Saleem A. Al Dajani

Final Project Presentation Structure

Cursor AI Transcript · HTMAA 2025

Table of Contents

Overview

Cursor AI assistance with finalizing project presentation structure and MIT Academy requirements compliance

Full Conversation

User Unknown

read through @https://academy.cba.mit.edu/classes/project_presentation/index.html

and check my finalproject.html page to make sure it addresses everything required

add a section to the table of contents for Answering questions then create a section its linked to with the questions and placeholder answers for now: Document a final project masterpiece that integrates the range of units covered, answering: What does it do? Who's done what beforehand? What sources did you use? What did you design? What materials and components were used? Where did they come from? How much did they cost? What parts and systems were made? What tools and processes were used? What questions were answered? What worked? What didn't? How was it evaluated? What are the implications?

add a new section under vision board (link it in table of contents) called Project Presentation to download project files, and put placeholders for Prepare a summary slide and a one minute video showing its conception, construction, and operation

add a new section called Design with two subsections 2D Design and 3D Design (link it from table of contents) and put placeholders for Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging

make a section called Bill of Materials (linked from table of contents) with two subsections Bill of Materials and Make vs Biu and put placeholders for Where possible, you should make rather than buy the parts of your project

make a section for Individual Mastery and Independent Operation (linked from table of contents) and put placeholders for Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable

make a section for Course Presentation (linked from table of contents) with a placeholder for Present your final project, weekly and group assignments, and documentation

in the vision board section draw final project spirals for minimal project for class scope -> expansions (see @https://en.wikipedia.org/wiki/Spiral_model and also add image finalproject/Spiral_model_(Boehm,_1988).png explaining the logic

go through the whole page and make sure its organized, aethetically pleasing, simple, while hitting all the project requirements in @https://academy.cba.mit.edu/classes/project_presentation/index.html (while still keeping the information I put there)

Assistant Unknown

I'll help you update your final project page to address all the requirements from the MIT Academy project presentation guidelines. Let me first read your current finalproject.html file to understand what you already have.

Now I'll create a comprehensive todo list to organize all the required updates based on the MIT Academy project presentation guidelines:

Now I'll start implementing the updates. First, let me add the "Answering Questions" section to the table of contents and create the corresponding section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Design Process

[Design process documentation placeholder.]

[Video caption placeholder]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me add the other required sections to the table of contents. I'll add them to the Technical Documentation section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Design Process

[Design process documentation placeholder.]

[Video caption placeholder]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me add the Project Presentation section to the vision board area. I'll add it after the vision board section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Project Presentation

Summary Slide: [Placeholder for project summary slide download]
One Minute Video: [Placeholder for 1-minute video showing conception, construction, and operation]

View full presentation materials →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Design Process

[Design process documentation placeholder.]

[Video caption placeholder]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me add the spiral model visualization to the vision board section. I'll add it after the project presentation section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Project Presentation

Summary Slide: [Placeholder for project summary slide download]
One Minute Video: [Placeholder for 1-minute video showing conception, construction, and operation]

View full presentation materials →

Final Project Spiral Development Model

Spiral Model (Boehm, 1988) - Final Project Development Approach

Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.

Cycle 1: Minimal viable project for class scope
Cycle 2: Core functionality expansion
Cycle 3: Advanced features and integration
Cycle 4: Future research applications

Learn more about the Spiral Model →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Design Process

[Design process documentation placeholder.]

[Video caption placeholder]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me add the "Answering Questions" section after the timeline and tools section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Project Presentation

Summary Slide: [Placeholder for project summary slide download]
One Minute Video: [Placeholder for 1-minute video showing conception, construction, and operation]

View full presentation materials →

Final Project Spiral Development Model

Spiral Model (Boehm, 1988) - Final Project Development Approach

Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.

Cycle 1: Minimal viable project for class scope
Cycle 2: Core functionality expansion
Cycle 3: Advanced features and integration
Cycle 4: Future research applications

Learn more about the Spiral Model →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Answering Questions

Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.

What does it do?

[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]

Who's done what beforehand?

[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]

What sources did you use?

[Placeholder: Research papers, open-source projects, and reference materials]

What did you design?

[Placeholder: Custom hardware, software, and integration systems designed]

What materials and components were used?

[Placeholder: Complete list of materials, sensors, microcontrollers, and components]

Where did they come from?

[Placeholder: Suppliers, vendors, and sourcing information]

How much did they cost?

[Placeholder: Detailed cost breakdown and budget analysis]

What parts and systems were made?

[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]

What tools and processes were used?

[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]

What questions were answered?

[Placeholder: Research questions addressed and hypotheses tested]

What worked? What didn't?

[Placeholder: Successes, challenges, and lessons learned]

How was it evaluated?

[Placeholder: Testing protocols, validation methods, and evaluation criteria]

What are the implications?

[Placeholder: Impact on aging research, clinical applications, and future development]

Design Process

[Design process documentation placeholder.]

