Lab Scott Kennedy **Brandon Fields**

Wu Lab

Ting Wu Huy Nguyen Son Nguyen

READCOOR

Monica Colaiacovo

Jinmin Gao

Andrew Beck

Jong Cheol

Octavian Bucur

Humayun Irshad

Alex Lancaster

Beck Lab

Evan Daugharthy evan.daugharthy@gmail.com

READCOOR

Wyss 🛇 Institute

Homework Preview

Part 1: FoldScope

Samples from Carolina.com

Homework Preview

Part 2: FISH Probe Design

Use bioinformatics & Python tools to screen potential FISH probes (encoders)

Homework Preview

Part 3: FIJI Image analysis (smFISH)

To be supplied by recitation – experiment ongoing today!

