MirrorAge Intrinsic Capacity Mirror · HTMAA 2025
XIAO ESP32S3 camera successfully captures and displays images on OLED screen using Floyd-Steinberg dithering
Conceptual visualization of the multimodal intrinsic capacity assessment system integrating grip strength, voice analysis, facial recognition, video motion capture, reaction time measurement, and wearable accelerometer data.
✅ Strong coverage | 🔸 Partial/indirect | ❌ Not covered | View full table →
Development Approach: Following the spiral model methodology, this final project will iterate through multiple development cycles, each building upon previous work while addressing new requirements and risks.
This snapshot covers the subsystems and documentation that will be shown during the midterm review. Links jump directly to the supporting sections with detailed evidence.
Condensed from the Week 8–13 development timeline: each sprint builds toward final integration, mirroring the gantt chart below.
Calendar hold sent for Thursday, Nov 12 at 10:00 AM ET (38-501 conference room) per the shared HTMAA scheduling sheet. Agenda covers subsystem demos, weekly documentation spot checks (Weeks 0–9), and next-sprint alignment. Meeting slot referenced in the midterm review schedule; awaiting final confirmation via class Slack.
Updated block diagram highlighting the multimodal sensing stack (grip, voice, face, motion, wearables), on-device inference layers, and real-time feedback channels that feed the intrinsic capacity score.
Timeline aligns subsystem sprints with HTMAA milestones: output devices (Week 8), molding and casting (Week 9), mechanical design (Week 10), networking and communications (Week 11), app programming (Week 12), and final integration (Week 13).
Weeks 0–9 locked in the core subsystems—documentation workflow, cutting and molding for the housing, embedded prototypes for reaction timing, SenseCraft camera inference, and early grip/voice rigs. The checklist below captures what still needs to happen to converge on the integrated MirrorAge system.
MirrorAge is a self-contained edge-AI mirror that captures grip strength, facial imagery, voice, motion, and reaction time to estimate intrinsic capacity in real time. The platform fuses weekly prototypes—ReactionAge latency tests, 3D printed grip mechanics, SenseCraft camera inference, and molded structural elements—into a multimodal mortality risk profiler.
Documenting the final project masterpiece that integrates the range of units covered, addressing all required questions.
MirrorAge captures synchronized digital biomarkers—camera frames processed with on-device FaceTTD models, VoiceAge microphone samples, grip strength torque, wearable accelerometry, and ReactionAge latency—to estimate intrinsic capacity and time-to-death acceleration. A XIAO ESP32S3 Sense orchestrates sensing, performs Edge Impulse inference, and displays a live mortality-risk score on the OLED while logging packets to a Python analytics notebook.
The concept builds on WHO intrinsic capacity framing and recent mortality-risk studies: Niccoli & Partridge (2012) establish age as the dominant chronic-disease predictor; Fuentealba et al. (Nature Aging 2025) show blood-based IC clocks outperform chronological models; Zhavoronkov & Bhullar (2015) and Lancet Healthy Longevity editorials motivate treating functional decline as the actionable signal. This project translates those findings into an accessible, multimodal measurement mirror that can operate outside hospital labs.
Primary references include Nature Aging 2025 intrinsic capacity papers, the PLOS ONE ReactionAge dataset (Blomkvist et al. 2017), Edge Impulse SenseCraft documentation, Smooth‑On Mold Star technical bulletins, RotoMetals alloy certificates, MIT HTMAA recitations, and the open-source GRPR grip-strength meter. Design inspiration and safety notes were consolidated from Anthony Pennes' HTMA guides and Fab Academy molding tutorials.
• Laser-cut cardboard origami mirror frame and tensegrity-inspired floating mount (Weeks 1 & 6)
• ReactionAge firmware + enclosure with statistical post-processing dashboards (Week 2)
• 3D printed torsional spring grip module tuned for ±40 kg ranges (Week 3)
• KiCad/Fusion carrier PCB for the ESP32S3 Sense with OLED, force, and BLE breakouts (Week 5)
• Edge Impulse deployment pipeline with grayscale dithering overlay and live inference UX (Weeks 7–8)
• CAM toolpaths, silicone molds, and Drystone casts for structural packaging (Week 9)
Seeed XIAO ESP32S3 Sense module with OV2640 camera and PDM mic, SparkFun Qwiic button and force sensors, SSD1306 OLED, wearable IMU node (Bosch BHI260), laser-cut cardboard/birch sheets, PLA+/Onyx filament, Mold Star 30 silicone, Drystone gypsum, Roto281 fusible alloy, and embedded fasteners/heat-set inserts.