[Video caption placeholder]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me add the Design section with 2D and 3D subsections. I'll replace the existing design-process section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Project Presentation

Summary Slide: [Placeholder for project summary slide download]
One Minute Video: [Placeholder for 1-minute video showing conception, construction, and operation]

View full presentation materials →

Final Project Spiral Development Model

Spiral Model (Boehm, 1988) - Final Project Development Approach

Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.

Cycle 1: Minimal viable project for class scope
Cycle 2: Core functionality expansion
Cycle 3: Advanced features and integration
Cycle 4: Future research applications

Learn more about the Spiral Model →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Answering Questions

Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.

What does it do?

[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]

Who's done what beforehand?

[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]

What sources did you use?

[Placeholder: Research papers, open-source projects, and reference materials]

What did you design?

[Placeholder: Custom hardware, software, and integration systems designed]

What materials and components were used?

[Placeholder: Complete list of materials, sensors, microcontrollers, and components]

Where did they come from?

[Placeholder: Suppliers, vendors, and sourcing information]

How much did they cost?

[Placeholder: Detailed cost breakdown and budget analysis]

What parts and systems were made?

[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]

What tools and processes were used?

[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]

What questions were answered?

[Placeholder: Research questions addressed and hypotheses tested]

What worked? What didn't?

[Placeholder: Successes, challenges, and lessons learned]

How was it evaluated?

[Placeholder: Testing protocols, validation methods, and evaluation criteria]

What are the implications?

[Placeholder: Impact on aging research, clinical applications, and future development]

Design

Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.

2D Design

2D design work for the multimodal intrinsic capacity assessment system:

  • [Placeholder: Laser cutting designs for device housing components]
  • [Placeholder: Vinyl cutting designs for labels and UI elements]
  • [Placeholder: PCB layout designs and schematics]
  • [Placeholder: 2D technical drawings and assembly guides]
  • [Placeholder: User interface mockups and wireframes]

Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma

3D Design

3D design work for device components and integration:

  • [Placeholder: 3D printed device housings and enclosures]
  • [Placeholder: Custom sensor mounting brackets and fixtures]
  • [Placeholder: Ergonomic grip strength measurement device]
  • [Placeholder: Camera mounting systems for facial recognition]
  • [Placeholder: Integrated system assembly and packaging]

Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer

Fabrication Processes Integration

Additive: 3D printing for custom components
Subtractive: Laser cutting, milling for precision parts
Electronics: PCB design and production
Programming: Embedded microcontroller development

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me add the Bill of Materials section after the Design section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Project Presentation

Summary Slide: [Placeholder for project summary slide download]
One Minute Video: [Placeholder for 1-minute video showing conception, construction, and operation]

View full presentation materials →

Final Project Spiral Development Model

Spiral Model (Boehm, 1988) - Final Project Development Approach

Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.

Cycle 1: Minimal viable project for class scope
Cycle 2: Core functionality expansion
Cycle 3: Advanced features and integration
Cycle 4: Future research applications

Learn more about the Spiral Model →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Answering Questions

Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.

What does it do?

[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]

Who's done what beforehand?

[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]

What sources did you use?

[Placeholder: Research papers, open-source projects, and reference materials]

What did you design?

[Placeholder: Custom hardware, software, and integration systems designed]

What materials and components were used?

[Placeholder: Complete list of materials, sensors, microcontrollers, and components]

Where did they come from?

[Placeholder: Suppliers, vendors, and sourcing information]

How much did they cost?

[Placeholder: Detailed cost breakdown and budget analysis]

What parts and systems were made?

[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]

What tools and processes were used?

[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]

What questions were answered?

[Placeholder: Research questions addressed and hypotheses tested]

What worked? What didn't?

[Placeholder: Successes, challenges, and lessons learned]

How was it evaluated?

[Placeholder: Testing protocols, validation methods, and evaluation criteria]

What are the implications?

[Placeholder: Impact on aging research, clinical applications, and future development]

Design

Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.

2D Design

2D design work for the multimodal intrinsic capacity assessment system:

  • [Placeholder: Laser cutting designs for device housing components]
  • [Placeholder: Vinyl cutting designs for labels and UI elements]
  • [Placeholder: PCB layout designs and schematics]
  • [Placeholder: 2D technical drawings and assembly guides]
  • [Placeholder: User interface mockups and wireframes]

Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma

3D Design

3D design work for device components and integration:

  • [Placeholder: 3D printed device housings and enclosures]
  • [Placeholder: Custom sensor mounting brackets and fixtures]
  • [Placeholder: Ergonomic grip strength measurement device]
  • [Placeholder: Camera mounting systems for facial recognition]
  • [Placeholder: Integrated system assembly and packaging]

Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer

Fabrication Processes Integration

Additive: 3D printing for custom components
Subtractive: Laser cutting, milling for precision parts
Electronics: PCB design and production
Programming: Embedded microcontroller development

Bill of Materials

Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.