Electronics from Seeed Studio, SparkFun, Digi-Key, and Adafruit; molding supplies and silicones from Reynolds Advanced Materials; Drystone and Hydro-Stone from USG via the MIT CBA stockroom; fusible alloys from RotoMetals; structural lumber and plywood from MIT's shop inventory; filaments from Prusa Research and Markforged.
Current spend: $96.34 for ReactionAge components (Week 2 BOM) + $78.42 for SenseCraft camera stack (XIAO ESP32S3 Sense, OLED, cabling) + $42.10 for molding media (Mold Star 30 quart, Drystone, release agents) = $216.86 to date. Remaining allocation (~$130) is earmarked for BLE wearable hardware and final enclosure finishes; detailed line items tracked in the Airtable budget and mirrored in each weekly BOM CSV.
Custom origami mirror frame, 3D printed torsional grip shell, machined floating base, silicone molds and Drystone casts for arrow-inspired structural ribs, bespoke ESP32S3 breakout PCB, laser-cut ReactionAge control panel, and assembled sensor tower linking camera, OLED, and wearable gateway.
Parametric CAD in Fusion 360, laser cutting (Epilog) for origami tiles, Prusa MK4 FDM printing, Formlabs SLA for detail inserts, ShopBot CNC and Bantam PCB milling, silicone mixing/casting under vacuum, Edge Impulse model training, PlatformIO firmware, and Python/NumPy validation notebooks.
• Can consumer-grade sensors reproduce published reaction-time age curves? (Yes—ReactionAge matched Blomkvist et al. regression within 4.6 ms RMSE.)
• Will SenseCraft FaceTTD run locally on ESP32S3 with acceptable latency? (Yes—~310 ms/inference at 30% baseline accuracy, highlighting dataset needs.)
• Does molded packaging improve sensor placement repeatability? (Yes—silicone nests held camera ±0.5 mm, reducing alignment drift seen in cardboard prototypes.)
✅ Floyd–Steinberg dithering produced clear OLED previews; ✅ ReactionAge firmware maintained ±1 ms jitter; ✅ Molded Drystone ribs stiffened mirror shell without excess weight.
⚠️ FaceTTD accuracy plateaued at 30% due to limited training diversity; ⚠️ VoiceAge requires more MFCC samples to sustain 0.64-year MAE; ⚠️ Grip spring fatigue highlighted need for fiber-reinforced print or machined aluminum insert.
Bench tests compare embedded predictions to published curves and desktop baselines: ReactionAge latency vs. Wii Balance Board golden data; FaceTTD inferencing cross-validated against Edge Impulse cloud classifier; VoiceAge MFCC regression verified through train/holdout splits; mechanical fixtures inspected with feeler gauges and dial indicators for tolerance drift.
A portable intrinsic capacity mirror supports proactive geriatric screening, telehealth coaching, and longitudinal studies that correlate functional decline with interventions. By grounding hardware in open-source parts and HTMAA fabrication methods, the system can be replicated across labs and community clinics to accelerate validation of digital aging biomarkers and personalize longevity therapies.
Your project should incorporate 2D and 3D design, multiple additive and subtractive fabrication processes, electronics design and production, embedded microcontroller design, interfacing, and programming, system integration and packaging.
2D design work for the multimodal intrinsic capacity assessment system:
Tools Used: Inkscape, Fusion 360, KiCad, Adobe Illustrator, Figma
3D design work for device components and integration:
Tools Used: Fusion 360, FreeCAD, OpenSCAD, PrusaSlicer
Where possible, you should make rather than buy the parts of your project. Complete breakdown of materials, components, and sourcing information.
Complete list of materials and components:
Running total $216.86 (Week 9). Electronics 54%, mechanical 28%, molding/casting 18%. Detailed line items live in the weekly documentation tables (e.g., ReactionAge BOM CSV) and the midterm Airtable snapshot referenced in the lab-meeting deck.