Bill of Materials

Complete list of materials and components:

Electronics Components

  • [Placeholder: Microcontrollers and development boards]
  • [Placeholder: Sensors (force, accelerometer, microphone)]
  • [Placeholder: Camera modules and display components]
  • [Placeholder: Power management and connectivity modules]

Mechanical Components

  • [Placeholder: 3D printing materials (PLA, PETG)]
  • [Placeholder: Laser cutting materials (acrylic, wood)]
  • [Placeholder: Fasteners and mounting hardware]
  • [Placeholder: Enclosure and housing materials]

Cost Breakdown

[Placeholder: Detailed cost analysis and budget tracking]

Make vs Buy

Strategic decisions on fabrication vs. purchasing:

✅ Made Components

  • [Placeholder: Custom 3D printed housings]
  • [Placeholder: Laser cut mounting brackets]
  • [Placeholder: Custom PCB designs]
  • [Placeholder: Integrated sensor assemblies]

🔸 Modified Components

  • [Placeholder: Open-source grip strength meter adaptation]
  • [Placeholder: Commercial sensor integration]
  • [Placeholder: Existing microcontroller customization]

❌ Purchased Components

  • [Placeholder: Standard electronic components]
  • [Placeholder: Commercial sensors and modules]
  • [Placeholder: Development boards and tools]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me add the Individual Mastery and Independent Operation section after the Testing section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Project Presentation

Summary Slide: [Placeholder for project summary slide download]
One Minute Video: [Placeholder for 1-minute video showing conception, construction, and operation]

View full presentation materials →

Final Project Spiral Development Model

Spiral Model (Boehm, 1988) - Final Project Development Approach

Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.

Cycle 1: Minimal viable project for class scope
Cycle 2: Core functionality expansion
Cycle 3: Advanced features and integration
Cycle 4: Future research applications

Learn more about the Spiral Model →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Answering Questions

Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.

What does it do?

[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]

Who's done what beforehand?

[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]

What sources did you use?

[Placeholder: Research papers, open-source projects, and reference materials]

What did you design?

[Placeholder: Custom hardware, software, and integration systems designed]

What materials and components were used?

[Placeholder: Complete list of materials, sensors, microcontrollers, and components]

Where did they come from?

[Placeholder: Suppliers, vendors, and sourcing information]

How much did they cost?

[Placeholder: Detailed cost breakdown and budget analysis]

What parts and systems were made?

[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]

What tools and processes were used?

[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]

What questions were answered?

[Placeholder: Research questions addressed and hypotheses tested]

What worked? What didn't?

[Placeholder: Successes, challenges, and lessons learned]

How was it evaluated?

[Placeholder: Testing protocols, validation methods, and evaluation criteria]

What are the implications?

[Placeholder: Impact on aging research, clinical applications, and future development]

Design

Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.

2D Design

2D design work for the multimodal intrinsic capacity assessment system:

  • [Placeholder: Laser cutting designs for device housing components]
  • [Placeholder: Vinyl cutting designs for labels and UI elements]
  • [Placeholder: PCB layout designs and schematics]
  • [Placeholder: 2D technical drawings and assembly guides]
  • [Placeholder: User interface mockups and wireframes]

Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma

3D Design

3D design work for device components and integration:

  • [Placeholder: 3D printed device housings and enclosures]
  • [Placeholder: Custom sensor mounting brackets and fixtures]
  • [Placeholder: Ergonomic grip strength measurement device]
  • [Placeholder: Camera mounting systems for facial recognition]
  • [Placeholder: Integrated system assembly and packaging]

Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer

Fabrication Processes Integration

Additive: 3D printing for custom components
Subtractive: Laser cutting, milling for precision parts
Electronics: PCB design and production
Programming: Embedded microcontroller development

Bill of Materials

Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.

Bill of Materials

Complete list of materials and components:

Electronics Components

  • [Placeholder: Microcontrollers and development boards]
  • [Placeholder: Sensors (force, accelerometer, microphone)]
  • [Placeholder: Camera modules and display components]
  • [Placeholder: Power management and connectivity modules]

Mechanical Components

  • [Placeholder: 3D printing materials (PLA, PETG)]
  • [Placeholder: Laser cutting materials (acrylic, wood)]
  • [Placeholder: Fasteners and mounting hardware]
  • [Placeholder: Enclosure and housing materials]

Cost Breakdown

[Placeholder: Detailed cost analysis and budget tracking]

Make vs Buy

Strategic decisions on fabrication vs. purchasing:

✅ Made Components

  • [Placeholder: Custom 3D printed housings]
  • [Placeholder: Laser cut mounting brackets]
  • [Placeholder: Custom PCB designs]
  • [Placeholder: Integrated sensor assemblies]

🔸 Modified Components

  • [Placeholder: Open-source grip strength meter adaptation]
  • [Placeholder: Commercial sensor integration]
  • [Placeholder: Existing microcontroller customization]

❌ Purchased Components

  • [Placeholder: Standard electronic components]
  • [Placeholder: Commercial sensors and modules]
  • [Placeholder: Development boards and tools]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Individual Mastery and Independent Operation

Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable.

Individual Mastery

Demonstration of individual skills across all course units:

2D and 3D Design

  • [Placeholder: Individual CAD modeling and design work]
  • [Placeholder: Personal contribution to design decisions]

Fabrication Processes

  • [Placeholder: Personal hands-on fabrication work]
  • [Placeholder: Individual mastery of tools and processes]

Electronics and Programming

  • [Placeholder: Individual PCB design and programming]
  • [Placeholder: Personal debugging and troubleshooting]

Independent Operation

Project operates independently without external dependencies:

✅ Standalone Functionality

  • [Placeholder: Complete system integration]
  • [Placeholder: Self-contained operation]
  • [Placeholder: Independent data collection and processing]

✅ User Independence

  • [Placeholder: User-friendly interface]
  • [Placeholder: Clear operation instructions]
  • [Placeholder: Minimal external assistance required]

✅ Documentation

  • [Placeholder: Complete technical documentation]
  • [Placeholder: Assembly and operation guides]
  • [Placeholder: Troubleshooting and maintenance]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me add the Course Presentation section before the Useful Docs section:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Project Presentation

Summary Slide: [Placeholder for project summary slide download]
One Minute Video: [Placeholder for 1-minute video showing conception, construction, and operation]

View full presentation materials →

Final Project Spiral Development Model

Spiral Model (Boehm, 1988) - Final Project Development Approach

Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.

Cycle 1: Minimal viable project for class scope
Cycle 2: Core functionality expansion
Cycle 3: Advanced features and integration
Cycle 4: Future research applications

Learn more about the Spiral Model →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Answering Questions

Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.

What does it do?

[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]

Who's done what beforehand?

[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]

What sources did you use?

[Placeholder: Research papers, open-source projects, and reference materials]

What did you design?

[Placeholder: Custom hardware, software, and integration systems designed]

What materials and components were used?

[Placeholder: Complete list of materials, sensors, microcontrollers, and components]

Where did they come from?

[Placeholder: Suppliers, vendors, and sourcing information]

How much did they cost?

[Placeholder: Detailed cost breakdown and budget analysis]

What parts and systems were made?

[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]

What tools and processes were used?

[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]

What questions were answered?

[Placeholder: Research questions addressed and hypotheses tested]

What worked? What didn't?

[Placeholder: Successes, challenges, and lessons learned]

How was it evaluated?

[Placeholder: Testing protocols, validation methods, and evaluation criteria]

What are the implications?

[Placeholder: Impact on aging research, clinical applications, and future development]

Design

Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.

2D Design

2D design work for the multimodal intrinsic capacity assessment system:

  • [Placeholder: Laser cutting designs for device housing components]
  • [Placeholder: Vinyl cutting designs for labels and UI elements]
  • [Placeholder: PCB layout designs and schematics]
  • [Placeholder: 2D technical drawings and assembly guides]
  • [Placeholder: User interface mockups and wireframes]

Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma

3D Design

3D design work for device components and integration:

  • [Placeholder: 3D printed device housings and enclosures]
  • [Placeholder: Custom sensor mounting brackets and fixtures]
  • [Placeholder: Ergonomic grip strength measurement device]
  • [Placeholder: Camera mounting systems for facial recognition]
  • [Placeholder: Integrated system assembly and packaging]

Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer

Fabrication Processes Integration

Additive: 3D printing for custom components
Subtractive: Laser cutting, milling for precision parts
Electronics: PCB design and production
Programming: Embedded microcontroller development

Bill of Materials

Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.

Bill of Materials

Complete list of materials and components:

Electronics Components

  • [Placeholder: Microcontrollers and development boards]
  • [Placeholder: Sensors (force, accelerometer, microphone)]
  • [Placeholder: Camera modules and display components]
  • [Placeholder: Power management and connectivity modules]

Mechanical Components

  • [Placeholder: 3D printing materials (PLA, PETG)]
  • [Placeholder: Laser cutting materials (acrylic, wood)]
  • [Placeholder: Fasteners and mounting hardware]
  • [Placeholder: Enclosure and housing materials]

Cost Breakdown

[Placeholder: Detailed cost analysis and budget tracking]

Make vs Buy

Strategic decisions on fabrication vs. purchasing:

✅ Made Components

  • [Placeholder: Custom 3D printed housings]
  • [Placeholder: Laser cut mounting brackets]
  • [Placeholder: Custom PCB designs]
  • [Placeholder: Integrated sensor assemblies]

🔸 Modified Components

  • [Placeholder: Open-source grip strength meter adaptation]
  • [Placeholder: Commercial sensor integration]
  • [Placeholder: Existing microcontroller customization]

❌ Purchased Components

  • [Placeholder: Standard electronic components]
  • [Placeholder: Commercial sensors and modules]
  • [Placeholder: Development boards and tools]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Individual Mastery and Independent Operation

Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable.