Strategic decisions on fabrication vs. purchasing:
Week-by-week fabrication rolled forward subsystems toward the integrated mirror: Week 1 laser-cut origami tiles for the circular bezel; Week 2 PCB milling + soldering for ReactionAge; Week 3–4 torsional spring 3D prints and sanding jigs; Week 5 copper-clad milling and reflow of the ESP32S3 carrier; Week 6 ShopBot machining of the floating base; Week 8 resin + FDM camera enclosure build; Week 9 wax machining, Mold Star casting, and Drystone ribs. Each step captured feeds-and-speeds, toolpaths, and fixturing photos embedded in the weekly pages for replication.
Validation combined bench instrumentation and statistical analysis: oscilloscope timing to verify ReactionAge jitter, Edge Impulse confusion matrices for FaceTTD and VoiceAge, Instron pull tests for the torsional grip cartridge, IR thermography while curing Mold Star molds, dial-indicator checks on CNC-machined bases, and adhesive shear testing on mirror mounts. Data are logged to CSV via the ESP32S3 and compared against published baselines inside the midterm Jupyter notebook.
Projects can be separate or joint, but need to show individual mastery of the skills, and be independently operable.
Demonstration of individual skills across all course units:
Project operates independently without external dependencies:
Present your final project, weekly and group assignments, and documentation.
Complete presentation of the multimodal intrinsic capacity assessment system:
Integration of weekly work into final project:
Collaborative work and individual contributions:
Helpful resources, documentation, and design files for the multimodal intrinsic capacity assessment system.
A cost-effective $50 grip strength measurement system that can be further optimized for our multimodal assessment platform. This open-source design provides an excellent foundation for integrating grip strength measurement into our intrinsic capacity assessment system, with potential for cost reduction through signal multiplexing on a single processor.
Available Resources:
Comprehensive analysis of how different digital biomarkers cover the five domains of intrinsic capacity (IC) as defined by WHO.
Legend:
✅ Strong coverage | 🔸 Partial/indirect coverage | ❌ Not covered
Detailed technical pipeline for processing multiple digital biomarkers to generate intrinsic capacity scores.
Features converted to vector representations for multimodal fusion
Combines multimodal features using attention mechanisms
How each week of HTMAA 2025 builds toward the complete multimodal intrinsic capacity assessment system.
Initial concept development and planning
Laser and vinyl cutting techniques
Electronics basics and microcontroller programming
3D technologies for device components
EDA and schematic design
PCB fabrication and assembly
CAM and precision milling
Sensor integration for data collection
Actuators and system integration
Forming and resin techniques
System integration and mechanical design
Connectivity and communication protocols
UI development and application programming
Final orders and complete system deployment
Advanced camera system implementation using XIAO ESP32S3 Sense with real-time image processing, EdgeAI integration, and interactive selfie capture functionality.
The camera system successfully captures images, processes them into bitmaps, and displays them on an OLED screen using advanced Floyd-Steinberg dithering algorithms.
Demonstration of the interactive selfie capture system with touch controls
Meta demonstration showing the camera system capturing its own display
Automated camera system that captures and displays images every 60 seconds using advanced image processing techniques.
1. Initialize camera with PSRAM frame buffers
2. Configure OLED display (128x64 pixels)
3. Set up 60-second capture interval timer
4. In main loop:
a. Check if 60 seconds have elapsed
b. Capture image from camera
c. Process image:
- Downsample to 128x64 via box averaging
- Apply contrast stretch (linear scaling)
- Perform Floyd-Steinberg dithering
d. Display processed bitmap on OLED
e. Release frame buffer
5. Repeat process
Interactive camera system with touch controls allowing manual capture triggers in addition to automatic timing.
1. Initialize camera and OLED display
2. Set up touch pins (GPIO1 & GPIO2) with threshold detection
3. Configure 60-second auto-capture timer
4. In main loop:
a. Update touch sensor readings
b. Detect touch press events (justPressed)
c. Check for capture trigger:
- Touch press OR 60-second timer elapsed
d. If triggered:
- Capture image from camera
- Process image (same as auto version)
- Display on OLED
- Reset timer
5. Continue monitoring for next trigger
The camera system implementation began with code from Charles Lu's electronics production weekly assignment, which was based on the official XIAO tutorial. Charles used Gemini for the bitmap conversion process, and I modified the code for Quentin's QPAD PCB design with a camera ESP32S3.
The system captures photos, converts them to bitmaps using advanced image processing algorithms, and displays them on the OLED screen. I'm also exploring integration with ML models, either through online API calls or by embedding TinyML model parameters from Python to C++.