Individual Mastery

Demonstration of individual skills across all course units:

2D and 3D Design

  • [Placeholder: Individual CAD modeling and design work]
  • [Placeholder: Personal contribution to design decisions]

Fabrication Processes

  • [Placeholder: Personal hands-on fabrication work]
  • [Placeholder: Individual mastery of tools and processes]

Electronics and Programming

  • [Placeholder: Individual PCB design and programming]
  • [Placeholder: Personal debugging and troubleshooting]

Independent Operation

Project operates independently without external dependencies:

✅ Standalone Functionality

  • [Placeholder: Complete system integration]
  • [Placeholder: Self-contained operation]
  • [Placeholder: Independent data collection and processing]

✅ User Independence

  • [Placeholder: User-friendly interface]
  • [Placeholder: Clear operation instructions]
  • [Placeholder: Minimal external assistance required]

✅ Documentation

  • [Placeholder: Complete technical documentation]
  • [Placeholder: Assembly and operation guides]
  • [Placeholder: Troubleshooting and maintenance]

Course Presentation

Present your final project, weekly and group assignments, and documentation.

Final Project Presentation

Complete presentation of the multimodal intrinsic capacity assessment system:

  • [Placeholder: Final project demonstration]
  • [Placeholder: Technical documentation presentation]
  • [Placeholder: Results and evaluation discussion]

Weekly Assignments

Integration of weekly work into final project:

  • [Placeholder: Week-by-week contribution summary]
  • [Placeholder: Skills demonstration across all units]
  • [Placeholder: Progressive development documentation]

Group Assignments

Collaborative work and individual contributions:

  • [Placeholder: Group project contributions]
  • [Placeholder: Individual role and responsibilities]
  • [Placeholder: Collaborative learning outcomes]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me update the todo list to mark the completed tasks and check for any linting errors:

Let me check for any linting errors in the file:

Great! Now let me complete the reorganization of the table of contents to make it more logical and aesthetically pleasing. I'll reorganize the sections to flow better:




  
  
  Final Project · HTMAA 2025 · Saleem A. Al Dajani
  
  


  
Saleem A. Al Dajani

Final Project

Bioprinting & Aging Biomarker Device · HTMAA 2025

Project Highlights

Vision Board

Multimodal Intrinsic Capacity Assessment System Vision Board

Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.

Intrinsic Capacity (IC) Coverage by Digital Biomarkers

Domain Grip Voice Face Video Reaction Time Wearable
Locomotor 🔸 🔸 🔸
Cognition 🔸 🔸 🔸
Vitality 🔸
Sensory 🔸
Psychological 🔸

Strong coverage | 🔸 Partial/indirect | Not covered | View full table →

Multimodal IC Pipeline

Inputs: Grip Strength, Voice, Face, Video, Reaction Time, Wearable Accelerometer
Process: Feature extraction → Embeddings → Fusion layer → IC Score
Output: Overall Intrinsic Capacity Score + Domain sub-scores

View detailed pipeline →

Weekly System Development

Weeks 0-1: Project foundation, cutting techniques for device components
Weeks 2-4: Electronics foundation, embedded programming, PCB design
Weeks 5-7: Input devices, sensors for grip strength, voice, face detection
Weeks 8-10: Output devices, mechanical design, system integration
Weeks 11-13: Communication, UI development, final integration

View detailed weekly breakdown →

Project Presentation

Summary Slide: [Placeholder for project summary slide download]
One Minute Video: [Placeholder for 1-minute video showing conception, construction, and operation]

View full presentation materials →

Final Project Spiral Development Model

Spiral Model (Boehm, 1988) - Final Project Development Approach

Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.

Cycle 1: Minimal viable project for class scope
Cycle 2: Core functionality expansion
Cycle 3: Advanced features and integration
Cycle 4: Future research applications

Learn more about the Spiral Model →

Week 0 - Project Ideation

Initial concept development and project planning

Week 2 - Electronics Foundation

Embedded programming and electronics basics

Week 9 - Molding & Casting

Bioprinting molds and device components

Table of Contents

Project Introduction

[Project introduction placeholder - describing the bioprinting and aging biomarker device project.]

[Optional project details placeholder]

Project Goals

  • [Goal 1]
    [Details]
  • [Goal 2]
    [Details]
  • [Goal 3]
    [Details]

Timeline & Milestones

  • [Milestone 1]
    [Details]
  • [Milestone 2]
    [Details]

Tools & Materials

  • [Tool/Material 1]
  • [Tool/Material 2]

Answering Questions

Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.

What does it do?

[Placeholder: Describe the multimodal intrinsic capacity assessment system functionality]

Who's done what beforehand?

[Placeholder: Literature review and prior work in aging biomarkers and intrinsic capacity assessment]

What sources did you use?

[Placeholder: Research papers, open-source projects, and reference materials]

What did you design?

[Placeholder: Custom hardware, software, and integration systems designed]

What materials and components were used?

[Placeholder: Complete list of materials, sensors, microcontrollers, and components]

Where did they come from?

[Placeholder: Suppliers, vendors, and sourcing information]

How much did they cost?

[Placeholder: Detailed cost breakdown and budget analysis]

What parts and systems were made?

[Placeholder: Custom fabricated parts, 3D printed components, and assembled systems]

What tools and processes were used?

[Placeholder: Laser cutting, 3D printing, PCB fabrication, programming, and testing processes]

What questions were answered?

[Placeholder: Research questions addressed and hypotheses tested]

What worked? What didn't?

[Placeholder: Successes, challenges, and lessons learned]

How was it evaluated?

[Placeholder: Testing protocols, validation methods, and evaluation criteria]

What are the implications?

[Placeholder: Impact on aging research, clinical applications, and future development]

Design

Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.

2D Design

2D design work for the multimodal intrinsic capacity assessment system:

  • [Placeholder: Laser cutting designs for device housing components]
  • [Placeholder: Vinyl cutting designs for labels and UI elements]
  • [Placeholder: PCB layout designs and schematics]
  • [Placeholder: 2D technical drawings and assembly guides]
  • [Placeholder: User interface mockups and wireframes]

Tools Used: Inkscape, KiCad, Adobe Illustrator, Figma

3D Design

3D design work for device components and integration:

  • [Placeholder: 3D printed device housings and enclosures]
  • [Placeholder: Custom sensor mounting brackets and fixtures]
  • [Placeholder: Ergonomic grip strength measurement device]
  • [Placeholder: Camera mounting systems for facial recognition]
  • [Placeholder: Integrated system assembly and packaging]

Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer

Fabrication Processes Integration

Additive: 3D printing for custom components
Subtractive: Laser cutting, milling for precision parts
Electronics: PCB design and production
Programming: Embedded microcontroller development

Bill of Materials

Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.

Bill of Materials

Complete list of materials and components:

Electronics Components

  • [Placeholder: Microcontrollers and development boards]
  • [Placeholder: Sensors (force, accelerometer, microphone)]
  • [Placeholder: Camera modules and display components]
  • [Placeholder: Power management and connectivity modules]

Mechanical Components

  • [Placeholder: 3D printing materials (PLA, PETG)]
  • [Placeholder: Laser cutting materials (acrylic, wood)]
  • [Placeholder: Fasteners and mounting hardware]
  • [Placeholder: Enclosure and housing materials]

Cost Breakdown

[Placeholder: Detailed cost analysis and budget tracking]

Make vs Buy

Strategic decisions on fabrication vs. purchasing:

✅ Made Components

  • [Placeholder: Custom 3D printed housings]
  • [Placeholder: Laser cut mounting brackets]
  • [Placeholder: Custom PCB designs]
  • [Placeholder: Integrated sensor assemblies]

🔸 Modified Components

  • [Placeholder: Open-source grip strength meter adaptation]
  • [Placeholder: Commercial sensor integration]
  • [Placeholder: Existing microcontroller customization]

❌ Purchased Components

  • [Placeholder: Standard electronic components]
  • [Placeholder: Commercial sensors and modules]
  • [Placeholder: Development boards and tools]

Fabrication Process

[Fabrication process documentation placeholder.]

Testing & Validation

[Testing and validation documentation placeholder.]

Individual Mastery and Independent Operation

Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable.

Individual Mastery

Demonstration of individual skills across all course units:

2D and 3D Design

  • [Placeholder: Individual CAD modeling and design work]
  • [Placeholder: Personal contribution to design decisions]

Fabrication Processes

  • [Placeholder: Personal hands-on fabrication work]
  • [Placeholder: Individual mastery of tools and processes]

Electronics and Programming

  • [Placeholder: Individual PCB design and programming]
  • [Placeholder: Personal debugging and troubleshooting]

Independent Operation

Project operates independently without external dependencies:

✅ Standalone Functionality

  • [Placeholder: Complete system integration]
  • [Placeholder: Self-contained operation]
  • [Placeholder: Independent data collection and processing]

✅ User Independence

  • [Placeholder: User-friendly interface]
  • [Placeholder: Clear operation instructions]
  • [Placeholder: Minimal external assistance required]

✅ Documentation

  • [Placeholder: Complete technical documentation]
  • [Placeholder: Assembly and operation guides]
  • [Placeholder: Troubleshooting and maintenance]

Course Presentation

Present your final project, weekly and group assignments, and documentation.

Final Project Presentation

Complete presentation of the multimodal intrinsic capacity assessment system:

  • [Placeholder: Final project demonstration]
  • [Placeholder: Technical documentation presentation]
  • [Placeholder: Results and evaluation discussion]

Weekly Assignments

Integration of weekly work into final project:

  • [Placeholder: Week-by-week contribution summary]
  • [Placeholder: Skills demonstration across all units]
  • [Placeholder: Progressive development documentation]

Group Assignments

Collaborative work and individual contributions:

  • [Placeholder: Group project contributions]
  • [Placeholder: Individual role and responsibilities]
  • [Placeholder: Collaborative learning outcomes]

Useful Documentation

Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.

Open Source Grip Strength Meter

A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.

Available Resources:

  • Complete design files and schematics
  • Arduino-based firmware and code repository
  • 3D printing files for device housing
  • Assembly instructions and documentation
  • Calibration procedures and testing protocols
  • Integration examples for data collection systems

Complete Intrinsic Capacity Coverage Analysis

Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.