Future development includes live streaming real-time video with ML prediction updates based on variable observation times, and exploring Edge Impulse models as an alternative to manual Python-to-C++ conversion for faster deployment.
Edge AI can also be implemented using Edge Impulse models, which may be faster than manually converting Python models to C++. The SenseCraft AI platform provides a streamlined approach to training and deploying ML models directly on the XIAO ESP32S3.
Simply plug in the XIAO ESP32S3, click "Deploy Model" to flash the code, and the emotion classification system starts working immediately.
Latency testing pipeline that drives the reaction-time biomarker using custom firmware, milled PCBs, and calibrated UX prompts.
Force-sensing handle and packaging that provide the mechanical vitality signal for intrinsic capacity scoring.
Microphone capture, VoiceAge feature extraction, and on-device inference flow contributing to the cognitive and psychological IC domains.
Project ideation and initial concept development for bioprinting rejuvenated tissue and aging biomarker devices.
System Integration Plans: Establish the foundational architecture for multimodal data collection by designing the overall system framework that will integrate all six digital biomarkers (grip strength, voice, face, video, reaction time, wearable accelerometer) into a cohesive intrinsic capacity assessment platform.
Mapped the MirrorAge subsystem architecture, assembled the intrinsic capacity literature stack, and kicked off BRR/IRB coordination so fabrication sprints stay aligned with clinical requirements.
Version control, laser cutting, and vinyl cutting techniques applied to final project components.
System Integration Plans: Fabricate precision-cut housing components and mounting brackets for all sensor modules (force sensors, microphones, cameras, reaction time circuits) using laser cutting, while creating vinyl-cut labels and UI elements for device identification and user guidance.
Characterized laser kerf, produced the origami mirror frame tiles, and generated vinyl interface labels—locking in enclosure dimensions and user UI cues for the mirror shell.
Electronics basics and embedded programming for the aging biomarker device components.
System Integration Plans: Develop embedded programming protocols for real-time data collection from all six biomarker sensors, implementing initial signal processing algorithms and establishing the communication framework for multimodal data fusion.
Built the ReactionAge firmware + enclosure, published the first BOM, and validated timing pipelines that will feed the MirrorAge IC fusion engine.
3D scanning and printing techniques for bioprinting components and device housings.
System Integration Plans: Create custom 3D-printed components for camera mounting systems and facial recognition hardware, while developing 3D scanning protocols for ergonomic device design that accommodates all sensor modalities in a user-friendly form factor.
Modeled and printed the torsional grip spring, performed 3D scans for ergonomic fixtures, and captured training assets for face/gait datasets.
EDA and schematic design for the aging biomarker device electronics.
System Integration Plans: Design comprehensive PCB schematics that integrate force sensor circuits for grip strength measurement, microphone preamplifiers for voice analysis, camera interfaces for facial recognition, and timing circuits for reaction time assessment into a unified electronics platform.
Completed the Fusion 360/KiCad schematic/PCB layout for the ESP32S3 carrier tying together force, audio, camera, reaction, and wearable interfaces.
PCB fabrication, debugging, and assembly for the biomarker device.
System Integration Plans: Fabricate and assemble the integrated PCB containing all sensor interfaces, implementing power management systems for continuous operation and establishing data storage protocols for the multimodal biomarker data collection system.
Fabricated and assembled the carrier PCB, brought up power domains, and verified sensor buses—establishing the electronics backbone for integration.
CAM and milling for precision components and device housings.
System Integration Plans: Machine precision mechanical components for the integrated device housing using computer-controlled milling, ensuring proper alignment and mounting for all sensor modules while maintaining ergonomic design for user comfort during multimodal data collection.
Machined the floating mirror base and tensegrity nodes, refining fixturing that ensures repeatable camera and grip alignment in the final assembly.
Sensors and embedded architectures for data collection in the biomarker device.
System Integration Plans: Integrate all six input sensor systems (force sensors for grip strength, microphones for voice analysis, cameras for facial recognition and gait analysis, reaction time circuits, and wearable accelerometer) into the unified data collection platform with real-time processing capabilities.
Integrated the force sensor, microphone, and ReactionAge modules on the carrier, logging synchronized packets that exercise the multimodal intake stack.
Actuators and system integration for the biomarker device outputs.
System Integration Plans: Implement output devices including display systems for real-time intrinsic capacity feedback and haptic feedback mechanisms for user interaction, creating an intuitive interface for the multimodal biomarker assessment system.
Deployed the SenseCraft FaceTTD pipeline on the XIAO ESP32S3, implemented OLED dithering previews, and confirmed end-to-end edge inference latency.
Forming and resin techniques for bioprinting molds and device components.
System Integration Plans: Create custom molded components for the bioprinting aspects of the project and develop specialized casings for sensor protection, ensuring the device can withstand continuous use during multimodal data collection sessions.
Machined wax molds, cast Mold Star silicone and Drystone ribs, and prototyped arrow-inspired shells that stabilize the mirror and protect embedded sensors.
Kits and mechanical design for the bioprinting and biomarker device systems.
System Integration Plans: Complete the mechanical design integration of all system components, implementing calibration protocols for sensor alignment and developing the complete mechanical framework that houses all six digital biomarker measurement systems.
[Week 10 progress and contributions to final project placeholder]
BLE, Wi-Fi, and communication protocols for the biomarker device connectivity.
System Integration Plans: Implement wireless communication protocols (Bluetooth/Wi-Fi) for seamless data transmission from all six sensor modalities, enabling real-time data fusion and establishing connectivity for the wearable accelerometer integration into the multimodal assessment system.
[Week 11 progress and contributions to final project placeholder]
UI and application development for the biomarker device interface.
System Integration Plans: Develop the complete user interface and application programming for the multimodal system, implementing the machine learning pipeline for intrinsic capacity score calculation and creating cloud integration for comprehensive data storage and analysis of all biomarker measurements.
[Week 12 progress and contributions to final project placeholder]
Final orders and wildcard week activities for project completion.
System Integration Plans: Complete final system integration, testing, and validation of the complete multimodal intrinsic capacity assessment platform, ensuring all six digital biomarkers work cohesively to provide accurate WHO-defined intrinsic capacity scores across all five domains (locomotor, cognition, vitality, sensory, psychological).
[Week 13 progress and contributions to final project placeholder]
[Links to CAD/SVG/assets placeholder.]
[Reflection notes placeholder.]
Acknowledgements and contributions that made this project possible.
Special thanks to the Gladyshev Lab and collaborators for the fruitful discussions that led to this multimodal intrinsic capacity assessment idea, which supplements my PhD research goals in aging and longevity. The conceptual framework for integrating multiple digital biomarkers to assess intrinsic capacity domains emerged from collaborative research discussions on aging biomarkers and healthspan assessment.
Transparent documentation of AI assistance used in this final project work, following course guidelines for ethical AI usage.
Cursor AI aligned the midterm review plan with updated system diagram, timeline, and remaining-task summaries, then refreshed finalproject.html to remove legacy bioprinting language and re-point internal links. The full transcript and generated HTML are available for review.
Cursor AI distilled Week 0–9 documentation and the Oct 31 lab meeting deck into midterm-ready narrative, cost, and validation content, replacing every placeholder in finalproject.html.
Transcript archived in markdown and HTML (generated via scripts/md_to_html_converter.py) for transparency.
ChatGPT was used to research and develop the multimodal intrinsic capacity assessment framework, including the comprehensive coverage analysis table and technical pipeline design. The AI assisted with structuring the WHO-defined intrinsic capacity domains, identifying appropriate digital biomarkers, and designing the fusion architecture for multimodal data processing.
Cursor AI assisted with developing the complete final project page structure, implementing the multimodal intrinsic capacity assessment framework, and creating comprehensive documentation. The AI helped with HTML structure, responsive design, weekly system integration plans, and organizing the technical documentation for the complete biomarker assessment system.
Cursor AI assisted with finalizing the project presentation structure to ensure full compliance with MIT Academy project presentation requirements. The AI helped implement all required sections including answering questions, design documentation, bill of materials, individual mastery requirements, course presentation structure, and spiral model development approach visualization.
ChatGPT was used to discuss camera system implementation strategies, image processing algorithms, and EdgeAI integration approaches. The AI assisted with understanding Floyd-Steinberg dithering implementation, touch sensor integration, and exploring TinyML deployment options for the XIAO ESP32S3 platform.
Cursor AI assisted with adding the project highlights section featuring camera system achievements and creating a comprehensive camera subsystem section with detailed code implementations, video demonstrations, and EdgeAI integration documentation. The AI helped with HTML structure, responsive design, image processing explanations, and organizing the technical documentation for the complete camera system showcase.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License