Domain Grip Strength Voice Face Video (motion/gait) Reaction Time Wearable Accelerometer Notes / Gaps
Locomotor ✅ Strength 🔸 Breath support 🔸 Muscle tone (weak) ✅ Gait, balance, posture 🔸 Finger tap / motor latency ✅ Step count, gait, tremor Best when grip + video + wearable combined
Cognition ✅ Pauses, prosody, dementia 🔸 Micro-expressions 🔸 Motor planning ✅ Processing speed, response 🔸 Activity fragmentation, rhythm Still needs dedicated cognitive tasks
Vitality ✅ Endurance ✅ Breathiness, fatigue markers ✅ Skin tone, aging ✅ Activity/frailty 🔸 Fatigue slows responses ✅ Energy expenditure, sleep–wake Strongest with wearable added
Sensory ✅ Hearing loss markers ✅ Vision decline cues ✅ Stimulus responses ✅ Auditory/visual RT 🔸 Indirect (movement change) Direct audiometry/vision still needed
Psychological ✅ Tone, prosody, mood markers ✅ Expressions, affect ✅ Restlessness, slowing 🔸 Slowed RT in stress/depression ✅ Activity variability, circadian Good multimodal readout of depression/anxiety

Legend:

Strong coverage | 🔸 Partial/indirect coverage | Not covered

Multimodal Intrinsic Capacity Pipeline

Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.

Pipeline Architecture

Inputs

  • Grip Strength
  • Voice
  • Face
  • Video (motion/gait)
  • Reaction Time
  • Wearable Accelerometer

Feature Extraction

  • Strength metrics
  • Prosody features
  • Facial landmarks
  • Gait parameters
  • Response latency
  • Activity patterns

Embeddings

Features converted to vector representations for multimodal fusion

Fusion Layer

Combines multimodal features using attention mechanisms

Output

  • Overall IC Score
  • Domain sub-scores

Domain Scores

  • Locomotor
  • Cognition
  • Vitality
  • Sensory
  • Psychological

Weekly System Development Breakdown

How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.

Week 0: Project Ideation

Initial concept development and planning

  • Project planning and documentation structure
  • Research direction and concept sketches

Week 1: Precision Cutting

Laser and vinyl cutting techniques

  • Device housing components via laser cutting
  • Sensor mounting brackets and enclosures
  • Vinyl cutting for device labeling and UI elements

Week 2: Embedded Programming

Electronics basics and microcontroller programming

  • Microcontroller programming for data collection
  • Basic sensor interface circuits

Week 3: 3D Scanning & Printing

3D technologies for device components

  • 3D scanning for custom component design
  • 3D printing for device housings

Week 4: Electronics Design

EDA and schematic design

  • PCB design for grip strength measurement
  • Sensor interface circuits and signal conditioning
  • Power management and data storage systems

Week 5: Electronics Production

PCB fabrication and assembly

  • PCB fabrication and debugging
  • Component assembly and testing

Week 6: Computer-controlled Machining

CAM and precision milling

  • Precision components via milling
  • Custom mechanical parts

Week 7: Input Devices

Sensor integration for data collection

  • Force sensors for grip strength measurement
  • Microphones for voice analysis
  • Camera systems for facial expression analysis
  • Reaction time measurement circuits

Week 8: Output Devices

Actuators and system integration

  • Display systems for real-time feedback
  • Haptic feedback for user interaction

Week 9: Molding & Casting

Forming and resin techniques

  • 3D printing and molding for custom components
  • Bioprinting molds and device components

Week 10: Mechanical & Machine Design

System integration and mechanical design

  • Mechanical design for ergonomic device housing
  • System integration and calibration protocols

Week 11: Networking & Communications

Connectivity and communication protocols

  • Bluetooth/Wi-Fi connectivity for data transmission
  • Wearable accelerometer integration and data fusion

Week 12: Interface & Application Programming

UI development and application programming

  • Mobile app development for user interface
  • Cloud integration for data storage and analysis
  • Machine learning pipeline for IC score calculation

Week 13: Wildcard & Final Integration

Final orders and complete system deployment

  • Final testing, validation, and documentation
  • System integration and deployment

Week 0 - Introduction & Design

Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.

Project planning Concept sketches Research direction

System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.

[Week 0 progress and contributions to final project placeholder]

Week 1 - Principles & Cutting

Version control, laser cutting, and vinyl cutting techniques applied to final project components.

Laser cutting Vinyl cutting Version control

System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.

[Week 1 progress and contributions to final project placeholder]

Week 2 - Embedded Programming

Electronics basics and embedded programming for the aging biomarker device components.

Microcontrollers Programming Electronics

System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.

[Week 2 progress and contributions to final project placeholder]

Week 3 - 3D Scanning & Printing

3D scanning and printing techniques for bioprinting components and device housings.

3D scanning 3D printing AI tools

System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.

[Week 3 progress and contributions to final project placeholder]

Week 4 - Electronics Design

EDA and schematic design for the aging biomarker device electronics.

EDA tools Schematic design Circuit design

System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.

[Week 4 progress and contributions to final project placeholder]

Week 5 - Electronics Production

PCB fabrication, debugging, and assembly for the biomarker device.

PCB fabrication Debugging Assembly

System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.

[Week 5 progress and contributions to final project placeholder]

Week 6 - Computer-controlled Machining

CAM and milling for precision components and device housings.

CAM Milling Precision machining

System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.

[Week 6 progress and contributions to final project placeholder]

Week 7 - Input Devices

Sensors and embedded architectures for data collection in the biomarker device.

Sensors Input devices Data collection

System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.

[Week 7 progress and contributions to final project placeholder]

Week 8 - Output Devices

Actuators and system integration for the biomarker device outputs.

Actuators Output devices System integration

System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.

[Week 8 progress and contributions to final project placeholder]

Week 9 - Molding & Casting

Forming and resin techniques for bioprinting molds and device components.

Molding Casting Resins

System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.

[Week 9 progress and contributions to final project placeholder]

Week 10 - Mechanical & Machine Design

Kits and mechanical design for the bioprinting and biomarker device systems.

Mechanical design Machine design System integration

System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.

[Week 10 progress and contributions to final project placeholder]

Week 11 - Networking & Communications

BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.

BLE Wi-Fi Communications

System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.

[Week 11 progress and contributions to final project placeholder]

Week 12 - Interface & Application Programming

UI and application development for the biomarker device interface.

UI design Applications User interface

System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.

[Week 12 progress and contributions to final project placeholder]

Week 13 - Wildcard & Final Orders

Final orders and wildcard week activities for project completion.

Final orders Wildcard activities Project completion

System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).

[Week 13 progress and contributions to final project placeholder]

Design Files

[Links to CAD/SVG/assets placeholder.]

Reflections & Learnings

[Reflection notes placeholder.]

Contributions

Acknowledgements and contributions that made this project possible.

Gladyshev Lab and Collaborators

Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.

Ethical AI Use

Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.

AI-Assisted Final Project Page Creation

Cursor AI assisted with creating the final project page structure, setting up navigation links, and organizing weekly progress sections. The AI helped with HTML structure, responsive design patterns, and creating a comprehensive table of contents for tracking project progress across all weeks.

AI-Assisted Intrinsic Capacity Research & Design

ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.

AI-Assisted Final Project Development

Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.

© Saleem A. Al Dajani
Made for HTMAA 2025 • Built with vanilla HTML/CSS

Now let me complete the final todo tasks and mark them as completed:

Perfect! I have successfully updated your final project page to address all the requirements from the MIT Academy project presentation guidelines. Here's a summary of what I've accomplished:

✅ Completed Updates

1. Answering Questions Section

  • Added a comprehensive section with all 13 required questions from the MIT Academy guidelines
  • Each question has placeholder answers ready for you to fill in
  • Questions cover: What it does, prior work, sources, design, materials, costs, parts made, tools used, questions answered, what worked/didn't, evaluation, and implications
  • 2. Project Presentation Section

  • Added under the vision board with placeholders for:
  • - Summary slide download - One minute video showing conception, construction, and operation

    3. Design Section (2D & 3D)

  • Created comprehensive design section with subsections for:
  • - 2D Design (laser cutting, vinyl cutting, PCB layouts, UI mockups) - 3D Design (3D printing, custom components, sensor mounting) - Fabrication processes integration (additive, subtractive, electronics, programming)

    4. Bill of Materials Section

  • Added with two subsections:
  • - Bill of Materials: Complete component lists, cost breakdown - Make vs Buy: Strategic decisions on fabrication vs purchasing with color-coded categories

    5. Individual Mastery and Independent Operation

  • Created section addressing:
  • - Individual mastery across all course units - Independent operation requirements - Standalone functionality and user independence

    6. Course Presentation Section

  • Added section for presenting:
  • - Final project presentation - Weekly assignments integration - Group assignments and individual contributions

    7. Spiral Model Visualization

  • Added to vision board section with:
  • - Spiral model image from your finalproject folder - Explanation of development approach - Four development cycles (minimal → expansions) - Link to Wikipedia spiral model information

    8. Reorganized Table of Contents

  • Restructured into logical flow:
  • - Project Overview: Basic project information - Design & Development: Technical implementation - Technical & Progress: Analysis and documentation - Weekly Progress: Condensed week-by-week navigation

    🎯 MIT Academy Requirements Coverage

    Your final project page now addresses all the requirements from the MIT Academy project presentation guidelines:

    Document a final project masterpiece - Complete structure in place ✅ Answer all required questions - 13-question section with placeholders ✅ Prepare summary slide and video - Placeholders in Project Presentation section ✅ Incorporate 2D and 3D design - Comprehensive Design section ✅ Multiple fabrication processes - Additive, subtractive, electronics, programming ✅ Make rather than buy - Make vs Buy analysis in BOM section ✅ Individual mastery and independent operation - Dedicated section ✅ Present weekly and group assignments - Course Presentation section

    The page is now well-organized, aesthetically pleasing, and maintains all your existing content while adding the required MIT Academy structure. All sections have placeholder content ready for you to fill in as you progress through your project development.

    Download Options

    For the complete technical details and full conversation transcript: